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ABSTRACT
The prototype Modia3D is used to test and evaluate ideas for mo-

deling and simulating larger and more complex 3-dimensional sys-

tems than it is possible with a pure equation-based modeling system

such as current Modelica. Collision handling in Modia3D is perfor-

med on convex geometries with elastic response calculation using

an improved formulation of the contact forces and torques. The

computed penetration depths and Euclidean distances are utilized

in a novel way as zero-crossing functions. The resulting differential

algebraic equations are solved with a variable-step solver.

KEYWORDS
collision handling, Julia, Modia, Modia3D, Modelica, Minkowski

Portal Refinement algorithm, elastic force law, response calculation,

zero-crossing function, hysteresis

ACM Reference Format:
Andrea Neumayr and Martin Otter. 2019. Collision Handling with Elastic

Response Calculation and Zero-Crossing Functions. In 9th International
Workshop on Equation-Based Object-Oriented Modeling Languages and Tools
(EOOLT ’19), November 5, 2019, Berlin, Germany. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3365984.3365986

1 INTRODUCTION
The Modelica standard library

1
supports the modeling of 3-dimen-

sional multi-body systems with its sub library Modelica.Mechanics.-

MultiBody [29]. There have been several attempts to improve this

library with regards to visualization, collision handling or support

of larger models, for example [2, 8, 16, 19, 28]. Over the years it

was recognized that the technology of current Modelica has some

natural limitations.

Therefore, the open source Modia
2
[9, 10] project was launched

as a domain-specific extension of the Julia programming language
3

1
https://github.com/modelica/ModelicaStandardLibrary

2
https://github.com/ModiaSim/Modia.jl

3
https://julialang.org
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[5]. The equation-based modeling language is called Modia as well

as the experimental modeling environment consisting of several

Julia packages
4
. The intention is to utilize the results of this pro-

totyping in the design of the next Modelica language generation.

Julia allows to implement numerical algorithms conveniently on a

high level. It supports modern data structures, multiple dispatch,

metaprogramming, has a just-in-time-compiler and benchmarks

demonstrate that a similar performance can be reached as with C.

One part of the Modia project is Modia3D
5
[23–26]. Initially, it

is an experimental modeling and simulation environment for 3D

mechanical systems, but it shall be expanded into other domains in

the future.

Ideas from modern computer game engines are used to achieve

a highly flexible setup of mechanical systems including collision

handling. Other features are utilized from multi-body programs,

such as hierarchical structuring, support for closed kinematic loops,

and elastic response calculation. The underlying mathematical for-

mulation are hybrid Differential Algebraic Equations (DAEs) that

are solved with the variable-step solver IDA [17] via the Sundials.jl

Julia package [31]. The emphasis is on variable-step solvers to com-

bine Modia3D with equation-based modeling in the future, using

Modia3D assemblies as components within one high level program-

ming environment (for example a joint of a Modia3D system is

driven by a Modia model of an electrical motor and gearbox).

Modia3D provides a generic interface to visualize simulation

results with different 3D renderers. The free community edition as

well as the professional edition
6
of the DLR Visualization library

7

[3, 14] are supported. Currently, another team is developing a free

2D/3D web-based authoring tool that includes result visualization.

Collision handling with elastic response calculation and error

controlled integration is challenging. A survey of collision detection

methods for convex and concave rigid bodies as well as for de-

formable shapes is for example given in [1, 21]. In [30], there is

an overview of response calculation methods based on impulses.

Whenever a collision with elastic response calculation occurs, the

model response is drastically changed. Variable-step integrators

usually do not perform well if a change is simply applied disconti-

nuously. Instead, both the efficiency and the precision of the result

are improved if state events are generated at the start and end of a

contact, provided contact situations only occur from time to time,

see e.g. [28].

4
https://github.com/ModiaSim/

5
https://github.com/ModiaSim/Modia3D.jl

6
https://visualization.ltx.de/

7
http://www.systemcontrolinnovationlab.de/the-dlr-visualization-library/
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Contact handling in Modia3D uses variable-step solvers where

the penetration depths and Euclidean distances computed with the

improved Minkowski Portal Refinement (MPR) algorithm [23] are

utilized to construct appropriate zero-crossing functions. The user’s

view of Modia3D is introduced in [24] showing the very flexible

definition of 3D systems. A user’s guide of defining models with

collision handling is presented in [26]. Some key algorithms are

discussed in [25].

This article gives an overview to the collision handling of Mo-

dia3D (see section 2) and more insight on how existing elastic

response formulations are combined and enhanced (see section 3).

The formulation of zero-crossing functions as introduced in [23]

is considerably simplified and improved (see section 4) and some

examples are shown in section 5. Note, Modia3D end-users do not

need to bother about the zero-crossing concepts of this article,

since this is a pure internal issue that improves the reliability and

efficiency of simulations.

2 COLLISION HANDLING
A Modia3D model is mathematically defined by the hybrid DAE

system (1), where x = x(t) and the Jacobian J (1c) is regular:

0 =

[
fd ( Ûx ,x , t , zi > 0)

fc (x , t , zi > 0)

]
(a)

z = fz (x , t) (b)

J =


∂ fd
∂ Ûx
∂ fc
∂x

 (c) (1)

When differentiating fc once and using the regularity of J , it is

(conceptually) possible to solve (1a) and
Ûfc for Ûx . Therefore, (1a)

is an index 1 DAE. (1b) defines zero-crossing functions z(t). Whe-

never a zi crosses zero, an event is triggered, simulation is halted,

functions fd , fc can be changed, and simulation is restarted. (1) is

numerically solved with the variable-step DAE integrator IDA of

the Sundials suite [17] via the Sundials.jl [31] Julia package.

The model behavior changes drastically depending on whether

shapes are in contact and contact forces and torques are applied or

not in contact. The distances between convex shapes, in contact

or not, are used as zero-crossing functions zi (t) in [23]. The zero-

crossings of the distances trigger events, at the start and end of a

contact phase, to increase the reliability of a simulation. In section 4

this approach is significantly improved. Furthermore, available pro-

posals for elastic response calculations are combined and enhanced.

The resulting formulation needs the initial relative velocity when a

contact starts to compute an appropriate damping factor from the

coefficient of restitution and this velocity. Therefore, an event at

the start of a contact is mandatory for this approach.

It is standard to perform collision handling in the following way

1. Broad phase
The n shapes where contact can occur are approximated by

other shapes where collision can be very cheaply determined.

Furthermore, the approximated shapes can be placed in a

hierarchy so that all direct and indirect children of a node

cannot penetrate, if a collision is not possible for the node.

Typically, O(n loд(n)) collision tests are being made in this

phase, instead of O(n2) tests.

2. Narrow phase
The signed distances are computed for the potentially col-

liding shape pairs that have been identified in the broad

phase.

3. Response calculation
If two shapes are penetrated, a finite force and/or torque is ap-

plied at the contact point as function of the pentration depth

and its derivative, such as a spring/damper force element.

Alternatively, a force/torque impulse is applied that leads to

discontinuous changes of the velocities/angular velocities of

the shapes. In this paper, the first approach is used.

In the following, details of the collision handling are given, as

implemented in Modia3D:

2.1 Preprocessing
A preprocessing of a mechanical structure is executed to reduce

the number of possible collision pairs to npp and to speed up the

broad phase. This leads to npp ≤ O(n2) tests [24, 25]. There are two
preprocessing rules:

1. Rigidly attached shapes cannot collide with each other.

2. Shapes connected by a joint cannot collide with each other

if the joint specific option canCollide is set to false by the
user.

2.2 Broad Phase
To determine in a cheap way whether two shapes might intersect,

shapes are approximated in Modia3D by Axis Aligned Bounding

Boxes (AABB’s), see e.g. [4, 13]. The narrow phase is executed

only if the AABB’s are overlapping. Otherwise, the shapes cannot

penetrate and the Euclidean distance δAABB between two AABB’s

is calculated instead.

2.3 Narrow Phase
Based on the Minkowski difference, Snethen [33] proposed the

Minkowski Portal Refinement (MPR) algorithm to detect whether

two convex shapes penetrate and if this is the case compute an

approximation of the penetration depth. The MPR algorithm in 3D

is much simpler than the often used GJK/EPA algorithms [4, 13]

because it operates with simpler geometries. The drawback is that

MPR may only compute an approximation of the penetration depth

in some situations. In [27] GJK/EPA and MPR are compared with

several millions randomized benchmarks with various shape types.

In [20] a compact pseudo-code for the MPR algorithm is given.

The MPR algorithm can be used to compute a lower and upper

bound on the closest Euclidean distance of two non-penetrating con-

vex shapes [23]. In Modia3D improvements of the MPR-algorithm

are utilized that have been proposed in [20, 23], in particular to com-

pute the distances of shapes that are not in contact, treating special

collision situations properly and introducing a new termination

condition to speed up the algorithm in some situations.

The signed distance δmpr between two shapes is calculated with

the MPR algorithm only in the narrow phase if the AABB’s in

the broad phase are overlapping. If two shapes are not in contact

to each other, δmpr > 0 is an approximation of the Euclidean

distance. If two shapes are penetrating each other, δmpr < 0 is an

approximation of the penetration depth.
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In Modia3D, all non-smooth shapes (like meshes or boxes) are

smoothed with a small sphere that is moved over all surface points,

according to [4]. The effect is that all sharp edges and vertices of

a shape get “rounded“ and therefore a unique normal is always

defined at every surface point. Furthermore, if a surface point is

changing continuously, also its unique normal is changing conti-

nuously. This feature is important, because otherwise functions

fd , fc are changing discontinuously if two shapes are in contact

at their edges and vertices and a variable-step integration method

might fail. Another effect is that the penetration depth between

two shapes A and B computed by the MPR algorithm is the exact

penetration depth, δmpr (A,B) = δexact (A,B), if |δmpr | < rA + rB ,
where rA, rB are the radii of the smoothing spheres of shape A and

B [23].

3 ELASTIC RESPONSE CALCULATION
The user’s view of the Modia3D elastic response calculation and

how to define models with collision detection has been presented in

[26]. Below, the details of themathematical description are provided.

Hereby, the following definition of the penetration depth δ is used:

Definition 3.1. (Penetration depth).
When two shapes A and B are intersecting, so δmpr ≤ 0, the pene-

tration depth δ is defined as:

δ := |δmpr | ≥ 0. (2)

Assume two shapes penetrate each other as shown in Figure 1.

The intuition is that there is a contact area with a certain pres-

sure distribution in normal and a stress distribution in tangential

direction and that the response characteristics provides an approxi-

mation of the resultant normal force
®fn , resultant tangential force

®ft , and resultant contact torque ®τω . The MPR algorithm calculates

an approximation of the contact point, of the signed distance δmpr
and of a unit vector ®en that is orthogonal to the contacting surfaces.

Figure 1 shows the relation between the forces
®fn , ®ft , torque ®τω

and unit vectors ®en , ®et , ®eω in direction of the respective relative

movement.

~fn

~ft

~en

~τω

~et

~eω

Figure 1: Contact normal force ®fn , contact tangential force ®ft
(= sliding friction force) and contact torque ®τω between two
penetrating objects. ®en , ®et , ®eω are unit vectors in direction of
the respective relative movement [26].

3.1 Force Law
The novel response characteristic is based on [11, 28, 32]:

fn = kr ed max

(
0, cr es cдeo δ

nдeo
(
1 + d Ûδ

))
(3a)

®fn = fn ®en (3b)

®ft = −µk fn ®et,r eд (3c)

®τω = −µr µдeo fn ®eω,r eд (3d)

Ûδ Penetration velocity between two objects, see (5b).

®en Unit vector normal to the contacting surfaces.

®et,r eд , ®eω,r eд Regularized unit vectors in direction of the relative

tangential and relative angular velocity.

µk , µr Kinetic/sliding friction force and rotational resistance torque

coefficient.

cr es Resultant spring constant in normal direction.

d Damping coefficient.

cдeo ,nдeo , µдeo Geometry dependent coefficients.

kr ed Elastic contact reduction factor.

The normal force value fn (3a) is defined with the max(..) function

to guarantee always a compressive force and avoid the nonphysical

behavior of a pulling force.

3.2 Solid Material and Contact Pair Material
Constants

To describe the physical behavior in contact situations solidmaterial

constants and constants which describe the behavior between two

objects need to be defined by the user:

Solid material constants.

E Young’s modulus of contact material in [N /m2].

ν Poisson’s ratio of contact material (0 < ν < 1).

Contact pair material constants.

cor Coefficient of restitution (0 ≤ cor ≤ 1). An ideal inelastic

collision is defined with cor = 0 and an ideal elastic collision

with cor = 1.

µk Kinetic/sliding friction force coefficient (µk ≥ 0).

µr Rotational resistance torque coefficient (µr ≥ 0). Its effect is

that torque ®τω is computed to reduce the relative angular

velocity ®ωr el between the two objects until ®ωr el = 0. µr can
be interpreted as the rolling resistance coefficient if a sphere

is rolling on a plane.

For each shape, where contact can occur, a contact material like

"steel" or "dry wood" needs to be assigned. Each material respecti-

vely defines the contact parameters E and ν . Furthermore, for every

contact material pair potentially occurring during a simulation

(for example "steel, steel" and "steel, dry wood"), the contact pair

material constants (cor , µk , µr ) need to be defined as well.

3.3 Regularization
The unit vector ®et is not defined for vanishing tangential relative

velocity and unit vector ®eω is not defined for vanishing relative

angular velocity. In order to treat these cases appropriately, the

following function is introduced which is a continuous and smooth

regularization of an absolute value:

reg(v,vmin ) =

{
|v |, |v |≥ vmin > 0

|v |2

vmin

(
1 −

|v |
3vmin

)
+
vmin
3
, else

,

(4)
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where v ∈ R,vmin ∈ R+. Function reg(..) returns |v | if |v | is not
close to zero and otherwise defines a third order polynomial such

that its minimum is at
vmin
3

for v = 0 and has smooth first and

second derivatives at |v |= vmin . A plot of the function is shown in

Figure 2 for vmin = 0.01.

Regularized Unit Vectors. Regularized unit vectors are defined with

function (4), whereby the absolute value of a vector | · | is the length

of ®v ∈ R3:

®vr el = ®v2 − ®v1 (5a)

Ûδ = ®vr el · ®en (5b)

®vt = ®vr el − Ûδ ®en (5c)

®et,r eд =
®vt

reg(| ®vt |,vmin )
(5d)

®ωr el = ®ω2 − ®ω1 (5e)

®eω,r eд =
®ωr el

reg(| ®ωr el |,ωmin )
(5f)

Figure 2: Regularization for vmin = 0.01.

Figure 3: A regularized unit vector.

Figure 3 shows the absolute value of a regularized unit vec-

tor ®et,r eд with vmin = 0.01. If | ®vt | < vmin the regularization is

used and |®et,r eд | = 0 if | ®vt | = 0. Otherwise, if | ®vt | ≥ vmin then

|®et,r eд | = 1 and ®et,r eд = ®et .

Regularized Contact Start Velocity. In section 3.4, the damping coef-

ficient d is computed from the velocity at contact start
Ûδ−. To avoid

a division by zero for vanishing
Ûδ− (e.g. if two shapes start in tou-

ching position), function (4) is used to regularize
Ûδ−:

Ûδ−r eд = reg

(
Ûδ−,vmin

)
> 0. (6)

Regularized Coefficient of Restitution. In section 3.4, the damping

coefficient d is computed from the coefficient of restitution cor . If
cor > 0, two objects would bounce infinitely often in finite time

until coming to rest, this is also known as the Zeno effect. This is

nonphysical, because in reality all bouncing objects come to rest

after a finite number of bounces. For this reason cor is reduced

when the velocity at contact start
Ûδ− becomes small. Furthermore,

the regularized coefficient of restitution is restricted to a minimum

value cormin (default = 0.001) to avoid a division by zero when

computing d . The regularized coefficient of restitution corr eд is

defined as:

corr eд = cor + (cormin − cor )e
log(0.01)

| Ûδ− |

vmin . (7)

Figure 4 shows this characteristic for several different coefficients

of restitution.

Figure 4: Characteristics for several regularized coefficients
of restitution.

3.4 Spring and Damping Constants
Spring Constant. With the Hertz’ law [15] for two penetrating bo-

dies, the spring constant

ci =
Ei

1 − ν2i
, i = 1, 2 (8)

of an object i is based on its Young’s modulus Ei and its Poisson’s

ratio νi (see section 3.2). The resultant spring constant of two pene-

trating objects 1 and 2 is computed as

cr es =
1

1

c1 +
1

c2

. (9)
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Damping Constant. There are several proposals to compute the

damping coefficient as a function of the coefficient of restitution cor
and the normal velocity

Ûδ− when contact starts. For a comparison

of the different formulations, see [32]. In Modia3D, basically the

formulation of [11] is used, because it gives similar results with

respect to a response calculation with impulses for a wide range of

cor values for several experiments performed in [32]:

d =min

(
dmax ,

8(1 − corr eд)

5corr eд Ûδ
−
r eд

)
. (10)

(10) has the following improvements with respect to [11]:

• The regularized coefficient of restitution corr eд (7) is used

instead of cor to avoid a division by zero for cor = 0.

• The regularized initial velocity
Ûδ−r eд (6) is used instead of

Ûδ−

to avoid a division by zero.

• The damping coefficient is limited to dmax = 1000 to avoid a

nonphysical strong creeping effect for collisions with small

corr eд values.

The damping coefficient d is shown as function of
Ûδ− for several

cor values in Figures 5 and 6.

Figure 5: Damping coefficient as function of Ûδ− and cor .

Figure 6: Damping coefficient as function of Ûδ− and cor .

3.5 Geometry Dependent Coefficients
The geometries of two objects that are in contact influence the

physical behavior reflected in the coefficients cдeo ,nдeo , µдeo . If at
least one of the shapes is a sphere, Hertz’ law [15] is assumed. If

not enough information is available, these factors are set to one

(see Table 1).

object 1 object 2 µдeo cдeo nдeo

sphere sphere
1

1

r
1

+ 1

r
2

4

3

√
µдeo

3

2

sphere no sphere r1
4

3

√
r1

3

2

no sphere no sphere 1 1 1

Table 1: Geometry dependent coefficients.

3.6 Elastic Contact Reduction Factor
Applying the elastic response calculation (3) on hard materials

such as steel, typically results in penetration depths in the order of

10
−5..10−6 m. A penetration depth is implicitly computed by the

difference of the absolute positions of the objects in contact. Further,

these absolute positions are typically error-controlled variables of

the integrator. This in turn means that typically at least a relative

tolerance of 10
−8

needs to be used for the integration, in order that

the penetration depth is computed with 2 or 3 significant digits.

To improve simulation speed, factor kr ed is introduced in (3a).

This reduces the stiffness of the contact and therefore enlarges the

penetration depth. If kr ed is for example set to 10
−4
, the penetration

depth might be in the order of 10
−3

m and then a relative tolerance

of 10
−5

might be sufficient. In many cases, the essential response

characteristic is not changed, except that the penetration depth is

larger, but simulation speed is significantly improved.

4 ZERO-CROSSING FUNCTIONS
As proposed in [23] the distance computed with the improved

MPR algorithm can be used as zero-crossing function for collision

handling with variable-step solvers.

The following properties of the improved MPR algorithm are

used for collision handling with variable-step integrators. Hereby,

A and B are convex shapes and δmpr is the signed distance returned

by the MPR algorithm under the assumption that computations are

performed with infinite precision and δAABB is the Euclidean dis-

tance between non overlapping AABB’s. The following Theorem 4.1

is a slight extension of [23, Theorem 4.1]

Theorem 4.1. (Contact detection).[23, Theorem 4.1]
The following holds:
1. δAABB > 0 or δmpr > 0: A and B are not in contact to each

other.
2. δmpr = 0: A and B are touching each other.
3. δmpr < 0: A and B are penetrating each other.

Proof. [23, Theorem 4.1] These properties are proven in [23,

Theorem 4.1], with exception of δAABB > 0. The latter is obvious,

because two shapes cannot be in contact to each other if their

AABB’s are not in contact to each other. �
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Basically, the following zero-crossing function zAB is used bet-

ween two shapes A and B:

zAB =

{
δAABB if δAABB > 0

δmpr if δAABB ≤ 0

. (11)

Theorem 4.1 is sufficient in order that (11) can be used as zero-

crossing function for a variable-step solver: It is standard for variable-

step solvers with zero-crossing support to evaluate a zero-crossing

function zAB (t) at time instant tj +h of a completed integrator step

with step-size h. If zAB (tj ) · zAB (tj + h) ≤ 0 an interval [tj , tj + h]
is determined in which zAB crosses zero. Several algorithms with

guaranteed convergence are known to reduce the interval in which

the zero-crossing takes place until a prescribed tolerance for the

final interval is met. For example, the integrators of the Sundials

suite use a modified secant method [18, Sec. 2.3], whereby the inte-

grator DASSL [6] uses the method of Brent [7, pp. 58–59]. In both

cases the interval is successively reduced in every iteration. Hereby,

the only needed property is the sign of zAB (which is provided by

(11) according to theorem 4.1). If zAB (t) is additionally smooth, con-

vergence is faster (for example, in case of the method of Brent [7],

convergence is super-linear).

4.1 Simplified Zero-Crossing Functions
In [23], the signed distances of every shape pair are computed

and the zmax smallest values are used as zero-crossing functions

(otherwise O(n2) zero-crossing functions would be needed, if n
shapes can potentially collide with each other). This approach has

the drawbacks that an upper bound zmax for the number of zero-

crossing functions has to be defined by the user and the algorithm

for keeping track of the zmax smallest values is complicated.

The approach from [23] is significantly simplified by using only

two zero-crossing functions

z1 = max(zAB : in contact at last event) (12a)

z2 = min(zAB : not in contact at last event). (12b)

Hereby, max(zAB : in contact at last event) is the maximum over

all zero-crossing functions (11) of shape pairs which have been in

contact at the last event instant. Therefore, a zero-crossing of z1
takes place, if at least one shape pair, that has been in contact at

the last event, changes from negative to positive values.

Additionally, min(zAB : not in contact at last event) is the mi-

nimum over all zero-crossing functions (11) of shape pairs which

have not been in contact at the last event instant. Therefore, a zero-

crossing of z2 takes place, if at least one shape pair, that has not
been in contact at the last event, crosses from positive to negative

values.

The implementation in Modia3D uses basically one dictionary

(called contactDict) to hold the shape pairs which have been

in contact at the last event instant in order to decide whether a

computed zero-crossing (11) of two shapesA and B shall be utilized

in z1 or in z2. Furthermore, the following three internal functions

are used
8
:

• selectContactPairsAtEvent!(..)
This function is called at every event instant and computes

8
As usual in Julia, function names with a ! at the end indicate that one or more of the

input arguments are changed by the function call.

(11) for all potentially colliding shape pairs. The actual pene-

trating shape pairs are detected and stored in contactDict.
This selection is kept until selectContactPairsAtEvent!
is called again.

• selectContactPairsNoEvent!(..)
This function is called whenever the solver requests a new

zero-crossing function evaluation and computes (11) for all

potentially colliding shape pairs. Furthermore, the contact

points and the contact normals of the collision pairs stored

in contactDict are updated.

• getDistances!(..)
This function is called at communication points and updates

(11), contact points and contact normals for all collision pairs

stored in contactDict.

The difference between these three functions is also pointed out in

Julia pseudo code-snippet
9
lines 1 - 8.

1 hasEvent = isEvent(...)

2 if hasEvent
3 selectContactPairsAtEvent!(...)
4 elseif isZeroCrossing(...)
5 selectContactPairsNoEvent!(...)
6 else
7 getDistances!(...)
8 end

Partitioning into two Sets. The possible contact pairs are partitioned
into two sets. One where all information (contact points on each

object, the contact normal, the two penetrating objects, and the

distance with hysteresis distanceWithHysteresis (lines 14 - 19))

about penetrating objects is stored and updated in contactDict
(lines 9 - 21 and lines 22 - 25). The other set, where the objects are

not in contact, is not stored. But, their distances are compared and

the minimum value is stored in noContactMinVal (lines 26 - 29).

9 function updateContactPair!(pair::ContactPair,
10 contactPoint1::Vector, contactPoint2::Vector,
11 contactNormal::Vector,
12 obj1::Object3D, obj2::Object3D,
13 distanceWithHysteresis::Float64)
14 pair.contactPoint1 = contactPoint1
15 pair.contactPoint2 = contactPoint2
16 pair.contactNormal = contactNormal
17 pair.obj1 = obj1
18 pair.obj2 = obj2
19 pair.distanceWithHysteresis = distanceWithHysteresis
20 ...
21 end

22 if contact
23 updateContactPair!(contactDict[pairID],
24 contactPoint1, contactPoint2, contactNormal,
25 obj1, obj2, distanceWithHysteresis)
26 else
27 if noContactMinVal > distanceWithHysteresis
28 noContactMinVal = distanceWithHysteresis
29 end; end

Hysteresis for Zero-Crossing Functions. A restart of the integration

after an event requires that no zero-crossing function is identical

to zero, otherwise a zero-crossing cannot be detected anymore and

solvers trigger an error. However, the zero-crossing function (11)

might be identically to zero at an event instant (for example two

objects are touching each other at initialization). For this reason, a

9
For better reference every code-snippet is marked with a unique line number on the

left-hand side.
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hysteresis is added to (11) in a similar way as in [12] (see Figure 7

and code lines 30 - 33). There are three ranges: no contact [0,∞),

contact (−2ε,−∞), and hysteresis area [0,−2ε) where the pairs

might be in contact or not. At an event instant, each pair with

distance < −ε is identified (line 32), marked as a pair that is in

contact, and its original distance is stored in distanceWithHys-
teresis. Otherwise, it is not in contact and 2ε is added to the

original distance (line 33).

tε

δ

tev,j1 tev,j2

2ε

co
n
ta
ct

n
o
co
n
ta
ct

hysteresis

z1

z2

distance of pair1
distance of pair2
distance with hysteresis of pair2

Figure 7: Hysteresis for zero-crossing functions.

Each possible contact pair is identified with a unique ID, in this

case (Figure 7): pairID ∈ {1, 2}. At tev, j1 an event is triggered

by z1, since pair 2 is not in contact, the distance is modified and

therefore, the blue graph is shifted with a hysteresis of 2ε . This
leads to the dashed blue graph z2. The solver needs to deal with

two zero-crossing functions. z1 is the original distance of pair 1
and z2 is the distance with hysteresis of pair 2. The next time event

tev, j2 is of zero-crossing function z2.
30 const zEps = 1.e-8

31 hasContact = haskey(contactDict, pairID)
32 contact = hasEvent ? distance < -zEps : hasContact
33 distanceWithHysteresis = contact ? distance : distance + 2*zEps

Zero-Crossing Functions. As defined in (12), two zero-crossing functi-
ons are used:

z1 indicates if at least one zero-crossing from penetrating to

non-penetrating takes place. Therefore, the maximum value

over all distances of shape pairs of contactDict is stored

in z1. If the contact set is empty z1 gets a negative dummy

value. If z1 is positive a zero-crossing takes place (lines 36 -
41). This is a zero-crossing from negative to positive.

z2 indicates if at least one zero-crossing from non-penetrating

to penetrating takes place. The minimum value over all

other distances of shapes (lines 26 - 29) which are not in

contactDict is stored in z2 (line 42). This is a zero-crossing
from positive to negative.

Both zero-crossing functions are updated in function updateZero-
Crossing! (lines 34 - 44).

34 function updateZeroCrossing!(...)
35 ...
36 if isempty(contactDict)

37 z[1] = -42.0
38 else
39 (pair, key) = findmax(contactDict)
40 z[1] = pair.distanceWithHysteresis
41 end
42 z[2] = noContactMinVal
43 ...
44 end

5 EXAMPLES: BILLIARDS
The billiards game is used to test the elastic response law (3) and to

reproduce effects like sliding and rolling of balls, impacts between

balls and between ball and cushion.

The observation of sliding and rolling balls, and the collision

between balls with the elastic response law (3) is described in more

detail in [26].

Sliding and Rolling Ball. The billiard ball is a free flying object

with 6 degrees-of-freedom where the rotation is described with

quaternions (in total, the state of this object is defined with 13

variables). At initialization, the billiard ball is placed in touching

position with the table (penetration depth δ = 0, see Theorem 4.1)

with an initial velocity. The ball subsides immediately, because of

gravity in z-direction. Therefore, the ball and the table are colliding,

a collision event is triggered, and the two objects are penetrating

each other.

At the beginning the ball is sliding and due to sliding friction

(µk = 0.6) the relative velocity is reduced. At the same time, the

sliding friction force acts as a torque around the ball center and

forces a rotation of the ball in y-direction. At a certain time the

relative velocity in tangential direction vt is zero, therefore sliding

friction force
®ft is zero (3c) as well and ideal rolling of the ball

takes place. On the other hand, the rotational resistance torque ®τω
(µr = 0.02) acts as a rolling resistance that continuously reduces

the angular velocity and the ball comes to rest. The effect of sliding

and rolling can be seen in Figure 8 in the first 0.23 s. The first 0.11 s

is the transition between sliding and rolling, and afterwards it is

rolling only.

The elastic response law (3) is able to reproduce the effect of a

sliding and rolling ball. However, for simplicity of the formulation,

velocity dependency of the coefficients cor , µk , µr is neglected. For

further information and graphics about sliding and rolling see [26].

Collision of two Balls. Two billiard balls are positioned on a billiard

table with a gap between them. The cue ball has initial velocity, the

effects of sliding and rolling occur as analyzed before, and it hits

the other resting ball after some time.

Since the coefficient of restitution between these two billiard

balls is one, a fully elastic collision takes place. In this case the cue

ball transfers most of its kinetic energy to the resting ball which

starts moving with the velocity of the cue ball. However, since

the cue ball is rolling, the angular momentum is greater zero. This

momentum is conserved. Therefore, the cue ball continues rolling

and velocity rises from zero again. Due to the impact the relative

velocity is no longer zero, again a friction force
®ft is acting that

introduces a counter torque at the balls axis which quickly reduces

the angular velocity until the relative velocity is zero again. Both

balls are ideally rolling again. Due to the rotational resistance torque,

the angular velocities are slowly reduced until both balls come to
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rest. For further information and graphics about two colliding balls

see [26].

Ball colliding with Cushion. Corresponding to [22] the cushion is

arranged and shaped in ratio to the billiard balls radius r . The height
of the contact point at the rail is h = 7

5
r (see Figure 9). Figure 10

shows the used simplification of [22] and Figure 9. The billiards

cushion has very good rebound properties cor = 0.98.

Figure 8: Position of a billiard ball colliding with a cushion,
velocity in x-direction, and angular velocity in y-direction.

r

~fn,1

h = 7
5r

cushion

table

ball

~fn,2

~ft,2

~τω,2

~ft,1

~τω,1

Figure 9: Relation between ball and cushion.

Figure 10: Ball collides with cushion.

A billiard ball is positioned on a billiard table. The ball has initial

velocity, the effects of sliding and rolling occur as analyzed before

in the first 0.2 s (see Figure 8). At time = 0.23 s the ball impacts on

the cushion rail. The corresponding force points towards the table

(Figure 9). Therefore, the ball changes sign of velocity and angular

velocity immediately and rolls backwards.

Billiards. All described effects (sliding, rolling, colliding) act toget-

her in a simulation of a billiard game. It consist of 16 billiard balls,

the table and cushions (Figure 11). The cue ball has an initial velo-

city pointing to the right and hits the the center of the red rack

(15 other balls) exactly after a short time interval. This results in a

symmetric evolution of the balls, as one would expect (Figure 11,

bottom). The hybrid DAE system (1) has dim(x) = 13 · 16 = 208

and there are about 200 possible collision pairs. Simulation on a

standard PC needs about 20min for 5 s of simulation time and a

tolerance of 10
−5
. The computation time speeds up to about 13min

if the elastic contact reduction factor is set kr ed = 10
−4
. At the

moment, the Modia3D code is implemented for functionality and

not optimized for efficiency, so an even better speed-up is expected

in the future.

Figure 11: Initial setting of 16 billiard balls (top). Billiard
balls after a few seconds (bottom).

6 CONCLUSION
In this article existing response formulations are combined and en-

hanced to migrate a novel force and torque formulation. In particu-

lar, collision handling with variable-step solvers has been sketched

and the signed distance (= closest distance if not in contact and

penetration depth if in contact) between two convex shapes is used

as zero-crossing function. Furthermore, a new method is proposed

to reduce the total number of zero-crossing functions to two, even

if many shapes are present that can potentially collide. To avoid

numerical issues a hysteresis is introduced.

Modia3D combines ideas from different communities. The ar-

chitecture with component-oriented modeling is inspired by game

engines so that 3D models can be setup in a very flexible way, as
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well as several elements for collision handling. Other features are

from multi-body programs, like hierarchical structuring, support

of closed kinematic loops, and algorithms to compute results close

to real physics.

Modia3D is still a prototype implementation and several impor-

tant parts are under development. Especially, the integration with

Modia is missing at the moment. Furthermore, the code was cur-

rently mainly developed for its functionality and is not yet tuned

for efficiency. For these reasons, benchmarks and comparisons with

other programs with respect to simulation efficiency have not yet

been performed.
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