Fast and stable determinant quantum Monte Carlo

Carsten Bauer!

nstitute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
(Dated: August 12, 2019)

In this manuscript we review numerical stabilization methods employed in fermion many-body quantum
Monte Carlo simulations. In particular, we discuss the origin of numerical instabilities in the determinant quan-
tum Monte Carlo (DQMC) framework, when calculating equal-time and time-displaced Green’s functions, and
empirically compare various matrix decomposition and inversion schemes that have been proposed to gain con-
trol over computations. Besides numerical accuracy we also investigate the computational efficiency of the
different stabilization methods. Concretely, we use the Julia programming language and provide implementa-
tions of all discussed techniques in the open-source software library StableDOMC. j1l Overall, we find that a
QR decomposition based scheme is best suited for DQMC and superior to SVD based approaches, both in terms

of accuracy and speed.

I. INTRODUCTION

Many-fermion systems play an important role in condensed
matter physics. Due to their intrinsic correlations they fea-
ture rich phase diagrams which can not be captured by purely
classical nor non-interacting theories. Especially at the low-
est temperatures, quantum mechanical fluctuations driven by
Heisenberg’s uncertainty principle become relevant and lead
to novel states of matter like superconductivity or ones beyond
the Fermi liquid paradigm. Because of the presence of interac-
tions, predicting microscopic and thermodynamic properties
of fermion many-body systems is inherently difficult. Ana-
lytical approaches are typically doomed to fail in cases where
one can not rely on the smallness of an expansion parameter.

Fortunately, the determinant quantum Monte Carlo
(DQMC) method overcomes this limitation. The key feature
of DQMC is that it is numerically exact - given sufficient com-
putation time the systematical error is arbitrarily small. Pro-
vided the absence of the famous sign-problem, it allows us
to efficiently explore the relevant region of the exponentially
large configuration space in polynomial time. It is an impor-
tant unbiased technique for obtaining reliable insights into the
physics of many-fermion systems.

Although conceptually straightforward, care has to be taken
in implementing DQMC due to inherent numerical instabil-
ities. It is the purpose of this work to review stabilization
schemes to heal those algebraic issues and to compare them
with respect to accuracy and speed. Specifically, the struc-
ture of the paper is as follows. We start by providing a brief
introduction into the DQMC method in Sec. |lI} In Sec. [III
we illustrate numerical instabilities arising in the DQMC for-
malism and recall their origin. Following this, we present
(Sec. and benchmark (Sec. different numerical sta-
bilization schemes in the context of the computation of the
equal-times Green’s function and its determinant. Lastly, we
turn to the calculation of the time-displaced Green’s function
in Sec. [VI|before concluding and summarizing in Sec. [VII]

We provide implementations of all discussed algorithms, as
well as the code to recreate all the plots of this manuscript, in
form of the Julia package StableDQMC. 1l

II. QUANTUM MONTE CARLO

We begin by recalling the determinant - or auxiliary field
- quantum Monte Carlo (DQMC) algorithm [1] for a generic
quantum field theory that can be split into a purely bosonic
part Sp and a part Sp. The latter comprises fermion kinet-
ics T' and boson-fermion interactions V. An example is the
famous Hubbard model after decoupling the on-site interac-
tion Un; 4+n; | by means of a Hubbard-Stratonovich or Hirsch
transformation in either the spin or charge channel [2]. As per
usual, the central quantity of interest is the partition function

2= [D(wolg)e o5, M)

The basic idea of DQMC is to switch from the d dimensional
quantum theory to a D = d + 1 dimensional classical theory.
The extra finite dimension of the classical theory is imaginary
time 7. It has a length proportional to the inverse temperature
B = 1/T and is discretized into M time slices, 5 = MAT.
Applying a Trotter decompositionCITE one obtains

M
exp (—AT Z Y1 [T+ V) 1/1)

=1

Z= /Dgz& e BTy

2)

Next, the exponential is separated which leads to a systematic
error of the order O (A7?),

A+B A_B

€ ~ee

_ _ AT _ _ AT
e AT(T-{-V)%e 2T6 ATVe 2T+O(A’7'3),

[[5

=1

Z= /qu e 5P Tr +0(AT%). ()

Here, B; = e~ TV T =AYVt o= 57¥TTY gre imaginary
time slice propagators. Note that their potential contribution

e~ ATYIVsy depends on the boson ¢ due to fermion-boson
coupling. Rewriting the trace in (3) as a determinant, an iden-
tity which can be proven CITE, yields the fundamental form

Z= /D¢ e 8 det G;l +0(AT?), 4)

http://github.com/crstnbr/StableDQMC.jl
http://github.com/crstnbr/StableDQMC.jl

where
G=1+ByuBy_1--B)"! 5)

is the equal-time Green’s function of the system.
As per Eq. @), the probability weight appearing in a
Metropolis Monte Carlo scheme reads

p—min{l,eAS¢ detG}” (6)

det G/

which tells us that, considering a generic update, we need
to compute the Green’s function G and it’s determinant for
both the current and the proposed state (G') of the Markov
walker. For local updates, however, one can typically avoid
those costly calculations and rather compute the ratio of de-
terminants in Eq. (6) directly.

Importantly, it is only under specific circumstances, such
as the presence of a symmetry, that the integral kernel can be
safely interpreted as a probability weight as G, and its deter-
minant are generally complex valued. This is the famous sign
problemCITE.

III. NUMERICAL INSTABILITIES

To showcase the typical numerical instabilities arising in
the DQMC framework we consider the following simple non-
interacting model system in one dimension,

H:—th;rcj—kpZni, @)

(4,4) @

where we set the hopping amplitude to ¢ = —1 and the chem-
ical potential to . = —0.1.

As seen from Eq. (3)), the building block of the equal-time
Green’s function is the slice matrix product chain

B(B,0) = ByBy—1-+ By = BB---B. 8)

M factors

Here, the second equality stems from the absence of interac-
tions in our specific model, which renders the B; independent
of the Hubbard-Stratonovich field ¢ and imaginary time.

In Fig. [T we show that a naive computation of Eq. [§] is
doomed to fail for 5 > . =~ 10. Leaving a discussion of
the stabilization of the computation for the next section, let us
highlight the origin of this instability. The eigenvalues of the
system are given by

e, = —2tcos(k) + p. 9)

Neglecting the contribution by the chemical potential for sim-
plicity, the energy values are bounded by —2¢t < ¢, < 2t
Hence, a single positive definite slice matrix B = e~ 277
has a condition number of about x ~ e**/7 which gives
K = eMMAT — 418 for the product chain B(,0). This im-
plies that the scales present in B(7,0) broaden exponentially
at low temperatures 7' = 1/ and roundoff errors due to fi-
nite machine precision will spoil a naive computation. We can

stable

=2
(=}

— naive
Float64

w
f=}

log singular values
(=) (=)

'
=)
(==}

0 10 20 30 40
inverse temperature (3

FIG. 1. Numerical instabilities (green) due to finite machine preci-
sion (Float 64) in the calculation of the slice matrix product chain
By Ba—1 - -+ By for model (7).

stable

=)
(=}

—— naive
Double64

@«

w
o

//

log singular values

0 10 20 30 40
inverse temperature /3

FIG. 2. Numerical instabilities due to finite machine precision
(Double64) in the calculation of the slice matrix product chain
B Bp—1 - - - By for model (7).

estimate the inverse temperature of this breakdown of the cal-
culation for the data type Float 64, that is double floating-
point precision [3]], by solving x(3) ~ 10~'7 for B.. This
gives B. ~ 10 in good agreement with what we observe in
Fig.[I] Switching to the non-IEEE data type Double64, we
see in Fig.[2]that the onset of roundoff errors is shifted to lower
temperatures, in accordance with expectations.

Another consequence of these numerical imprecisions is
that the B(7, 0) obtained from a naive computation are gener-
ally not invertible and the inversion in Eq.]is ill defined. This
clearly prohibits a safe calculation of the equal-time Green’s
function and asks for more sophisticated techniques.

IV. STABILIZATION

A trivial solution to the issue outlined above is to perform
all numerical operations with arbitrary precision. In Julia this
can be done by using the BigFloat data type. However, this
comes at the expense of (unacceptable) slow performance due
to algorithmic overhead and lack of hardware support. Arbi-
trary precision numerics is nevertheless a valuable tool and we

will use it to benchmark the accuracy of stabilization methods
below[4].

How can we get a handle on the numerical instabilities in
a floating point precision computation? The idea is to keep
the broadly different scales separated throughout the compu-
tation (as much as possible) and only mix them in the final
step, if necessary. A useful tool along these lines are matrix
decompositions,

B = UDX. (10)

Here, U and X are matrices containing scales of the order of
unity and D is a real diagonal matrix with the broad range of
scales of B separated on the diagonal. We will refer to the
values in D as singular values independent of the particular
decomposition.

Instead of calculating products By By appearing in B(7,0),
Eq.[§] directly, we utilize Eq.[I0]to define a stable matrix mul-
tiplication (fact _mult in StableDQMC. j1)

ByBy = U D2 Xo U1 D1.X3
—_—
Bo B4
= Us (D2((X2U1)Dy)) X1) 1)
~— ————
U'D’' X’
= U.D,X,.

Here, U, = UyU’, D, = D', X, = X' X1, and U’ D’ X"’ indi-
cates an intermediate matrix decomposition. If we follow this
scheme, in which parentheses indicate the order of operations,
largely different scales present in the diagonal matrices won’t
be mixed throughout the computation. Repeating this proce-
dure, we obtain a numerically accurate U DX decomposition
of the full slice matrix product chain B(7,0).[3] We note in
passing that in a practical DQMC implementation it is often
unnecessary to stabilize every single matrix product but. In-
stead one typically performs a mixture of naive and stabilized
products for the sake of speed while still retaining numerical
accuracy [7].

A. Equal-time Green’s function

Looking at the equal-time Green’s function in Eq. 5] we
have to be careful to keep scales separated in the inversion of
1+ B(B,0) as well. In fact, small singular values of the order
of unity in B(3,0) would even be washed out just by naively
adding the identity matrix alone. Fortunately, these issues can
be circumvented as well.

A straightforward procedure (inv_one_plus) to add the
unit matrix and perform the inversion in a stabilized manner
is given by [6, [7]

G=[1+UDX]|"
=UU'X*+D)x]|*
———
udx
= [(Tu)d(@X)]™! (12)
= UrDrXra
with U, = (zX)~ %, D, =d~ %, X, = (Uu)~L.

Another prescription for a stabilized inversion
(inv_one_plus_loh), where we initially separate the
scales in as D, = max(D,1) and D,, = min(D,1) and
perform two intermediate decompositions, is given by [} 9]

G=[1+UDX]"
=[1+UD,D,X]"
=[(X7'D,' +UDy,)D, X" (13)
_ v-lip-1(y-1p-1 —1
=X [D, (XD, +UDy)""]

udx

udx

= UT'D7’X'I"7

with U, = X~ 'u, D, = d, and X, = . We will demonstrate
below that it is sometimes necessary to employ this second
procedure to obtain accurate results for G.

So far we haven’t specified a concrete decomposition
B =UDX. In fact, there are a couple of choices, two of
which we will focus on in what follows.

1. SvD(UDVY)

A SVD is given by
B=USVT, (14)

where U is unitary, S is a real diagonal matrix, and Vs
unitary. In this case we can use the unitarity of U and VT to
calculate inverse terms like, for example, (Uu)_1 in the last
line of [12[as (Uu)~' = ufUT, which is generally cheaper.

Julia offers a couple of purely-Julia SVD implementations,
like GenericSVD.jl, which we will use for BigFloat com-
putations. However, some of the most optimized algorithms
are part of LAPACK [10] and Julia defaults to those algo-
rithms for regular floating point types. Concretely, there are
three SVD functions[11] implementing different algorithms
for calculating the SVD:

e gesdd (default): Divide-and-conquer (D&C)
e gesvd: Conventional
e gesvj: Jacobi algorithm (through JacobiSVD.jl)

which can be readily accessed via convenience wrappers of
the same name exported by StableDQMC. j1. We will com-
pare all of them below.

https://github.com/JuliaLinearAlgebra/GenericSVD.jl/
https://github.com/RalphAS/JacobiSVD.jl

100
L, 50
(]
=
g 9
—
E
E
%’3 -50 exact
@ — QR
& 100 SVD (Jacobi)
—— SVD
—— SVD (D&C)
-150
0 10 20 30 40 50

inverse temperature (3

FIG. 3. Comparison of matrix decompositions to heal the numer-
ical instabilities in the calculation of the slice matrix product chain
By Bai—1 - -+ By for model (7). The QR and Jacobi SVD singular
values seem to lie on top of the exact ones whereas regular SVD and
divide-and-conquer SVD show large deviations at low temperatures
B 225 (At =0.1).

2. QR(UDT)

A QR decomposition reads
B=QR=UDT, (15)

where we have split R into a diagonal, D, and upper trian-
gular piece T. Hence, U = (@ is unitary, D = diag(R) is
a real diagonal matrix, and 7' is upper triangular. In Julia,
one can obtain the QR factored form of a matrix by calling
the function gr from the standard library LinearAlgebra.
Analogously, a decomposition into U DT’ form is provided by
udt and udt ! in StableDQMC. j1.

V. BENCHMARKS

In the following we want to assess how the mentioned
matrix decompositions perform in stabilized computations of
B(,0), the Green’s function G, and its determinant det G,
both with respect to accuracy and speed. All results are for
our free fermion model system, Eq.

A. Accuracy

Before benchmarking the efficiency of an algorithm, it is
crucial to check it’s correctness first. Fig. [3] shows the log
singular values of the slice matrix product chain B(3,0)
stabilized with different matrix decompositions as a function
of inverse temperature 5. While QR and Jacobi SVD seem
to lie on top of the numerically exact result, we observe large
deviations for the simple and D&C SVD algorithms at low
temperatues (8 2 25).[12]

Turning to the equal-time Green’s function, Eq. 5] we take
the results for the slice matrix chains and perform the inver-
sions according to the schemes presented above. We take the

0

— —©— QR
= —e— SVD
§ —e— SVD (D&C)
¥ 5 O SVD (Jacobi) ° * ° °
|
)
=
=
E 10
"
<
g
0
i)

-15

10 20 30 40

inverse temperature 3

FIG. 4. Accuracy of the Green’s function obtained from stabilized
computations using the listed matrix decompositions and the inver-
sion scheme inv_one_plus, Eq. @

. —-o— QR
= —@— SVD
§ —@— SVD (D&C)
Qg-’ 5 O SVD (Jacobi)
[
O
=
=
E 210
"
<
=}
0
i)
15 8 P Pa— 3 o e~ n

10 20 30 40
inverse temperature (3

FIG. 5. Accuracy of the Green’s function obtained from stabilized
computations using the listed matrix decompositions and the careful
inversion scheme inv_one_plus_loh, Eq. @

maximum absolute difference between the obtained Green’s
functions and the exact G as an accuracy measure. The
findings for the simple inversion scheme inv_one_plus,
Eq. [I2] are shown in Fig. @ At high temperatures, all de-
compositions give the correct Green’s function up to some
limit close to floating point precision. However, at low tem-
peratures only the QR decomposition reproduces Gexac Te-
liably. It has the highest accuracy by a large margin, fol-
lowed by the Jacobi SVD as the best of the SVD methods,
which all fail to reproduce the exact result accurately. As
displayed in Fig. 5] switching to the more careful procedure
inv_one_plus_loh, Eq.[I3] does improve the accuracy of
the Jacobi SVD dramatically while the deviations seen for the
other two SVD based schemes are still of order unity.

In Figs. [6} [7] we show the logarithm of the relative error of
the Green’s function determinant, relevant in the Metropolis
acceptance[13]], obtained for all combinations of matrix de-
compositions and inversion schemes. Both the QR decom-
position and the Jacobi SVD lead to accurate results for all
accessed temperatures, irrespective of the employed inversion
scheme. The other two SVD based methods on the other hand
show large relative deviations for both inv_one_plus and

0

= -o- QR

= —e— SVD

Q:é —e— SVD (D&C)
£ 5 O SVD (Jacobi)
<

\

O

2

(]

T .10

=

=]

i)

-

E S
L 15 e

o

10 20 30 40
inverse temperature 3

FIG. 6. Accuracy of the determinant of the equal-time Green’s
function obtained from stabilized computations using the listed
matrix decompositions and the inversion scheme inv_one_plus,

Eq.[12}

—@— QR

—@— SVD

—@— SVD (D&C)
- O SVD (Jacobi)

-10

log(reldiff(detG — detGoaxact))

o o
___e———o——8 v 9
15 e

9 o

10 20 30 40
inverse temperature 3

FIG. 7. Accuracy of the determinant of the equal-time Green’s
function obtained from stabilized computations using the listed ma-
trix decompositions and inv_one_plus_loh, Eq.[[3

inv_one_plus_loh.

These findings suggest that only the QR decomposition,
independent of the inversion procedure, or the Jacobi SVD
in combination with the more careful inversion scheme
inv_one_plus_loh is suited for computing both the equal
time Green’s function and it’s determinant reliably.

B. Efficiency

Independent of the deployed inversion scheme, matrix de-
compositions account for most of the time cost of the Green’s
function calculation. Fig. [§]illustrates the raw efficiency of all
SVDs relative to the QR decomposition. While the conven-
tional SVD and the Jacobi SVD are about an order of magni-
tude slower, the divide-and-conquer based SVD is in the same
ballpark as the QR decomposition. The Jacobi SVD variant
is, by far, the most costly of all considered matrix decom-
positions, being 10 times more time consuming than the QR
decomposition, even for small system sizes.

Since the decompositions represent the performance bottle-

- —0— SVD
G —— SVD (D&C)
2 o O~ SVD (Jacobi)
— 20 --- QR
5}
—
—
215
Q
& o
£ 10
g
e
5 5
7]
o T TTTTTTTTTTTTTTTTTITTTTTm e
100 200 300 400 500

N of N x N square matrix

FIG. 8. Efficiency of different matrix decompositions. Shown are
the slowdown factors of single SVDs relative to a QR decomposition
of a complex matrix of size N x IN.

—— SVD

—e— SVD (D&C)

O SVD (Jacobi) o
-—- QR

—
fe=)

oo

slowdown factor rel. to QR
=~ o

V]

100 200 300 400 500
number of sites N

FIG. 9. Efficiency of the stabilized Green’s function calculation
using the listed matrix decompositions and the inversion scheme
inv_one_plus, Eq. (I2).

neck, we expect that these speed differences propagate and
dominate benchmarks of the full Green’s function computa-
tions. As visible in Figs.[d and 3] this anticipation is qualita-
tively confirmed up to numerical deviations. Independent of
the deployed inversion scheme, the divide-and-conquer SVD
can compete with the QR decomposition in terms of speed
whereas the other SVD algorithms unambiguously fall be-
hind. We note that the relative slowdown factor is larger for
the scheme by Loh et al., which is understood from the fact
that it requires two intermediate matrix decompositions rather
than one.

VI. TIME-DISPLACED GREEN’S FUNCTION

We generalize our definition of the equal times Green’s
function, Eq.[3} to include the imaginary time 7 = IA7 de-
pendence,

G(r) = (cicl)g, = (1+ Bi_1...BiBar ... B) ™ . (16)

25 0
. —@— SVD
o —e— SVD (D&C) o
220 O SVD (Jacobi)

. e o}
= QR
=
= 15
Q o
=
2
<10
% °
s .
2 5
n

100 200 300 400 500

number of sites N

FIG. 10. Efficiency of the stabilized Green’s function calcula-
tion using the listed matrix decompositions and the inversion scheme
inv_one_plus_loh, Eq. (I3).

Note that G = G1 = Gpr1 = (1+ By - .. Bl)_l. The time
displaced Green’s function can now be defined as [6, [7]

G, =G(m,m) = <TCi(Tl)C;(TZ)>w

where 7' represents time ordering.
More explicitly this reads

G(T .) _ Bll T Blz+1Glz+17 1L > T2,
. —(1=Gu41) By B1) ™", w2 >
(7

In principle, this gives us a prescription for how to calculate
G (71, 72) from the equal time Green’s function G(7) (which
we know how to stabilize). However, when |13 — 72| is large
a naive calculation of slice matrix product chains in Eq. [T7]
would be numerically unstable, as seen above. Also, by first
calculating G' we already mix important scale information in
the last recombination step, in which we multiply G = UDX.
We therefore rather compute the time-displaced Green’s func-
tion directly as

G(Tl,TQ):(ULDLXL-l-URDRXR)_l. (18)

Similar to Sec. we must be very careful to keep the in-
volved scales separated as much as possible when performing
the summation and the inversion. As a first explicit procedure,
we consider a simple generalization of Eq.[12](inv_sum),

G(Tl,Tg) = [ULDLXL + URDRXR]_l
= [Up (DXL X5t + Ul UrDR) Xg| ™!

udx
= [(Uru)d™ (2 Xg)] ™" (19)
= UrDrXra

where U, = (xXg)~ !, D, =d !, and X,, = (Upu)~L.
Another scheme, analogous to Eq. [[3] where we split the

o %0
60d 005,09 00
a
o4 00000000000

oo

- QR
—e— SVD
—e— SVD (D&C)

-10 O~ SVD (Jacobi)

log (max(abs(G(7, 0) — Gexaet(.0)))

0 10 20 30 40
imaginary time 7

FIG. 11. Accuracy of the time-displaced Green’s function ob-
tained from stabilized computations using the listed matrix decom-
positions and the inversion scheme inv_sum, Eq. (I9), for 3 = 40.

scales in D, is as follows (inv_sum_1loh), [8]

G(Tl,TQ) = [ULDLXL + URDRXR]71
= [UrDrmDrpX1 + UrDrm Dy Xg] ™

= |UrDp, (l;LmXLXRl + UzURl;Rm> XrDpgp
Rp Lp
udx
= Xg! DlRp[udx]lDle Ul (20)
udx
=U,.D. X,

with U, = Xp'u, D, = d, and X, = 2U] .

We note in passing that Hirsch [14] has proposed an alter-
native method for computing the time-displaced Green’s func-
tion based on a space-time matrix formulation of the problem.
Although this technique has been successfully deployed in
many-fermion simulations we won’t discuss it here because
of its subpar computational scaling: for a system composed
of N lattice sites, fermion flavors f, and imaginary time ex-
tent M one has to invert (naively a O(z3) operation) a matrix
which takes up O((N M f)?) memory.

A. Accuracy

In Fig. [TT} we show the logarithmic maximal deviation of
the time-displaced Green’s function as calculated using the
regular inversion scheme inv_sum from the exact Green’s
function as a function of the time-displacement 7 at inverse
temperature 5 = 40. Clearly, all singular value decompo-
sition variants fail to capture the intrinsic scales sufficiently
and errors much beyond floating point precision are seen. Al-
though the QR decomposition systematically leads to equally
or more accurate values for all considered imaginary times,

= o

:" 0 ooo °°°o°°°°°°

= o

% °q °°°000°°°°°°°°°
=l o

L _5 Oo o

o b ° &7 —e- QR

R —-e— SVD

i —@— SVD (D&C)
6/ -10 O~ SVD (Jacobi)
=

c)

ER

o0

Qo

—~ 0 10 20 30 40

imaginary time 7

FIG. 12. Accuracy of the time-displaced Green’s function ob-
tained from stabilized computations using the listed matrix decom-
positions and the inversion scheme inv_sum-loh, Eq. 20), for
B = 40. All SVD curves lie on top of each other.

it fails to be reliable at long times 7 ~ (/2 (recall that the
Green’s function is anti-periodic in 7).

Switching to the inversion scheme inv_sum_loh, this pic-
ture changes, as can be seen in Fig.[I2] While the SVDs show
similar (insufficient) accuracy as when deployed in combi-
nation with inv_sum, using the QR decomposition leads to
stable Green’s function estimates up to floating point preci-
sion across the entire imaginary time axis. This suggests that
the QR decomposition consistently outperforms the singular
value decompositions, similar to our findings for the equal-
time Green’s function, and is to be preferred in a DQMC con-
text.

VII. DISCUSSION

Numerical instabilities are naturally present in quantum
Monte Carlo simulations of many-fermion systems. Differ-
ent algorithmic schemes and matrix decomposition techniques
have been proposed over time to handle the exponential spread
of scales in a stable manner. However, as we have shown in
this review, they can have vastly different accuracy and ef-
ficiency rendering them more or less suited for determinant
quantum Monte Carlo simulations.

For our non-interacting model system, we were able to
compute the equal-time Green’s function and its determinant
to floating point precision using the QR-based UDT decompo-
sition and the Jacobi SVD (when combined with the right in-
version scheme). Conventional and divide-and-conquer based
SVDs consistently failed to produce reliable results, in partic-
ular at the lowest considered temperatures, 8 ~ 40.

In terms of speed, we find that the QR decomposition out-
performs the conventional and Jacobi SVDs by a large margin
while only the D&C SVD variant has similar computational
efficiency. Since the inversion scheme in the QR case in-
volves matrix divisions this observed performance difference
is not exclusively due to - but dominated by - the computa-
tional cheapness of a QR decomposition compared to a SVD.

Our findings clearly suggest the QR decomposition for
DQMC simulations as it is both fast and stable. However,
when utilized in the computation of time-displaced Green’s
functions it serves its purpose only when combined with the
stable inversion scheme proposed by Loh et al. [9]

VIII. ACKNOWLEDGEMENTS

We thank Peter Brocker, Yoni Schattner, and Simon Trebst
for useful discussions and Frederick Freyer for identifying a
few typos in this manuscript.

[1] R Blankenbecler, D J Scalapino, and R L Sugar, “Monte Carlo
calculations of coupled boson-fermion systems. I,” Physical Re-
view D 24, 2278-2286 (1981).

[2] J. E. Hirsch, “Discrete Hubbard-Stratonovich transformation
for fermion lattice models,” Physical Review B 28, 4059-4061
(1983).

[3] David Goldberg, “What every computer scientist should know
about floating-point arithmetic,” ACM Comput. Surv. 23, 548
(1991)l

[4] For our non-interacting model system one can alternatively sim-
ply diagonalize the Hamiltonian and calculate the Green’s func-
tion exactly.

[5] Note that we do not discuss the option to calculate BM as
UDM X . This is intentional since most real systems will in-
volve fermion-boson interactions and the slice matrices will de-
pend on ¢(7).

[6] Raimundo R dos Santos, “Introduction to quantum Monte
Carlo simulations for fermionic systems,” Brazilian Journal of]
Physics 33, 36-54 (2003).

[7] EF. Assaad, Quantum Simulations of Complex Many-Body Sys-
tems: From Theory to Algorithms, Vol. 10 (2002) p. 99.

[8] E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White,
D. J. Scalapino, and R. L. Sugar, “Numerical Stability and
the Sign Problem in the Determinant Quantum Monte Carlo
Method,” International Journal of Modern Physics C 16, 1319—
1327 (2005).

[9] E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, R. L. Sugar,
and S. R. White, “Stable Matrix-Multiplication Algorithms for

Low-Temperature Numerical Simulations of Fermions,” (1989)
pp- 55-60.

[10] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd
ed. (Society for Industrial and Applied Mathematics, Philadel-
phia, PA, 1999).

[11] Note that Fortran LAPACK functions are named according
to realness and symmetries of the matrix. In Julia multiple-
dispatch takes care of routing different matrix types to differ-
ent methods. The Julia function ge sdd works for both real and
complex matrices, i.e. there is no (need for) cgesdd.

[12] LAPACK SVD error bounds[15] ’Thus large singular values
(those near o1) are computed to high relative accuracy and
small ones may not be.’.

[13] For local updates on can generally avoid full calculations of
Green’s function determinants by exploiting locality and per-
forming a Laplace expansion since only ratios of determinants
appear in Eq. @ In fact, in an optimal implementation the com-
putation of the acceptance rate is O(1) rather than O(N?).

[14] J. E. Hirsch, “Stable Monte Carlo algorithm for fermion lattice
systems at low temperatures,”| 38, 12023 (1988).

[15] Susan Blackford, “Error Bounds for the Singular Value Decom-
position,” http://www.netlib.org/lapack/lug/
node96.html1[(1999), [Online; accessed 16-May-2019].

https://doi.org/ 10.1103/PhysRevD.24.2278
https://doi.org/ 10.1103/PhysRevD.24.2278
https://doi.org/10.1103/PhysRevB.28.4059
https://doi.org/10.1103/PhysRevB.28.4059
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1590/S0103-97332003000100003
https://doi.org/10.1590/S0103-97332003000100003
http://www2.fz-juelich.de/nic-series/volume10/assaad.pdf
http://www2.fz-juelich.de/nic-series/volume10/assaad.pdf
https://doi.org/ 10.1142/S0129183105007911
https://doi.org/ 10.1142/S0129183105007911
https://doi.org/http://dx.doi.org/10.4236/ojo.2014.48035
http://www.netlib.org/lapack/lug/node96.html
http://www.netlib.org/lapack/lug/node96.html

	Fast and stable determinant quantum Monte Carlo
	Abstract
	Introduction
	Quantum Monte Carlo
	Numerical instabilities
	Stabilization
	Equal-time Green's function
	SVD (UDV)
	QR (UDT)

	Benchmarks
	Accuracy
	Efficiency

	Time-displaced Green's function
	Accuracy

	Discussion
	Acknowledgements
	References

