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Abstract

Hall thrusters are a type of electric propulsion offering a high specific impulse 1500−4000s
and efficiencies > 50 %. They are by far the dominant type of electric propulsion in the
power segment of 1 − 100 kW. Even though these thrusters have been used in space
for decades, predictive Hall thruster simulations remain inaccessible. When treating
the plasma discharge as a fluid, as commonly done to reduce computational complexity,
the electron conductivity is vastly underpredicted. This gave rise to a correction factor
termed anomalous collision frequency. Finding a form of the anomalous collision fre-
quency that is valid over a wide range of operating conditions and geometries has proven
to be a major challenge. Current efforts are focused on applying data-driven methods
to isolate governing parameters and subsequently calibrate anomalous collision frequency
models. This procedure requires quick simulations to generate large datasets, which can
be achieved at the expense of physical fidelity. Consequently, a 1D fluid model is de-
sireable. This thesis is thus on the development of a 1D fluid model for Hall thruster
discharges, HallThruster.jl. The governing equations are presented and the implmenta-
tion in the programming language Julia is discussed. The model is efficient while allowing
flexibility, enabling the user to adapt the underlying physics. HallThruster.jl is verified
and a comparison to higher fidelity codes is explored systematically by employing a Hall
Thruster efficiency model and investigating the impact of assumptions on the individual
terms.
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Chapter 1

Introduction
Human civilization is rapidly turning into a more and more space-faring society. Both commercial and
governmental players are sending ever more spacecraft into orbit to exploit the potentials offered for
communications, surveillance and science. In fact, Goldman Sachs estimates the space industry com-
pound annual rate of growth at 9% until 2040. [2]. This would turn what is now a global ≈ 500 billion
USD market into a multi-trillion USD industry. The ever higher number of satellites associated with
this growth need effective propulsion systems.

Historically, most of mankind’s activity in space has been propelled by chemical rocket engines. They
convert thermal (random kinetic) energy created by combustion into directed kinetic energy, producing
thrust in the opposite direction. Electric propulsion encompasses all thrusters where electricity is used
in one form or another to impart additional energy on the propellant. They can roughly be characterised
in three categories: electrothermal, electrostatic and electromagnetic. Arcjets and resistojets belong to
the first category. They operate on the same principle as chemical rocket engines, albeit extra energy is
not added through combustion but a discharge arc or resistive heating. Like in chemical rocket engines,
electrothermal thrusters are constrained by materials within the heating region which introduces a limit
on the maximum temperature and thus on the gas exhaust velocity.

In other types of electric propulsion, thrust is generated by directly accelerating a propellant using
electrostatic or electromagnetic forces. The direct acceleration mechanism allows these thrusters to gen-
erate exhaust velocities much higher than systems converting thermal energy into kinetic energy through
expansion. The impulse is directly related to the exhaust velocity through the famous Tsiolkovsky
equation.

∆v = gIspln

(
Mi

Mf

)
(1.1)

The specific impulse Isp is defined such that its product with g gives the exhaust velocity ve. The pro-
pellant launch mass can be up to 50% of the total spacecraft mass for satellites powered by chemical
engines, while electric propulsion keeps this mass ratio usually below 10% since the specific impulse is
up to an order of magnitude higher, 1500 − 5000s vs 200 − 500s. In space missions, launch costs can
account for up to 40% of total mission cost. [3] Consequently electrically powered thrusters enjoy a
huge competitve advantage. On the flipside, penalties associated with electric propulsion do in general
include a relatively high power consumption, possibly the need for power electronics and a relatively
heavy thruster. Detailed mission analysis and design is required to determine the exact advantages and
drawbacks of certain propulsion systems.

Considering electromagnetic and electrostatic propulsion, Hall Thrusters along with Gridded Ion Thrusters
(GIT) are the oldest and most mature technologies. More recent developments are electrospray thrusters,
electron cyclotron resonance thrusters (ECR) and rotating magnetic field (RMF) thrusters. The latter
two are in a rather early stage of their development, with possible applications over a wide range of
powers. Electrospray thrusters are very competitive in the low power segment and widely used on small
satellites. GIT’s are the most efficient high power electric propulsion thruster today, but are limited in
current density and consequently relatively large and heavy. While the specific impulse of Hall thrusters
is typically slightly lower than GITs, their current density can be much higher and the devices are there-
fore smaller and lighter. At the same time the elimination of extractor grids simplifies the mechanical
design. This explains why Hall Thrusters are the by far most successful type of electric propulsion in
the power segment from 1 kW to 100 kW.
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1.1 Hall Thrusters

Thus far, Hall Thrusters have been mostly used for station keeping on LEO and GEO satellites while
occupying a niche market segment. However, mainly through SpaceX’s starlink satellites, the amount of
Hall Thrusters in orbit has recently increased drastically. In addition, through continuous improvement
and magnetic field profiles reducing erosion [4], lifetimes are now sufficiently long to be used on space
exploration missions as well. [5]

(a) Isometric schematic of a Hall Thruster [6]

(b) The University of Michigan’s H9 9kW magnet-
ically shielded thruster in operation

Figure 1.1

A schematic of an axisymmetric Hall Thruster with center mounted cathode is shown in Figure 1.1a. A
potential difference is generated by an anode and a hollow cathode, perpendicular to a magnetic field
applied by coils on the outer walls and centerline of the thruster. This results in electrons being trapped
along the radial magnetic field lines, creating a strong azimuthal E × B Hall current. The energized
electrons ionize injected neutral gas, usually xenon. The ions are then accelerated out of the channel by
an axial electric field, which generates thrust. The axial electric field is sustained by the lowered electron
conductivity towards the anode. Hall thrusters offer a specific impulse on the order of 1500-3000s, and
can achieve efficiencies higher than 50% [7].

The plasma state in Hall Thrusters is characterized as a low temperature magnetized plasma. Elec-
tron energies are on the order of 10s of eV, while ions and neutrals remain cold. Magnetized refers
to the fact that the electron motion in magnetic cross field direction is hindered as they are entrained
in a cyclotron motion along magnetic field lines. This is illustrated in the discharge channel in Figure 1.1a.

In operation, Hall thrusters exhibit dynamic instabilities that remain poorly understood. A low fre-
quency oscillation termed the breathing mode in the axial direction can be found in the 10 − 50 kHz
range. The name stems from the nature of the oscillation, since it is related to neutral depletion and
ionization instabilities. In the past, the breathing mode has been studied using a simple predator-prey
model [8], where the ionization rate coefficient as a function of electron temperature is the key variable.
Linear perturbation theory applied to a 1D axial model can recover breathing mode oscillations as well.
Recently, [9] have found the breathing mode to arise due to non-linearities in the electron power con-
sumption, while [10] believe the main reason is an ion back-flow towards the anode. Consequently there
is no consensus on the origin of the breathing mode at this point.

A slightly higher frequency oscillation at 100 to 500 kHz is related to the ion residence time in the
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channel, commonly referred to as transit time oscillations. Wave-driven oscillations in the MHz range
persist in the azimuthal direction [11]. Cumulatively, these instabilities lead to 3 dimensional turbulent
effects and wave driven transport phenomena.

Hall Thruster discharges can be modelled using particle in cell (PIC) simulations, fluid models or hy-
brids in between the two. Three dimensional kinetic models could resolve the previously mentioned
instabilities, but are usually too expensive to model for full scale thrusters, as plasma Debye lengths can
be on the order of µm and thruster sizes on the order of cm. An example of a kinetic model is [12].
The ions and electrons can be approximated relatively well as fluids, since the mean free path to length
scale ratio is low owing to electrostatic collisions. As neutrals can only exchange momentum in direct
collisions, their velocity distribution is less Maxwellian and the fluid formulation is less valid. Hall2De
[13] developed at JPL is an example of a fluid code. HYPHEN [14] and HALLIS [15] are hybrid codes
treating neutrals and ions as particles, while resorting to a fluid approach for the electrons. The axial
symmetry of Hall Thrusters is exploited in all of the above mentioned models, reducing the problem to
two dimensions. The r-z domain (see Figure 1.1a for the coordinate system) is the preferred plane for
Hall Thruster models aiming to predict the global plasma state and thruster properties. Axial-azimuthal
simulations are mostly used to study instabilities and wave-driven phenomena.

The electron cross-field transport towards the anode in a Hall thruster discharge is strongly under-
estimated when applying fluid and hybrid models. The experimental transport is orders of magnitude
higher than predicted by the generalized Ohm’s law, Equation 2.18. The equation is will be explained
in detail, however it is noted here that it only takes classical collisions into account. It is generally
accepted that electron cross field transport is enhanced by kinetic microinstabilities [16], which cannot
be captured using a fluid formulation by definition. In order to deal with the discrepancy between fluid
theory and experiment, the usual approach is to add an anomalous (in contrast to classical) collision
frequency νAN . This creates a closure problem, requiring additional insights.

Thus far, zero-equation closure models derived from first principles could match experimental data in
specific operating conditions, but failed to generalize to a broader range of conditions. Jorns [17] has been
able to exploit a data driven approach to generate a closure model, and could identify some parameters
that are likely related to cross-field electron transport. This model has been applied in Chapter 5. In 2D
simulations, additional terms may be required, as the channel dynamics are usually treated differently
than the cathode plume transport, leading to two closure problems. The models need to be calibrated,
which is formulated as a Bayesian inference problem to be able to quantify uncertainties. Marks et
al. [18] have been able to exploit a data-driven approach with higher predictability towards thrusters
and conditions not included in the training data. In order to simulate high number of different initial
conditions and perform parameter studies with increased search area, a 1D model is desirable due to
lower computational cost compared to higher dimensional models.

To summarize, even though Hall thrusters have been flown for decades, predictive simulations remain
inaccessible at this point. Finding a general model for anomalous electron transport is the holy grail.
One attempt to get there is by employing data driven approaches. Therefore, in order to perform a
high number parameter studies with increased search area, a 1D model is desirable due to lower com-
putational cost compared to higher dimensional models. Consequently, this work is on developing a 1D
model satisfying this need.

3



1.2 HallThruster.jl

0D Lotka-Volterra models do not resolve the plasma evolution in space at all, while 2D simulations are
expensive to evaluate. To fill the data-gap, a one dimensional fluid model is a good compromise between
fidelity and computational cost. Axial state propagation is achieved, and axial instabilities such as the
breathing mode and transit time oscillations can be resolved. This results in the ability to run calibrated
data-driven models for anomalous electron transport that are a function of the plasma state. While the
radial direction is not modelled at all, different energy loss terms can in part account for the change in
geometry. One advantage is that the magnetic field profile along the centerline of the thruster channel is
usually close to being purely radial. The transformation from a 3 dimensional thruster to a 1D domain
is shown in Figure 1.2. Shown on the left is the University of Michigan’s H9 magnetically shielded Hall
Thruster with a center mounted cathode.

Figure 1.2: Illustration of 1D domain

Due to dimensionality one, the left boundary will always correspond to the anode and the right bound-
ary to the cathode, even if an axial domain of multiple channel lengths is simulated. While obviously
reducing fidelity drastically, this approximation does not render the model useless since the magnetic
field profile can be imposed as a function of space, informed by the real centerline magnetic field. It is
the radial magnetic field strength that governs the (at least classical) electron resistivity in axial domain
and therefore gives rise to the axial electric field. Thus, even though the position of the cathode might be
far off geometrically speaking, the magnetic field profile ensures the potential structure and peak electric
field are at similar axial positions as in a 2D simulation.

1D fluid models have been studied by the Hall thruster community since the 1990’s [19]. Early models
did not self-consistently evaluate the electron temperature, but rather imposed a given profile. Hagelaar
et al. [20] decreased the computational effort by implicitly treating the source terms appearing in the
electron energy equation. 1D models were then extensively used to study axial instabilities, with mostly
non-conclusive results. Even though many 1D codes have been developed and some are openly accessible,
none were found that are easily extensible and can be adapted to the needs of the user. This limitation
renders those models not very useful for inference tasks. The model developed here, HallThruster.jl, is
based on previously formulated models, especially [11], [21] and [22]. In an effort to contribute to open
science, HallThruster.jl is open source and available on Github. [23]

The following chapter describes the physics model of HallThruster.jl, while Chapter 3 describes the
discretization and numeric implementation of the equations. Chapter 4 deals with verification and
model behaviour is discussed. Subsequently, results from HallThruster.jl are compared to a 2D higher
fidelity simulation applying a data-driven anomalous transport model in Chapter 5. A conclusion and
clear recommendations for future work are offered in Chapter 6.
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Chapter 2

Governing Equations
This chapter focuses on deriving and presenting the governing model equations to inform physics rep-
resented in HallThruster.jl. In Section 2.1 the Euler equations are derived from the Vlasov equation
following [24]. These equations are restated in the exact way implemented for neutrals, ions and elec-
trons in Section 2.2. Further assumptions and a simplification to the electron momentum equation is
shown in Section 2.3. The source terms appearing in the equations and the collisions governing electron
transport are introduced in Section 2.4. As the electron transport is vastly underpredicted in classical
models, the standard methodology addressing the problem is presented in Section 2.5. The electron
energy loss terms are discussed in Section 2.6. The resulting physical 1D model behind the equations
implemented in HallThruster.jl relies on a lot of assumptions, which are summarized in Section 2.8. This
is done both to gain an overview for convenience and additionally provides an opportunity to discuss the
limitations of the model.

2.1 Derivation of fluid equations from Vlasov equation

Leaving the macroscopic view of continuous fields, the Vlasov equation describes the evolution of discrete
particles of a single species in phase space. The constituents are merely described by two properties:
position and velocity. The Vlasov equation can be written as

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= 0 (2.1)

where f(x,v, t) is the distribution function, x is the three dimensional space distribution while v is the
three dimensional velocity distribution. Equation 2.1 can be written as is since x and v are independent
variables. It is assumed, that as particles collide, their position in space does not change much over the
course of their encounter, but their position in velocity space can be altered substantially. To model the
sinks and sources of particles in phase-space, a collision operator is added to the Vlasov equation.

∂fα
∂t

+
∂(vfα)

∂x
+

∂(afα)

∂v
=
∑

Cαβ(fσ) (2.2)

where Cαβ(fα) represents the rate of change of fα as a result of collisions of species α with species β.
The collision operator has to satisfy a number of properties, namely conservation of particles in total,
conservation of momentum of a specific species for collisions with only that species and conservation of
momentum of all species for collisions involving multiple species. Similarly the collision operator has to
conserve total energy of a species for collisions involving only that species, and conserve the total energy
of multiple species for interspecies collisions. See chapter 2 in [24] for a mathematical definition of these
constraints, here merely conservation of particles is repeated in Equation 2.3.∫

dvCαβ(fα) = 0 (2.3)

Fluid equations can be derived by taking moments of the Vlasov equation. Looking at the distribution
function f(x,v, t) alone, one can effectively average over the velocity distribution by integrating with
respect to it and obtain the macroscopic fluid properties density and mean velocity.

n(x, t) =

∫
f(x,v, t)dv (2.4)

u(x, t) =

∫
vf(x,v, t)dv

n(x, t)
(2.5)

Integrating Equation 2.2 over velocity space is taking the 0th moment of the Vlasov equation. x, v and
t being independent, the first two terms on the left hand side commute with time and space. Gauss’
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theorem,
∫
volume

(∇ · F)dx =
∫
surface

(F · n̂)ds can be applied to the third term on the left hand side
which results in fσ being evaluated at v = ∞. This term disappears as the amount of particles with
velocity infinity approaches 0.
The continuity equation therefore results in

∂n

∂t
+∇ · (nu) = 0 (2.6)

The right hand side is 0 since the amount of particles is conserved when considering one fluid only. In
modelling a Hall thruster discharge, multiple fluids are present and this term will therefore be non-zero
and corresponding to ionization and recombination rates. Treatment of the source terms applied in the
fluid equations to model Hall thrusters is described in Section 2.4.

The first moment is obtained by multiplying Equation 2.2 by v and integrating again over dv

∂nαuα

∂t
+

∂

∂x
·
∫
(v′v′ + v′uα + v′uα + uαuα)fαdv

′ − qα
mα

∫
(E+ v×B)fαdv

′ = − 1

mα
Rαβ (2.7)

Rαβ is the drag force resulting from collisions between species α and β. These momentum transfer
collisions and the operator will be treated in Section 2.4. Equation 2.7 can be rewritten into

∂nαuα

∂t
+

∂

∂x
· (nαuαuα +

Pα

mα
) = nαqα(E+ uα ×B)−Rαβ (2.8)

This is effectively the ion momentum equation solved in HallThruster.jl. The stress tensor and viscosity
are neglected. A closure problem is evident for the pressure term. The pressure tensor is defined as
P = mα

∫
v′v′fαdv

′. It is assumed that the distribution function is isentropic, which leads to the
following definition of scalar pressure. This assumption is considered acceptable as particle and coulomb
collisions drive the distribution towards isotropy.

Pα =
mα

3

∫ 3∑
j=1

v′
2
jfαd

3v′ (2.9)

The dimensionality is three as HallThruster.jl is supposed to approximate a 3D discharge, even though
it solves a one dimensional system. This is done to account for the three dimensional effects of the force
exerted by the pressure, and a similar approach will be applied to the energy equation. The ideal gas
law Pα = nαkBTα is used as the thermodynamic relation to compute Pα in HallThruster.jl.
The Vlasov equation is multiplied by mαv

2/2 and integrated over velocity to obtain the second moment,
which results in the energy equation. The dimensionality is once again three.

∂

∂t

∫
mαv

2

2
fαd

3v+
∂

∂x
·
∫

mαv
2

2
vfαd

3v+qα

∫
v2

2

∂

∂v
·(E+v×B)fαd

3v =
∑
α

∫
mα

v2

2
Cαβfαd

3v (2.10)

The collision term on the right hand side refers to the rate at which energy is lost due to collisions with
other species and will be written as Sloss in the following. This term will be extended in Section 2.6 to
include additional losses not related to collisions to account for the finite domain. As in the momentum
equation, the stress tensor and the associated macroscopic property viscosity is neglected. Equation 2.10
can be simplified by integration, for details the reader is referred to chapter 2 in [24]. This results in the
following.

∂

∂t

(
3

2
Pα +

mαnαu
2
α

2

)
+∇ ·

(
Qα +

5

2
Pαuα +

mαnαu
2
α

2
uα

)
− qαnαuσ ·E = −Sloss (2.11)
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In order to derive an equation for the evolution of internal energy, Equation 2.8 can be multiplied with
uα and inserted into Equation 2.11.

3

2

dPα

dt
+∇ ·

(
5

2
Puα +Qα

)
= jα ·E− Sloss (2.12)

The Ohmic heating term jα · E is only valid if the kinetic energy is negligible. In this form it solely
consists of frictional heating. The term represents conversion of directed kinetic energy into random
kinetic energy, which is thermal energy. However, if the electric field becomes negative, the meaning
of the term becomes unphysical. Depending on the boundary conditions, this can happen close to the
anode. This is further discussed in Section 2.8 and Section 4.3.

2.2 Fluid equations HallThruster.jl

The canonical fluid continuity, momentum and energy equations derived from the Vlasov equation in
the previous section are known collectively as the Euler equations. HallThruster.jl solves the neutral
continuity equation, thereby assuming constant neutral velocity and constant temperature. For each
of the up to three ion fluids the isothermal Euler equations are solved, which are the continuity and
momentum equation. As quasineutrality is assumed, the electron density is determined as a function
of cumulative ion density, while additional assumptions are made on the electron momentum equation,
which greatly simplifies the expression and reduces computational complexity, see Section 2.3. The
electron internal energy equation is solved to solve for the electron energy profile along the domain,
which drives the ionization profile and therefore has strong influence in the overall discharge properties.
The assumptions and their validity leading to this system of equations are summarized in Section 2.8.
In the following, the governing equations are mentioned explicitly. The source terms are discussed and
defined in the following sections.

Neutrals

The neutral continuity equation is one to one Equation 2.6 with an added source term for ionization.

∂nn

∂t
+

∂

∂z
(nnun) = ṅn (2.13)

Ions

The ion continuity equation is one to one Equation 2.6 with an added source term for ionization.

∂nij

∂t
+

∂

∂z
(nijuij) = ṅij (2.14)

The ion momentum equation is derived from Equation 2.8, neglecting the contribution by the magnetic
field (unmagnetized ions) and momentum transfer from other species to ions. See Section 2.8 for reasoning
and justification.

∂

∂t
(nijuij) +

∂

∂z
(niju

2
ij +

pij
mi

) =
je

mi
nijEz (2.15)

Electrons

Quasineutrality eliminates the need for an electron continuity equation, the electron momentum equation
is simplified in Section 2.3 applying a number of assumptions. The electron energy equation is derived
from Equation 2.12.
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∂

∂t

(
3

2
nekBTe

)
+

∂

∂z

(
5

2
nekBTeuez + qez

)
= eneuez

∂ϕ

∂z
− Sloss (2.16)

2.3 Current conservation and electron drift diffusion approxi-
mation

As the electrons are very light and a fast moving species, representing their non-linear advection in a
momentum equation would lead to severe timestepping restrictions in a fluid solver. Consequently, to
reduce computational expense, the electron momentum equation is simplified. Assuming quasineutrality
, neglecting electron inertia and looking at a steady state while removing the embedded continuity
equation, the electron momentum equation can be rewritten from Equation 2.8 into

νe
me

e
je = eneE+∇pe − je ×B (2.17)

In Equation 2.17 the collisional term R is assumed of the form Rtotal = Rei + Ren = mene(νei(ue −
ui) + νen(ue − un)). As neutral and ion velocity are assumed small compared to electron velocity, both
contributions can be dropped and νe = νei + νen encapsulating both electron ion and electron neutral
collision frequencies. Applying this equation to a 1D geometry and assuming that the magnetic field is
purely radial, Equation 2.17 can be split in the axial and azimuthal directions.

jez =
e2ne

meνe

1

1 + Ω2
e

(
Ez +

1

ene

∂pe
∂z

)
(2.18)

jeθ = Ωejez (2.19)

where Ωe = ωce/νe = e|B|/meνe is the Hall Parameter. It is the ratio of the electron cyclotron frequency
to the electron momentum transfer collision frequency and can be interpreted as a measure of how
magnetized the electrons are. The first two fractions on the right hand side of Equation 2.18 are often
referred to as the cross-field electron mobility µ⊥.

µ⊥ =
ene

meνe

1

1 + Ω2
e

(2.20)

Equation 2.18 vastly underpredicts the electron current in a Hall Thruster by orders of magnitude. As
a result, the scientific community has introduced an anomalous collision frequency, which is supposed to
take into account the physics being missed by a fluid formulation. Aid in finding better approximations
of νAN is the primary reason HallThruster.jl was developed. This is further thematized in Section 2.5.

The charge density σ is zero since quasineutrality is assumed. As multiple ion species are allowed,
ion and electron currents are first summed and then inserted in the charge continuity equation.

σ =

3∑
j=1

j nij − ne (2.21)

jiz =

3∑
j=1

j nijuij (2.22)

∂σ

∂t
+

∂

∂z
(jiz − jez) = 0. (2.23)

Equation 2.18 can be substituted in Equation 2.23 to obtain

8



∂

∂z
jiz −

∂

∂z

(
µ⊥e

(
−∂ϕ

∂z
+

1

ene

∂pe
∂z

))
= 0. (2.24)

Electrostatics is assumed rewrite E as −dϕ
dz . Rewriting for the potential results in an elliptic equation

that can be evaluated self-consistently.

∂

∂z

(
µ⊥ne

∂ϕ

∂z

)
=

∂

∂z

(
µ⊥

e

∂pe
∂z

− jiz
e

)
(2.25)

At this point, all primary equations governing HallThruster.jl have been presented. The source terms
and various parameters however require further elaboration, which is handled in the following sections.

2.4 Reaction and collision models

This section deals with the reaction models for species creation through ionization. Elastic collisions are
considered and influence electron mobility. Additionally, excitation rates are modelled.

Ionization

The source terms in Equation 2.13 and Equation 2.14 determining the number of ions created in each
instance are modelled as a function of the respective densities of electron and reactant species and electron
temperature. The rate coefficient is a function of electron temperature.

ṅn = −
3∑

j=1

nennknj(Te) (2.26)

Equation 2.26 is the source term in the neutral continuity equation. nn is the neutral number density,
ne the electron number density and knj the rate coefficient. Up to 3 charge states are considered. The
ion continuity equations are altered slightly, since ion number density can either increase by ionization
from a lower charge state or decrease when ionized to a higher charge state.

ṅij = nennknj(Te)−
3∑

ℓ=j+1

nenijkjℓ(Te) (2.27)

Here, j refers to the charge state of the ion fluid described by Equation 2.27. As evident in these
equations, recombination is not modelled. The ionization rate is either a function created by BOLSIG+
[25] or taken from the table provided by the Landmark study. Up to 3 ion fluids are supported by
HallThruster.jl, necessitating the modelling of six reactions. The assumptions only hold for monatomic
propellants.

A+ e− −→ A+ + 2e− (2.28)

A+ e− −→ A2+ + 3e− (2.29)

A+ e− −→ A3+ + 4e− (2.30)

A++e− −→ A2+ + 2e− (2.31)

A++e− −→ A3+ + 3e− (2.32)

A2+ + e− −→ A3+ + 2e− (2.33)
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Excitation

HallThruster.jl estimates the excitation rates, supplied by lookup tables, of monatomic gases as a function
of electron temperature. The excitation states of different fluids are not tracked however, and only impact
the electron energy balance described in Section 2.6.

Elastic collisions

Elastic momentum transfer to neutrals and ions is neglected, however electron transfer collisions are
considered. A few different models are implemented, and these are described below. µ⊥ determines the
electron mobility across magnetic field lines, and an important parameter in Equation 2.20 is the electron
momentum transfer collision frequency νe. As stated previously, this consists of the classical collisions
νc and anomalous collisions νAN . Collisions between electrons do not alter the total momentum balance
of the electrons as a fluid. Therefore νee is not considered. Momentum can however be transferred from
neutrals and ions.

νe = νei + νen + νAN (2.34)

The individual contributions to νe are evaluated next.

Electron Neutral collisions

Three different models are implemented to estimate the electron neutral momentum transfer collision
frequency. The simplest one is used in Landmark test case 3 [26]. It is a linear function of the neutral
density and valid for Xenon.

νen,Landmark = 2.5 ∗ 10−13 ∗ nn (2.35)

Another model to approximate the electron neutral collision frequency is by evaluating a numerical fit
for the effective neutral electron collisional cross section as a function of electron temperature, valid for
Xenon. [7] [27] This is averaged over a Maxwellian electron distribution.

νen,GK = σen(Te)nn

√
8eTe

πme
(2.36)

σen,GK(Te) = 6.6× 10−19

[
Te

4 − 0.1

1 +
(
Te

4

)1.6
]

[m2] (2.37)

Lastly, lookup tables can be provided that estimate a coefficient as a function ϵ, which is then applied to
determine the collision frequency as a function of nn. Further data can be added by the user as well and
therefore the model can be extended beyond Xenon and Krypton. The three models are all linear with
respect to nn and are compared with nn = 1e20 in Figure 2.1 as a function of electron temperature. The
coefficients in the Lookup tables supplied by HallThruster.jl are obtained by integrating over the cross
sections over the velocity distribution, similar to what is being done in BOLSIG+ [25]. These tables
were created by PEPL Phd candidate Thomas Marks.

νen,LU = nn ∗ ken,LU (ϵ) (2.38)

Electron Ion collisions

Electron-ion collisions are dominantly electrostatic in nature are therefore largely determined by the
charge difference between electrons and ions and the electron to ion mass ratio. Consequently, one
model can be applied that is valid for all monatomic propellants. These are computed using the classical
formulae from [28].
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Figure 2.1: Comparison of Electron Neutral collision models with nn = 1e20 [particles/m3]

νei = 2.9× 10−6 Z2neT
−3/2
e ln Λ. (2.39)

Z is the ion charge state, ne is the plasma density in m−3 and Te is the electron temperature in eV. In
the above expression, lnΛ is the well-known Coulomb logarithm, given by

lnΛ = 23− 1

2
ln
(
10−6 Z2neT

−3
e

)
Te < 10 Z2 eV (2.40)

lnΛ = 24− 1

2
ln
(
10−6 neT

−2
e

)
Te > 10 Z2 eV. (2.41)

For plasmas containing multiple charge states, the number-averaged charge state ⟨Z⟩ is computed and
used in the above formula.

⟨Z⟩ ≡

(∑
s

Zsns

)
/ne (2.42)

2.5 Anomalous collision frequency

Inserting the cumulative collision frequency from classical collisions alone into Equation 2.18, leads to
an underpredicted electron transport by three to four orders of magnitude. [29] Most likely kinetic
effects on small time- and lengthscales are responsible for the increased transport [16], however those
microinstabilities cannot be resolved using a fluid approximation. In order to assimilate simulations
closer with experimental results, an anomalous collision frequency has been introduced. The anomalous
collision frequency aims to capture the physics not considered by the model and artificially increases the
electron transport. Finding closure models for the anomalous collision frequency is considered the major
challenge to achieve predictive Hall Thruster simulations.

The total momentum transfer collision frequency is described by Equation 2.34. The main goal of
HallThruster.jl is to aid in finding new closure models. Currently, zero-equation (algebraic) and closure
models employing a system of partial differential equations are available, however none thus far allow
predictive Hall Thruster simulations. Models based on Bohm diffusion [30], wall effects [31] and tur-
bulence [32] [33] have been proposed. Jorns presented a data-driven zero-equation model in [17]. In
HallThruster.jl, zero equation closure models as a function of axial position are supported, and more
sophisticated models can be implemented. The standard model is a Two-Zone Bohm model:
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νAN = β1ωce (z < Lch) (2.43)

νAN = β2ωce (z ≥ Lch) (2.44)

where ωce is the electron cyclotron frequency and Lch is the length of the channel. As an example,
in the Landmark benchmark [26], β1 = 1/160 and β2 = 1/16, while an additional frequency of 107 is
added inside the channel to ”account” for the walls. This model is plotted in Figure 2.2a against the
axial position in a simulation using parameters detailed in Section 4.3. Figure B.1d shows the same
two zone Bohm model with a slightly more realistic classical collision frequency profile with electron ion
collisions taken into account. It is evident from these plots that the anomalous collision frequency is
the dominant contribution to the electron momentum transfer collision frequency in this model, while
classical collisions are relevant close to the anode. It should be noted that the two zone Bohm model is
merely a simple approximation, and in no way should it be employed to draw general conclusions. In
Chapter 5 another anomalous collision frequency model calibrated in [18] is presented.

(a) (b)

Figure 2.2: The individual components of the momentum transfer collision frequency

2.6 Electron heat flux and energy loss terms

The electron energy governs the reactions and collisions in a Hall Thruster. This allows the electron
energy heat flux and in particular the loss terms to wield strong influence over the simulation charac-
teristics. As a result, an accurate electron energy profile enabled by consistent assumptions is of utmost
importance. First, the Braginskii closure model adopted for the heat flux in the electron energy equation
is discussed. Then, the terms encapsulated by the loss term in the energy equation are described. They
consist of electron energy losses due to ionization and excitation as well as losses to the thruster walls.

Sloss = Pionization + Pexcitation + Pwall (2.45)

Heat flux closure

Taking the second moment of the Vlasov equation, as done in Section 2.1 leads to a closure problem for
the heat flux in Equation 2.12. Here, the Braginskii closure is employed. The standard two-Laguerre-
polynomial Chapman-Enskog closure scheme is used, however the results are applied only to the field
perpendicular electron heat conductivity. Braginskii [34] obtained electron and ion continuity, momentum
and energy equations along with closures for the loss and source terms, examining both the magnetized
and unmagnetized limit. As the electron larmor radius is much smaller than the characteristic length of
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a thruster discharge channel, the magnetized limit for the electron heat flux is of interest. The closure is
based on collision-induced random walk diffusion, employing the electron cyclotron radius ρe =

meve,⊥
q|B|

as step-length and νe as frequency, consisting of the classical and anomalous electron collision frequency.
This leads to factor (ρ/l)2 lower conductivity in the in the perpendicular direction compared to the field
aligned direction, for which the mean free path l = τevt,e is used as step-length. The heat diffusion is
governed by a classical Fourier law.

qez = −κe⊥∇⊥Te (2.46)

κe⊥ ≈ 4.7neTe

meω2
ceτe

(2.47)

τe = 1/νe =
1

νei + νen + νee + νAN
(2.48)

where ne is the electron density, Te the electron temperature in electron Volts, me the electron mass, ωce

the electron cyclotron frequency, and τe the electron collision time in seconds, which encapsulates the
anomalous electron collision frequency treated in Section 2.5. The coefficient 4.7 changes slightly when
multiple charges states Z are present, consequently it is a function an effective charge state Zeff , which
is obtained by Equation 2.42.

Ionization and excitation loss

Electron energy can be lost due to ionization of neutrals or ions to higher charge states or excitation of
neutrals. The ionization and excitation rates kionization, kexcitation modelled in Section 2.4 are simply
divided by the known constant ionization and excitation energy ∆ϵionization,∆ϵexcitation of the propellant
to obtain the ionization and excitation energy loss rate.

Pionization = kionization∆ϵionization (2.49)

Pexcitation = kexcitation∆ϵexcitation (2.50)

Wall loss model

In a Hall Thruster, energy will be lost to the thruster walls. Since HallThruster.jl is one-dimensional,
this loss cannot be modelled directly but is taken into account as a source term in the electron energy
equation Equation 2.16. Three different wall loss models are implemented. The first option is to ignore
losses to the wall altogether. Secondly, a simple energy loss model assuming a constant sheath potential
is available, and thirdly the sheath potential and loss coefficients can be computed based on a given wall
material.

Constant Sheath Potential

This model employs a simple sheath energy loss model with constant sheath potential, based on the
electron Boltzmann equation for electron density in the sheath as a function of electron temperature.
Constants are set to scale losses inside and outside the thruster. [19] [26]

Pwall = νewneexp

(
ϕs

Tev

)
(2.51)

where in the Landmark benchmark test case 2 νew = 0.5 ∗ 107 [1/s] for (x < Lch) and νew = 107 [1/s]
for (x > Lch) while the sheath potential is assumed a constant 20 [V].
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Self-consistent sheath approximation

The higher fidelity wall sheath loss model is described in [7] and based upon findings by [35]. The
fundamental assumption is that ion and electron currents to non-conductive walls have to be equal to
prevent charge build-up.

Iiw = Iew(1− γ) (2.52)

where γ is the secondary electron yield. This is estimated from literature [36] [8] employing fit functions
for wall materials, returning γ as a function of electron temperature. The supported wall materials are
Alumina, Boron Nitride, Stainless steel and BN-SiO2. The sheath potential can then be estimated in
the following.

ϕs = −Tevln

(
(1− γ)

√
2mi

πme

)
(2.53)

However the sheath exhibits a space charge limit once the secondary electron emission coefficient ap-
proaches unity, this slightly varies according to the propellant as a function of the ion to electron mass
ratio.

γ0 = 1− 8.3

(
me

mi

) 1
2

(2.54)

[35] also found the space charge limited sheath potential ϕ0 to scale linearly with the electron temperature,
independent of propellant. The constant in Equation 2.55 was obtained in the limit of infinitely massive
ions, and is therefore valid for all propellants in HallThruster.jl.

ϕ0 = −1.02
kTe

e
(2.55)

The power lost to the walls is then

Pwall =
1

4

√
8kBTe,a

πme
neexp

(
ϕs

Tev

)
2Tev (2.56)

where the first part follows from the half Maxwellian approximation for electron velocity at the sheath
boundary. The electron bulk velocity is neglected. The exponential term time electron density accounts
for the electron density according to the Boltzmann relation Equation 2.63, while the 2 times electron
temperature accounts for the energy deposited per electron hitting the wall. A comparison of the sheath
potential according to different gases and the exponential term is given in Figure 2.3. It should be noted
that the power losses in the LANDMARK model dwarf the Hobbs Wesson loss due to the the ratio of
νew over the twice the electron half Maxwellian speed. In the case of a magnetically shielded thruster,
the electron temperature at the walls is assumed to be equal to the electron temperature at the anode.
The model does not differentiate between axial positions inside and outside the thruster. The same
loss model is applied over the entire domain. This approximation is justified when comparing to 2D
simulations due to isothermal magnetic field lines.
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(a) (b)

Figure 2.3: Comparison of exponential term and sheath potential with different gases and wall materials

2.7 Presheath

Quasineutrality is assumed within the domain. However, this assumption breaks down close to surfaces
at a potential different to the plasma potential, as charged particles are either attracted or repelled by the
sheath. The nature of the sheath depends on the potential difference between the plasma and the surface.
The sheath scale is on the order of a Debye length and is not modelled by HallThruster.jl. However in an
effort to increase physical fidelity, the ions are forced to the negative Bohm velocity at the anode. This
assumes a negatively biased sheath with respect to the plasma potential and results in the formation of
a presheath. [24] In the following, it is shown how to arrive at the ion Bohm speed approximation. The
potential differences eϕ are assumed to be on the order of the electron temperature kTe. Furthermore,
assume that cold ions fall through an arbitrary potential of ϕ0 while they move towards the wall. Through
conservation of energy, their arrival velocity at the sheath edge can be related to the potential difference.

1

2
miv

2
0 = eϕ0 (2.57)

Additionally, the ion flux during acceleration toward the wall is conserved.

niv = n0v0 (2.58)

The relation for ion velocity as a function of position in the sheath can be written as

1

2
miv

2 =
1

2
miv

2
0 − eϕ(x) (2.59)

Rewriting both Equation 2.57 and Equation 2.59 for v0 and v, and dividing gives

v0
v

=

√
ϕ0

ϕ0 − ϕ
(2.60)

which by applying flux conservation results in

ni = n0

√
ϕ0

ϕ0 − ϕ
(2.61)

Close to the sheath edge Equation 2.61 can be expanded as a Taylor series, as ϕ is small compared to
ϕ0.
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ni = n0

(
1− 1

2

ϕ

ϕ0
+ ...

)
(2.62)

In one dimension, neglecting collisions with other species and assuming isentropic temperature and
pressure terms, no convection and no electron inertia, the electrons can be described by the Boltzmann
relation Equation 2.63.

ne = n0exp

(
eϕ

kTe

)
(2.63)

In this regime, the electron density is diffusion dominated and dictated by the electrostatic field. This
assumption is generally valid along magnetic field lines and across weak magnetic fields with sufficient
electron electron collisions. The Boltzmann relation can be expanded by assuming that the change in
potential at the sheath edge is small compared to the electron temperature.

ne = n0

(
1− eϕ

kTe
+ ...

)
(2.64)

Taking Poisson’s equation of the form

∇2ϕ = − e

kTe0
(ni − ne) (2.65)

and substituting Equation 2.64 and Equation 2.62 leads after rearranging to

∇2ϕ =
en0ϕ

ϵ0

(
1

2ϕ0
− e

kTe

)
(2.66)

As the sheath is assumed to be ion attracting, it can by definition not slow or repell ions. As a result,
the RHS of Equation 2.66 has to always be positive, which leads to the following requirement.

ϕ0 >
kTe

2e
(2.67)

By substituting Equation 2.57, the ion Bohm speed can be recovered. This condition is applied to the
anode boundary and will be discussed in the boundary conditions.

v0 >

√
kTe

mi
(2.68)

A consequence of this result is the formation of a presheath [37] [38], in which quasineutrality holds but
the potential is adjusted to allow the ions to accelerate towards the sheath edge. This can lead to an
entropy violation on the part of the Ohmic heating term j ·E in the energy equation, which is discussed
further in the context of simulation results in Subsection 4.3.1. Therefore, the currently implemented
model is strictly speaking inconsistent.

2.8 Assumption validity in Hall thruster discharges

In this section, some of the key assumptions to arrive at the physical model described here are reiterated
with their justification and impact mentioned.

• One dimensional domain This results in not being able to model inherently multidimensional
fluid phenomena such as turbulence. Losses to the walls and expansion of plasma from the channel
to the plume cannot be captured. Consequently, the model fidelity is reduced drastically.
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• Plasma as a fluid in a Hall Thruster discharge It is assumed that a sufficient number of di-
rect and electrostatic collisions take place to achieve a Maxwellian isentropic velocity distribution
function of each species. In a real Hall Thruster discharge, this is definitely not the case. Approxi-
mating the neutrals as a fluid than for the charged species, since no coulomb collisions are able to
reduce the neutral mean free path and thus thermalize the population. The approximation holds
better for electrons and ions, however neither distribution will be fully isentropic nor Maxwellian.

• Ideal gas law The ion and electron pressure are evaluated using the ideal gas law. Assumes a
Maxwellian distribution.

• No ion losses to radial walls An ok assumption to make for the short timescales considered
here, since the ions on a large scale are not very energized. Ion losses are more important due to
the erosion they cause rather than the energy being lost through them.

• No ion to neutral momentum transfer There will be some momentum transfer in reality.
Including this contribution would require the neutrals to be modelled kinetically, as done in [13]
for example. Modelling neutrals as a fluid with the Euler equations is not an option due to the long
mean free path leading to a high Knudsen number, placing them in the molecular regime. Conse-
quently modelling neutrals as monoenergetic simply using the continuity equation is a compromise.
impact of neutral temperature on solo regime. [22]

• No electron inertia It can be argued that electron inertia is not relevant for the low frequency
modes of interest in HallThruster.jl, since the electron timescales are very short. Neglecting eletron
inertia leads to the QDD model. In Ref [21], Sahu et al. compared this to a 1D model employing
non-neutral drift diffusion (NDD) and full fluid moment models, solving the full Euler equations
for the electrons. The main difference between NDD and QDD in a time-averaged sense was found
to be the ability to model a sheath at the anode due to the non-neutral assumption. The QDD
model did however perform better when comparing global quantities, being only 0.5% off the FFM
discharge current, while the NDD was 5% off.

• ui, un negligible in QDD The electron thermal speed will be orders of magnitude higher than
the ion bulk or thermal speeds due to the lower electron mass and higher energies.

• Neglecting electron kinetic energy in energy equation Generally over most of the domain,
the contribution of the kinetic energy in the electron energy equation is negligible. However, the
can change in the presheath region where the j ·E loss term takes on negative values, which is
unphysical. See Section 2.7 and Section 4.3.

• Ions unmagnetized A very valid assumption since the operating principle of a Hall thruster
requires this in the first place. As long as realistic Hall thruster magnetic field profiles are simulated,
the ion mass is sufficient to keep the Larmor radius much larger than the channel dimensions.

• Isothermal ions The ions remain cold throughout most of the domain, which supports the validity
of isothermal ions. On the other hand, especially in the acceleration region, the ion velocity
distribution function is highly energetic, which may be a result of the oscillating electric field.
Roberts et al. [39] quantified this effect and showed that the ion temperature may reach 5eV. This
temperature however was estimated by fitting a bi-maxwellian with heavy tails to the VDF, which
technically calls the fluid assumption in HallThruster.jl into question.

• Quasineutrality Good assumption in a plasma with strong Debye shielding in general, but very
strong electric fields might introduce regions of non-neutrality. This assumption can be tested using
the Poisson equation. The strongest electric field is expected in the acceleration zone. One can
assume a realistic value of maximum electric field 5 ∗ 104 V/m over a conservative distance of 0.5
cm. Plugging this into Equation 2.65 yields ni − ne = 3e12 m−3. Normalized by an average Hall
thruster plasma density of 1e17 −/m3, results in ni−ne

n0
= 2e − 5 ≈ 0. Quasineutrality therefore

remains a valid approximation with Hall thruster typical electric fields.
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2.9 Summary

To conclude, a 1D fluid model for application to Hall thruster discharges has been derived. Several
different approximations have been presented for collision frequencies and loss term, while the formation
of a presheath has been discussed. Next, the system of PDEs needs to be discretized and implemented
computationally. The goal was to keep the model flexible and easily adaptive while making it as com-
putationally efficient sa possible. This is covered in the next chapter.
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Chapter 3

Implementation
This chapter provides an overview of the implementation of the equations. In Section 3.1, an overview
of the code structure is presented. Section 3.3 dives into the numerical discretization and integration
schemes. Challenges and properties of different numerical methods are shown.

The system of equations presented in the previous chapter has been discretized and implemented in the
programming language Julia. The package DifferentialEquations.jl has been used for time integration
of the heavy species (neutrals and ions). The equations were discretized on a one dimensional domain
in space. The finite volume method was used mainly due to it being conservative by design, a good
fit when solving a system of hyperbolic conservation laws. The fluxes appearing in this discretization
have been approximated by different schemes including approximate Riemann solvers. A finite-difference
approximation was used to solve the elliptic potential equation on a staggered grid to avoid odd-even
decoupling. The code was developed together with PhD student Thomas Marks.

3.1 Global concept

The main requirement of the implementation is to facilitate simulations at low computational expense
while allowing for a high degree of flexibility in terms of thrusters, propellants, domain sizes and choice
of physical models for wall losses and collisional terms. The user has to provide a thruster geometry and
magnetic field, which are both part of the Thruster object in HallThruster.jl. Additionally the neutral
mass flow rate has to be fixed and boundary conditions need to be selected. The number of ionization
states has to be set. The user can use preset initial conditions. Simulation parameters such as the
simulation time, timestep (when setting a manual timestep) and number of cells has to be set as well.
The user can either use the default physics models for collisions and losses, choose one of higher fidelity,
or implement their own approximations. Theses choices are summarized in the User defined box in
Figure 3.1. The loop in Figure 3.1, illustrates the computations in a single time step in HallThruster.jl.
Update timeinvariant describes the evaluation of certain parameters. Note that the anomalous collision
frequency is shown as a function of the magnetic field strength B, which does not necessarily have
to be the case but seems to be an important parameter in current closure models. The vector Cano

can include other state, geometric, time-invariant or time-evolving plasma or other parameters. Having
updated these properties, the elliptic equation for the potential is solved in Solve potential. Next, the
electron momentum equation Equation 2.18 is solved for the electron velocity in Electron momentum.
Having updated these values, the heavy species partial differential equations are propagated forward one
step in time in Fluid update. The Constants box refers to lookup tables being used for ionization and
excitation rates and loss terms to evaluate the source terms of the heavy species and the electron energy
equation. The heavy species are integrated in time using DifferentialEquations.jl [40], while the electrons
are integrated semi-implicitly using a Crank Nicolson scheme. The loop is repeated until the simulation
comes to an end. The user can determine the interval at which the solution is to be saved and extract
the quantities of interest. This is detailed further in Section 3.4.
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Figure 3.1: Flowchart illustrating the computations in HallThruster.jl
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3.2 Julia

One of the main requirements of HallThruster.jl is a fast runtime. For this reason, the code was written
in the programming language Julia. It is a dynamic high level language that has been compared to
Python. Julia incorporates a multiple-dispatch architecture, which allows functions to execute different
methods solely based on the type or number of arguments. This is different from classical object-
oriented programming languages, in which dispatch is usually based only on the first argument. Multiple
dispatch proved extremely useful in the implementation of the numerical method. For example, a flux
function Flux(U, ...) can be defined differently depending whether U was of type SVector{1} or
SVector{2, T}. In the first case, the Flux(U, ...) function returns the flux for a single advection
equation, while in the second case the function evaluates the convection velocity and returns the two
dimensional isothermal Euler flux. The performance penalty for the added flexibility is small as Julia
uses Just in time compilation and type inference. The Julia compiler is more efficient than Python’s
interpreter. The developers claim that well written Julia code approaches the performance of C. On the
downside, experience showed that initial compilation time is relatively long. As compilation only has to
take place once, this does not negatively affect the overall time when simulating hundreds of discharges,
but led to some wait time during code development.

3.3 Numerics

The finite volume method is used for spatial discretization and illustrated in Subsection 3.3.2. This
transforms the PDEs into a system of ODEs as a function of time, which can be integrated by Differen-
tialEquations.jl. A constant grid size is used throughout the domain. Most of the implementation should
make a generalization to a variable cell size easy, however this has not been tested intensively.

3.3.1 Schemes and flux computation

The finite volume methods has been chosen for its suitability to discretize hyperbolic conservation laws,
as the discretization is conservative by design. Applying this approach to Equation 2.13 yields∫ i+ 1

2

i− 1
2

∂nn

∂t
dz +

∫ i+ 1
2

i− 1
2

∂nnun

∂z
dz =

∫ i+ 1
2

i− 1
2

ṅn dz (3.1)

This essentially corresponds to a control volume technique. The value within a cell is determine by the
balance of incoming and outgoing fluxes. The nnun can be replaced by a generic flux term F (z) and
generalized to any advection like equation. The right hand side does not need to be considered further,
as the term is taken care of in terms of a lookup table and is explained in ??. Integration results in

h
∂nn

∂t
+
(
F

i+1
2

− F
i− 1

2

)
= hṅn (3.2)

The fluxes F
i+1

2

and F
i− 1

2

can be approximated by different schemes.

The classical Reconstruct, Evolve, Average (REA) algorithm [41] has been implemented to allow switch-
ing between different flux approximations. First, cell values are reconstructed at the cell edge. This leads
to a left state UL and a right state UR. The standard reconstruction is piecewise constant, where the edge
values correspond to the cell centered values. This leads to first order accurate spatial discretizations with
all flux approximations, which are discussed later. In order to increase the spatial accuracy and reduce
the smearing out of discontinuities, the discretizations can be augmented to second order of accuracy by
piecewise linear reconstruction. In this case, the primitive variables are evaluated at the cell centers and
then linearly reconstructed at the cell edge. There, the variables are converted back into the conservative
form, as the flux approximations were implemented to take the conservative variables as input. The slope
for reconstruction is determined by the gradient in the solution. In order to avoid spurious oscillations
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and ensure the schemes are total variation-diminishing (TVD), limiters have to be used. This leads to a
Godunov type scheme with MUSCL (Monotonic upstream-centered scheme for conservation laws) recon-
struction. The averaging step in in REA algorithm can be omitted since HallThruster.jl uses a constant
grid spacing and the average of the constant or linear slopes will thus always be the cell centered value
anyways. Averaging will have to be added in case nonlinear reconstruction or variable grid spacing is
applied.

Four different flux approximations have been implemented in HallThruster.jl. The upwind method
is the simplest flux approximation suitable for hyperbolic conservation laws and simply advects infor-
mation from either one side or the other in the control volume, depending on the sign of the velocity.
Thus using the nomenclature introduced above, the upwind scheme merely considers either UL or UR.
However, it can be shown by modified equation analysis that the method very diffusive. Additionally,
the upwind method may not approximate physical systems well when information travels along different
characteristic wave speeds, which is the case in hyperbolic conservation laws. Having two states in a
problem governed by a conservation law, separated by a single discontinuity in the domain of, can the
termed a Riemann problem. The solution of a Riemann problem contains shocks and rarefaction waves
as characteristics. Therefore, in order to increase the fidelity of a flux approximation, a Riemann problem
can be solved at a cell interface with the goal of including the physics of shock and rarefaction waves
in the simulation. Riemann solvers thus take both UL and UR into account. In the interest of simplicity
and low computational complexity, approximate rather than exact Riemann solvers were viewed as ideal.
The global Lax-Friedrichs, local Lax-Friedrichs and HLLE approximate Riemann solver are presented
in detail later in this section. Finally, a at best 5th order accurate weighted essentially non-oscillatory
(WENO) scheme is implemented. In this case the fluxes are approximated taking adjacent fluxes into
account. This scheme is 5th order only if the solution is sufficiently smooth.

Upwind

The simplest scheme is the upwind method. Its derivation by using Taylor expansion applied to the
neutral continuity equation is illustrated in the following. Since the neutrals are merely modelled by the
continuity equation, the axial velocity is constant over the entire domain and is assumed positive in the
following. The fluxes in Equation 3.2 can be written as follows.

F
i+1

2

= unn
i+1

2

(3.3)

F
i− 1

2

= unn
i− 1

2

(3.4)

Next, the face values nn
i+1

2

and nn
i− 1

2

need to be reconstructed. For nn
i+1

2

, a stencil where l = − 1
2 and

r = − 1
2 is chosen.

nn
i+1

2

≈ w− 1
2
n̄ni

where the bar refers to cell average notation. n̄ni
= nni

+ h2

24
∂2nn

∂z2

∣∣
i
+ O(h4). Due to the low order of

accuracy the cell average notation can be dropped. Therefore

nni
= nn

i+1
2

− h

2

∂nn

∂z

∣∣∣∣
i+ 1

2

+O(h2)

Collecting terms leads to

nn
i+1

2

= (w− 1
2
)nn

i+1
2

+ (−w− 1
2
)
h

2

∂nn

∂z

∣∣∣∣
i+ 1

2

+O(h2)

Solving yields
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w− 1
2
= 1

nn
i+1

2

≈ 1nni
(3.5)

This is the first order accurate reconstruction of the face value at i+ 1
2 . Applying the same method for

the reconstruction at i− 1
2 results in the upwind scheme.

∂nn

∂t
= −un

h
(nni − nn−1) + ṅn (3.6)

Following a similar method, the isothermal or full Euler equations can be discretized, using thermody-
namic relations to evaluate velocity and temperature. Von-Neumann analysis with explicit time integra-
tion results in the well know CFL stability limit u∆t

∆x < 1 for this discretization. The critical timestep
in HallThruster.jl is usually determined by transients in the ion fluids, as the continuity and momentum
equations are solved and the ion velocity can reach values in excess of 20 km/s, depending on the applied
potential. The upwind method is very diffusive and merely considers the one side of a given Riemann
problem and therefore in fact does not solve a Riemann problem at all. As a result, wavespeeds in the
solution are not considered at all. The following three approximate Riemann solvers were implemented
to address this issue.

Global Lax-Friedrichs

The Global Lax-Friedrichs flux vector splitting (FVS) scheme is one of the simplest possible approximate
Riemann solvers. Both states UL and UR are considered, and the flux is corrected by a factor containing
the maximum wavespeed smax in the entire system.

F
i+1

2

=
1

2
(F

i
+ F

i+1
)− 1

2
smax(ui+1

− u
i
) (3.7)

smax = maxk|λ±
k | (3.8)

λ+−
k =

1

2
(λk ± |λk|) (3.9)

where in this system the eigenvalues are λ1 = u, λ2 = u+ c and λ3 = u− c.

As an example, the implementation of this flux is included below. Among other inputs, the function def-
inition takes the conservative variables UL and UR as arguments. NUM_CONSERVATIVE is either 1, 2, or 3,
depending whether the input is merely for the advection equation [ρ], isothermal Euler equations [ρ, ρu]
or full Euler equations [ρ, ρu, ρE]. velocity() is a helper function to determine the advection velocity,
constant in the case of the continuity equation, or ρu

ρ for the isothermal Euler equations. The electron
pressure on either side is evaluated and used in case the electron pressure coupled method is applied,
see Subsection 3.3.7. charge_factor is evaluated for the same reason. Finally the flux on both the left
and right sides are evaluated, resulting in [ρu] for the advection equation or [ρu, ρu ∗ u+ p+ pe] for the
isothermal Euler equations, where pe again is a relict of the electron-pressure coupled method. The flux
at the edge is the computed according to the global Lax-Friedrichs FVS outlined above. lambda_global
corresponds to smax in Equation 3.7. The maximum wavespeed is computed before iterating through
the domain to reduce computational expense and fed to the global_lax_friedrichs() function.

function global_lax_friedrichs(UL::SVector{$NUM_CONSERVATIVE, T}, UR::SVector{$NUM_CONSERVATIVE,

T}, fluid, coupled = false, TeL = 0.0, TeR = 0.0, neL = 1.0,

neR = 1.0, lambda_global = 0.0, args...) where T

Z = fluid.species.Z
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uL = velocity(UL, fluid)

uR = velocity(UR, fluid)

peL = TeL * neL

peR = TeR * neR

charge_factor = Z * e * coupled

FL = flux(UL, fluid, charge_factor * peL)

FR = flux(UR, fluid, charge_factor * peR)

return @SVector[

0.5 * (FL[j] + FR[j]) + 0.5*lambda_global*UL[j] - 0.5*lambda_global*UR[j]

for j in 1:$(NUM_CONSERVATIVE)]

end

Local Lax-Friedrichs

This flux vector splitting scheme is of similar form to the global Lax-Friedrichs scheme discussed before.
Equation 3.7 is still valid, with the distinction that smax is now the maximum local wavespeed in the
place of the maximum global wavespeed. The local Lax-Friedrichs flux is also known as the Rusanov
flux. [42] The flux remains very dissipative, which can however be desireable for the applications of
HallThruster.jl to dampen some high frequency discharge current oscillations.

smax = max(s
i+1,max

, s
i,max

) (3.10)

s
i+1,max

= max(|u
i+1

− c
i+1

|, |u
i+1

+ c
i+1

|) (3.11)

s
i,max

= max(|u
i
− c

i
|, |u

i
+ c

i
|) (3.12)

One of the advantages of this flux is its simplicity and consequently low computational complexity, while
increasing fidelity compared to the global Lax Friedrichs scheme. Note that this scheme will reduce to
the global Lax-Friedrichs scheme unless the electron pressure coupled method is applied, since the sonic
speed will be constant throughout the domain as the neither the ion nor neutral temperatures change.

HLLE

The Harten Lax van-Leer Einfeldt flux is an approximate Riemann solver first proposed by [43]. A
numerical approximation of the largest and smallest signal velocities is computed, omitting the need to
estimate the primitive variables in a Riemann problem. The resulting flux is computed as follows.

F
i+1

2

=
1

2
(Fi + Fi+1)−

1

2

smax + smin

smax − smin
(Fi − Fi+1) +

smaxsmin

smax − smin
(ui+1 − ui) (3.13)

where
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smin = min(s
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, s
i+1,min

) (3.14)

smax = max(s
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, s
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) (3.15)

s
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= min(0, u
i
− c

i
) (3.16)

s
i+1,min
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i+1
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i+1

) (3.17)

s
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= max(0, u
i
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i
) (3.18)

s
i+1,max

= max(0, u
i+1

+ c
i+1

) (3.19)

(3.20)

The HLLE flux is thus a three state solver. The signal velocities are evaluated using the bulk velocity
and the local speeds of sound. The speed of sound is obtained through thermodynamic relations. The
flux is relatively dissipative and smears out near discontinuities, but still offers higher fidelity than the
Lax-Friedrichs scheme due to advection the solution at two rather than one signal velocity.

Second order TVD schemes

The Godunov type schemes described above are at most first order accurate, even if the applied Riemann
solver itself was exact. The order of accuracy can be extended to second order by employing piecewise
linear reconstruction in the reconstruction step of REA. First, the primitive variables at the cell centers
and one cell before and after are computed. Then, the gradients on both sides of the solution are
determined using the primitive variables. These are ∇U+ = Ui+1 − Ui and ∇U− = Ui − Ui−1. The
solution is then reconstructed on the cell face by Ui+ 1

2
= Ui +

1
2∇U+, where the factor 1

2 can be used
since the cell size is constant. Applying this form of reconstruction would lead to spurious oscillations
and a scheme that is not total-variation diminishing (TVD). To alleviate this problem, slope limiters ϕ(r)

are introduced. The limiters are informed by the ratio of the gradients r = U+

U−
. The linear reconstruction

step then takes the form Ui+ 1
2
= Ui +

1
2ϕ(r)∇U+. A wide array of limiters have been proposed that lie

within the TVD regions, the ones implemented in HallThruster.jl are the following.

Minmod ϕ(r) = max(0,min(1, r)) (3.21)

Koren ϕ(r) = max(0,min(2r,min

(
1 + 2r

3
, 2

)
)) (3.22)

Superbee ϕ(r) = max(0,min(2r, 1),min(r, 2)) (3.23)

van Leer ϕ(r) =
r + |r|
1 + |r|

(3.24)

van Albada ϕ(r) =
r2 + r

r2 + 1
(3.25)

Osher ϕ(r) =
r2 + r

r2 + 1
(3.26)

It was found experimentally in Section 4.2 that only the Osher and van Albada limiters lead to non-
oscillatory results in practice with all flux schemes. The van Leer limiter is stable with the local and
global Lax Friedrichs flux scheme. Ref. [21] also used MUSCL reconstruction coupled with Global Lax
Friedrichs Flux Vector Splitting for fluid models of low temperature magnetized plasma discharges and
compared various limiters for symmetry and the ability to obtain smooth profiles on shock tube problems.
They conclude by recommending the van Leer limiter.

WENO

As the schemes described thus far have a maximum order of accuracy of 2, it has been attempted to
implement a weighted essentially non-oscillatory 5th order scheme. This scheme is 5th order if the solution
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is sufficiently smooth [44]. The essentially non-oscillatory idea is similar to a MUSCL reconstruction, but
using interpolation over a stencil rather than linear reconstruction. A weighted essentially non-oscillatory
scheme then uses a linear combination of smaller stencils to add up to a higher-order stencil. Below, wi

are the final weights that add up to one, and βk are the smoothness indicators. ϵ is chosen to be 10−6 to
stop the denominator from going to 0. The linear weights are γ1 = 0.1, γ2 = 0.6, γ3 = 0.3. See reference
[45] for more details.
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2
= w1F
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(3.31)

w̃k =
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(ϵ+ βk)2
(3.32)
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(Fi−2 − 2Fi−1 + Fi)

2 +
1

4
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β2 =
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12
(Fi−1 − 2Fi + Fi+1)

2 +
1

4
(Fi−1 − Fi+1)

2 (3.34)

β3 =
13

12
(Fi − 2Fi+1 + Fi+2)

2 +
1

4
(3Fi − 4Fi+1 + Fi+2)

2 (3.35)

The scheme is implemented in the domain and can be coupled with any of the previously described flux
schemes. However, different biased stencils are required in close to the boundaries. This has not been
done yet, and is required for the scheme to actually increase fidelity.

3.3.2 Ions and neutrals

The ions and neutrals are discretized using one of the schemes described in the previous section. Ther-
modynamic relations are used to evaluate the speed of sound, which is constant for both neutrals and
ions due to constant temperature. The ion pressure changes as a function of ion density. The reader is
referred to the documentation and code base on Github to look at the actual implementation in Julia.
[23]

c =
√
γRspecificT (3.36)

p = nkBT (3.37)

The electric field in the acceleration source term in the ion momentum equation is obtained by fi-
nite differences. The general finite difference approach adopted to evaluate derivatives numerically in
HallThruster.jl is described in Subsection 3.3.8.
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3.3.3 Potential

Figure 3.2: Staggered grid showing FVM cell centers in red and the potential discretization on the edges

In this model, the potential can be seen as an analog to the pressure in incompressible fluid simulations,
both being governed by elliptic equations with infinite information propagation speed. Consequently,
similar issues as in incompressible Navier-Stokes simulations arise. A staggered grid, illustrated in
Figure 3.2, is employed to prevent odd-even decoupling and also eliminates the need for interpolation
to a large extent. The potential is discretized using a second order centered difference scheme, with all
derivatives appearing approximated in a similar fashion. The tridiagonal system Ax = b is then solved.
The left hand side of Equation 2.25 is discretized as follows, the indexing refers to the fluid discretization.
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results in
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The right hand side of Equation 2.25 follows a similar procedure. The left hand side is incorporated
into a NxN matrix A, while the RHS is added to the vector b and N = ncells + 1. This results in a
tridiagonal matrix that is diagonally dominant, and can therefore be solved using the Thomas algorithm
at a computational expense of O(N), rather than O(N3) for standard Gaussian elimination. A very strong
numerical derivative in the electron density or electron mobility, for example caused by a discontinuity,
may lead to a matrix that is not diagonally dominant. In this case, the Thomas algorithm would fail.
Dirichlet boundaries are employed on both sides. The boundary cells are coincident with the domain
boundaries and Dirichlet conditions are applied. The implementation was verified using the method of
manufactured solutions, corresponding plots can be inspected in Chapter 4.
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3.3.4 Electrons

When integrated explicitly, the diffusive term in the energy equation, governed by the magnitude of
the heat flux qez, introduces severe timestep restrictions arising from von Neumann stability analysis.
[20] Consequently, the fluxes of the electron energy equation are treated implicitly or semi-implicitly to
circumvent the explicit stability limit, while the source terms are treated explicitly. This reduces the
computational complexity. The gradients required for the computation are approximated using second
order finite difference. The electron velocity follows from the generalized Ohm’s law. The left hand side
of Equation 2.16 can be rewritten by applying product rule.
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The advective term is discretized as described before on the neutral continuity equation, using an upwind
scheme, changing advection direction according to the electron velocity. No approximate Riemann solver
is applied here. The first part of the diffusive term in approximated in a similar manner, as a product of
2 first derivative approximations. The last term containing the second derivative is discretized as follows.
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The derivative needs to be reconstructed on the face, a stencil where l = − 1
2 and r = 1

2 is chosen.
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Due to the low order of accuracy the cell average notation can be dropped, since the approximation of

the cell average 3
2kBT̄e|i = 3

2kBTe|i + h2

24

∂2 3
2kBTe

∂z2

∣∣
i
+O(h4) becomes irrelevant.

∂ 3
2kBTe

∂x

∣∣∣∣δ
i+1

2

= w− 1
2

3

2
kBTe|i + w 1

2

3

2
kBTe|i+1 +

(((((((((((((((((((((
h2

24

(
w− 1

2

∂2 3
2kBTe

∂z2

∣∣∣∣
i

+ w 1
2

∂2 3
2kBTe

∂z2

∣∣∣∣
i+1

)
+ ...

3

2
kBTe|i =

3

2
kBTe|i+ 1

2
− h

2

∂ 3
2kBTe

∂z

∣∣∣∣
i+ 1

2

+O(h2)

3

2
kBTe|i+1 =

3

2
kBTe|i+ 1

2
+

h

2

∂ 3
2kBTe

∂z

∣∣∣∣
i+ 1

2

+O(h2)

Collecting terms and solving for w− 1
2
and w 1

2
results in

w− 1
2
= − 1

h
and w 1

2
=

1

h

∂ 3
2kBTe

∂z

∣∣∣∣δ
i+1

2

≈ 1

h

(
3

2
kBTe|i+1 −

3

2
kBTe|i

)
(3.45)

Applying the same analysis to the other derivative results in the following discretization, which is second
order accurate in space. Even though a finite volume approach was used here, the result is equivalent to
a second order finite difference approximation.
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Propagation in time has been implemented as a linear combination between explicit and implicit Un+1
i =

Un
i +∆t(1− ct)U

n
i + ct∆tUn+1

i . Setting ct to 0.5 yields the Crank-Nicholson method, while setting it to
1 makes the method fully implicit. The problem can be written in form of a tridiagonal matrix problem
Ax = b, which just like the potential previously can be solved efficiently by the Thomas algorithm. The
solver has been implemented in HallThruster.jl by PhD student Thomas Marks.

3.3.5 Boundary conditions

The fluid equations are hyperbolic conservation laws, and as such boundary conditions need to be speci-
fied. The neutral mass is determined by the neutral mass flow into the domain and recombination of ions
hitting the anode. It is assumed that all ions hitting the anode come back into the domain as neutrals,
see Equation 3.47.

nn,anode =
ṅn,inflow

Achmiun
+

Γi,anode

un
(3.47)

where Ach is the channel cross sectional area and mi the ion ≈ neutral mass with Γi,anode the ion flux
towards the anode. In the simple boundary condition model, the ion velocity is forced to be at least
the ion Bohm velocity, with the ion density changing according to flux conservation, see Section 2.7.
This corresponds to forcing the sheath to be ion attracting and leads to the formation of a presheath,
where the electric field takes on negative values to allow the ions to be accelerated towards the anode.
This can lead to non-physical electron energy Ohmic heating as currently employed in Equation 2.16.
The Ohmic heating term would eventually become a loss term. It is recommended to implement higher
fidelity anode sheath model that allows the sheath potential to evolve from ion attracting towards ion
repelling. The electron energy is fixed to certain values at both anode and cathode in the Landmark
study. Note that the internal energy ϵ and not the product ϵne is specified, which is the conserved
variable in the Equation 2.16. Another option is to let the electron energy float at the anode, which
would be a more realistic assumption. However, this requires a higher fidelity sheath model. Dirichlet
boundary conditions are applied for the potential at both domain ends. Ghost cells are used to enforce
the boundary conditions for the fluid equations.

3.3.6 Integration in time

After performing the spatial discretization and setting up a system of ODEs, the solution has to be
propagated in time. Time marching for the heavy species is performed using the algorithms provided by
DifferentialEquations.jl. The second order strong stability preserving Runge-Kutta (SSPRK22) scheme
was chosen as standard for its robustness. It guarantees monotonicity (or strong stability) ||un+1|| ≤
||un||, which is crucial in nonlinear hyperbolic conservation laws, as discontinuities can cause non-physical
oscillations. The package does include options for automated timestepping, which evaluates scaled error
estimates to decide whether to accept or reject a certain timestep. This has been disabled, since the
electrons are integrated separately, either with a Crank-Nicolson method or fully implicitly. A constant
timestep therefore allows the two systems to be evaluated separately. Performing von-Neumann analysis
on the advection equation with forward Euler time integration yields the well known CFL number
σ = u∆t

∆x . The SSPRK22 method can be rearranged as a convex combination of forward Euler steps,
yielding a stability limit of σ < 1, just like the Euler method itself. In order to set the timestep in
HallThruster.jl, the maximum signal velocity of the selected flux scheme is estimated. All implemented
flux schemes use smax = max(|cs + u|, |cs − u|), where the sound speed can be computed through
cs =

√
γkBT/mi. The maximum expected ion velocity can be easily estimated using conservation of

energy 1
2miu

2
i = qU , where U is the applied potential difference. As the ions are assumed isothermal,

the sonic speed does not change throughout the domain, unless the electron pressure coupled method is
applied, see Subsection 3.3.7.
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3.3.7 Electron pressure coupled method

Here, a solution to the numerical oscillations around 0 ion velocity is presented. These oscillations are
similar to incompressibility limit issues arising at low Mach numbers when solving the compressible
Navier-Stokes equations. As the electron pressure depends on the ion density due to quasineutrality, the
electric field depends on the ion density. As a result, the electron pressure is nonlinearly coupled to the
ion momentum, which causes numerical oscillations when ion velocity becomes very low. Equation 2.18
can be rewritten in the following assuming only one charge state. The electron pressure coupled method
has only been implemented for singly charged ions, the charge state is therefore omitted in the following.

E =
−ue

µ
− 1

eni
∇(nikBTe) (3.48)

Substituting Equation 3.48 into the ion momentum equation Equation 2.15 results in
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and can be rearranged into
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This method was first proposed by Hara [11]. Here, the electron pressure is directly coupled to the ion
momentum, which eliminates the numerical oscillations. In case the gradient in the electron pressure
is negligible, the electric field is recovered. The method also changes the ion sound speed from the
ion thermal to the ion acoustic speed, thereby decreasing the range of Mach numbers covered in the
simulation domain.

3.3.8 Other approximations

The derivatives appearing in the source terms of the fluid equations and the generalized Ohm’s law have
been discretized by standard second order finite differences. At the around the thruster exit area, com-
monly used anomalous collision frequency models exhibit strong discontinuities an order of magnitude.
Similar discontinuities may appear in the energy loss terms, for example in the Landmark study. These
discontinuities can introduce numerical oscillations, and led to the community to adopt smoothed out
profiles. The discontinuities in HallThruster.jl are either smoothed by linear or quadratic approximations
over a defined length interval.

3.4 Postprocessing

Postprocessing functions have been implemented to relate simulation results to Hall Thruster quantities
of interest. The thrust is estimated from the ion fluxes out of the domain, and the discharge current can
be computed as a function of the electron and ion currents, possibly multiple ion fluids. A fast fourier
transform to inspect the discharge current in the frequency domain was added. As Hall Thrusters are
highly oscillatory devices, time-averaged results are of interest. A function accommodating the solution
object and averaging the fluid properties has been added to HallThruster.jl.

3.5 Documentation

The code is hosted on the Github page of the Plasmadynamics and Electric Propulsion Laboratory of
the University of Michigan. [23]. A documentation has been added using the package Documenter.jl.
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It contains a review of the physics model and provides an overview of the different options. The docu-
mentation should be sufficiently extensive to allow users to generate results, even with little experience
in computational fluid dynamics or plasma physics. A short Jupyter notebook tutorial guides new users
through an example simulation. Most functions and methods have comments that were added to provide
an explanation of the purpose and application.
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Chapter 4

Verification & Discussion
Verification is critical to any simulation. It serves the purpose to gain confidence that the code is
actually computing what was intended. The HallThruster.jl verification strategy rests on three pillars.
In Section 4.1 the output of implemented functions is compared to the expected values by employing
unit tests. In order to verify the spatial discretization of the differential equations, order verification
studies using the method of manufactured solutions are presented in Section 4.2. Finally, the results are
compared to the Landmark 1D fluid model benchmark and to results obtained by [22] in Section 4.3 [26].
The LANDMARK model solves similar equations to HallThruster.jl and with using the same ionization
and collision model, the results should agree.

4.1 Unit tests

Extensive unit testing has been implemented to help in searching for bugs. Currently 78% of the code
used for generating simulations, which excludes plotting and postprocessing, is covered by unit tests.
The standard implementation is to use functions defined in HallThruster.jl and compare their output to
the expected output, which is calculated manually. Provided exact agreement for integers and strings,
or sufficiently close agreement for floating point numbers, the tests pass. Test are also checking that
functions output the correct type or size of an array. This is important as Julia’s multiple dispatch
architecture allows to define functions with many different methods. An example is included below.
Unit tests are automated in a testing module and can be run anytime to verify new code additions do
not cause new bugs. This has been implemented using the Julia testing module.

#global_lax_friedrichs

@test global_lax_friedrichs(continuity_state, continuity...) == flux(continuity...)

@test global_lax_friedrichs(isothermal_state, isothermal...) == flux(isothermal...)

@test global_lax_friedrichs(euler_state, euler...) == flux(euler...)

4.2 Order verification studies

The method of manufactured solution has has been applied to verify the correct implementation of
the spatial discretization. The expected orders of accuracy from Taylor expansions are compared to
the actual orders of convergence by successively refining the grid and investigating the evolution of the
error. As the name suggests, the solution is forced to a manufactured solution. Candidate functions
should be bounded, smooth, not display any asymptotes and are ideally periodic. These properties
make the trigonometric functions ideal candidates. The solution is then substituted into the differential
equation. As an illustration, the manufacured solution of the form nman = c + Acos(kz + ϕ) is chosen
also what about source terms, where c is the base value, A the amplitude of the cos, k = 2πn

L , n
is the wavenumber, L the domain length and ϕ a phase shift. The wavenumber should be more than
two times smaller than the number of grid cells to avoid aliasing effects. Applying this to the neutral
continuity Equation 2.13 by replacing it for the neutral number density and neglecting the ionization
source term, yields the following(

∂

∂t
+ un

∂

∂z

)
nman = 0− unkAsin(kz + ϕ) (4.1)

The constant c disappears when taking derivatives. Dirichlet boundary conditions are applied at the
inflow and the boundary states have to correspond to the value of the manufactured solution at z = 0.
When applying the upwind method and simple forward (explicit) Euler marching, Equation 4.2, the
discretization leads to the following.
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Here, zi refers to the position of the center of cell zi. As the upwind method is merely first order accurate
in space, no distinction between cell centers and cell average values has to be made. The non-dimensional

error at cell i at timestep n is defined as ei =
|nn

ni
−nman(xi)|
nmanref

. Convergence of the numerical solution can

be determined by applying a threshold to quantify how much the solution evolves from one timestep
to another. However in practice, it is often deemed sufficient to run the simulation for a large number
of steps and visually investigate convergence. As the order of accuracy of the spatial discretization is
evaluated, the CFL number un∆t

∆z is being kept constant as the grid is refined to not skew the results.
Forward Euler in time is chosen for its simplicity and allows the verification of the spatial discretization
without invoking DifferentialEquations.jl. The L1, L2 and L∞ error norms are applied to the errors.

E1 =
1

N

n∑
i=1

|ei|, E2 =
1

N

n∑
i=1

|ei|2 and E∞ = max |ei for 1≤i≤N
|

All of these norms should experience the same order of convergence. Order verification studies are con-
veniently plotted on log log scale due to the exponentials with respect to cell size on the truncated
terms in the Taylor series when deriving spatial discretizations. The method of manufactured solutions
evaluates the order of convergence in a region where the discretization error is dominant. When grid
size becomes to small, numerical errors results from machine floating point inaccuracies might dominate.
Consequently, order verification studies are usually carried out over 5 - 10 grid refinements. This is
sufficient to experimentally investigate the evolution of the error.

In HallThruster.jl, the implementation neutral continuity equation, the ion continuity coupled with
the ion momentum equation, the potential equation and the electron energy equation are all verified
using the method of manufactured solutions. To allow for a more flexible process, the Julia package
Symbolics.jl has been used [46]. It provides symbolic math functionality and thereby enables changing
manufactured solutions quickly without the need to manually rederive and rewrite derivatives.

Neutrals and Ions

The neutral and ion equation implementations are verified together. In this case, the advection velocity
used for the reference CFL number of 0.2 is the maximum wavespeed appearing in the isothermal Euler
system. The value of 0.2 was chosen to allow stability with the 5th order WENO scheme as well. For the
other fluxes, any value below 1 would be sufficient, as long as the largest signal velocities are considered
in the place of the neutral and ion bulk velocities imposed by the manufactured solution. When the
ion momentum equation is electron pressure coupled, the ion sonic speed is effectively the ion acoustic
speed as shown in Subsection 3.3.7. Therefore, the CFL number and consequently the timestep used in
successive grid refinements is a function of the chosen solution for electron temperature. Manufactured
solutions are also applied to all relevant variables that are not being solved self-consistently in this
system, but influence the neutrals and ions. This includes the electron temperature, potential profile
and consequently electric field, electron mobility and electron velocity. The ionization and excitation
coefficients are set to known exponential functions.
An illustration of the exact solution and numerical approximation of the neutral density, ion density and
ion velocity is shown in Figure 4.1. The manufactured solutions are presented in the form of previous
example
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The order verification studies were carried out for each flux at a few different wavenumbers to ensure
correct implementation of the numerical schemes. Plots displaying showing the rate of convergence for
neutrals and ions can be inspected in Figure C.1 for the HLLE flux with n = 1 for the ion density,
n = 0.5 for the neutral density and in Figure C.2 with n = 2 for the ion density and n = 4 for the neutral
density. These plots have been generated with piecewise constant reconstruction, therefore the order of
accuracy one is expected.

In Figure 4.2 the exact solution is compared to a numerical solution produced by the HLLE flux with
piecewiese linear reconstruction using the minmod limiter. The numerical solution develops strong os-
cillations towards the right end of the domain. Looking at the slope in Figure C.3, it does approach 2 as
expected on a coarser grid, however as the grid is refined instabilities develop and the solution becomes
increasingly oscillatory before it diverges. It was found that only the osher and the van Leer limiters
results produce non-oscillatory results and approach the manufactured solution with an order of accuracy
2. This is shown in Figure C.4.

Consequently, only the use of the osher and van Leer limiters is recommended in HallThruster.jl. The
behaviour of the other limiters is not fully understood, since all of them should ensure a total-variation
diminishing solution in theory.

Figure 4.1: Numerical and manufactured solution, HLLE flux, piecewise constant reconstruction, 40 grid
cells

Electron energy

The electron energy equation contains both a convective and diffusive term, which invites some discussion.
Their relative rates are evaluated using a dimensionless ratio called the Peclet number Pe = ncellsσ

d .
In the order verification study, both the CFL number σ and the effective diffusive equivalent d, see
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Figure 4.2: Numerical and manufactured solution, HLLE flux, piecewise linear reconstruction, minmod
limiter, 200 cells

Subsection 3.3.4, were nonzero, leading to a Peclet number not close to zero. Consequently the order
of accuracy resulting from a grid refinement study corresponds to the lowest order in the numerical
approximation. This yields an order of accuracy of one, since the discretization of the convective term
has a spatial order of accuracy one. Corresponding plots for implict and Crank-Nicolson time integration
can be found in Figure C.5 and Figure C.6. Forcing the electron velocity to be very low, yields a
Peclet number close to 0. In this case, the the above mentioned plots show second order convergence,
corresponding to the discretization of the diffusive term. In addition to what has been described here,
Thomas Marks also discretized the convective derivative to second order, the resulting plots can be
inspected in Figure C.7 and Figure C.8. This scheme sometimes leads to diverging solutions when
applied to Hall thruster simulations in practice, since it is not total-variation diminishing. It is therefore
not recommended in practical application.

Potential

The expected spatial order of accuracy for the potential solver is 2, as second order finite differences
were applied. As Equation 2.25 is not a partial differential equation, no integration in time is required,
which sets this OVS apart from the fluid equations previously considered. Again, all variables that are
a function of z and appear in the equation for the potential are set to a manufactured solution based
on a trigonometric function. These variables are µ⊥, ne = ni, pe(ϵ). The manufactured solution for ϕ is
substituted into the equation and added as a source term. A plot resulting from successive grid refinement
can be inspected in Figure C.9. The slope confirms the correct implementation of the discretization. The
slight deviation is attributed to the fact that second order finite differences are applied to estimate the
derivative for quantities such electron pressure and the ion density.

Evaluation of derivatives

In a similar manner to the potential verification, the implementation of the numerical derivative estima-
tion has been checked. ∇ϕ is critical for ion acceleration source term and electron momentum equation,
while ∇pe is required for the latter as well. Both demonstrate second order of convergence as expected.
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4.3 LANDMARK

LANDMARK is a benchmark created by the low temperature magnetized plasma simulation research
community to compare codes and help in creating consistent results. One test case is dedicated to a 1D
fluid model for Hall Thruster discharges. The reader is refered to reference [26] for a complete list of the
physics model. The flexibility of HallThruster.jl allows it to emulate the equations of the Landmark test
case. The settings required are listed below and all options can be found in Chapter 2.

• Constant Sheath Wall loss The wall loss model adopted is a simple constant sheath model.
Coefficients are given and change along the domain. These coefficients differentiate the three cases
to be compared in this section.

• Electron Neutral collisions A simple electron neutral collision model is applied, determining
the collision frequency as a linear function of neutral density.

• Ionization and excitation model Lookup tables are supplied in the benchmark and are used to
determine rate coefficients as a function of electron temperature.

• Anomalous collision model Two-zone Bohm model with β1 = 1/160 and β2 = 1/16. An
additional factor of 107 added inside the thruster channel.

• Electron ion collisions Neglected.

• Number of ion charge states 1.

• Ion temperature 0 [K]. In the Landmark study, unlike to HallThruster.jl, the non-conservative ion
momentum equation is solved and the pressure contribution is neglected. In order to approximate
this, the ion temperature is set to 0, which in turn sets the pressure contribution to 0. In the

Landmark study, an additional artificial diffusion term η ∂2ui

∂z2 ui is added to the ion momentum

equation for stability. The artifical viscosity coefficient is applied as η = δ
√

2eϵ
3mi

. In this section,

the electron pressure coupled method was used in HallThruster.jl, which eliminated the need for
artificial diffusion. 1

• Heat flux in electron energy equation The constants in the Braginskii closure for the elec-
tron heat flux differ slightly in the LANDMARK benchmark. add this to heat flux closure
description.

• Boundary conditions Similar boundary conditions as described in Subsection 3.3.5. The electron
temperature is fixed on both anode and cathode, Dirichlet boundaries are applied on both sides for
the potential. The ion velocity at the anode is force to be at least the ion Bohm speed. Ions hitting
the anode reenter the discharge channel as neutrals after recombination. A constant neutral mass
inflow is applied.

• Gas Xenon.

The geometry is loosely approximating an SPT-100 type Hall Thruster. The magnetic field profile is
given by

B(z) = Bmaxexp

(
− (z − lch)

2

2δ2B

)
(4.7)

where Bmax = 0.015 T refers to the maximum magnetic field strength, coincident with the thruster
exit plane. δB = 0.011 m inside the channel and δB = 0.018 m outside. The discharge channel length
lch = 0.025 m and the domain length is L = 0.05m. The wall loss coefficients differ inside and outside
the channel, which differentiates the following three cases.

1The global and local Lax-Friedrich flux scheme was found to be diffusive enough to not cause numerical oscillations at
the ion stagnation point even when the electron pressure coupled method is not applied.
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4.3.1 Time-averaged results

The Landmark benchmark does not mention how many cells or which discretization was used in the
computations, however since one the authors mentioned it was most likely 1024 cells, it was decided to
use this value. The simulations were carried out for all flux schemes with piecewise constant reconstruc-
tion, thus being first order accurate in space and not requiring limiters. The timestep was constant at
1 nanosecond. The electrons were integrated implicitly, being first order accurate in space. For heavy
species time-marching a second order strong stability preserving Runge Kutta scheme from Differen-
tialEquations.jl has been employed. All results shown in the plots corresponding to the three different
cases are time-averaged over a period of 1ms, which contains at least 7 breathing mode oscillation periods.

Case 1 νew = 107 s−1 (x ≤ l), νew = 107 s−1 (x > l)

Case 1 is shown in Figure 4.3. Compared to the reference, the neutral density, potential and elec-
tron temperature profile match very well with the global Lax Friedrichs (GLF) and Rusanov (LLF) flux
splitting schemes. The HLLE scheme slightly underpredicts electron temperature, while overprediciting
ionizaiton rate and plasma density. The ionization region peak can be found at about 0.015 m into the
channel, close to the peak of plasma density. Both are slightly skewed compared to the reference data
indicating dispersive errors. The value in knowing this is however questionable since the LANDMARK
results themselves were created using numerical simulations, with a scheme that most likely exhibits dif-
fusive and dispersive errors as well. The HLLE scheme experiences strong transient effects. The electron
velocity close to the anode is large in magnitude. The high values are caused by the short ion backflow
region compared to the other cases. This is further discussed in Subsection 4.3.3. The highly oscillatory
nature of the HLLE scheme in LANDMARK case 1 is further discussed in Subsection 4.3.3. Overall the
time-averaged properties of the LANDMARK benchmark are well approximated.

Case 2 νew = 0.5 ∗ 107 s−1 (x ≤ l), νew = 107 s−1 (x > l)

Case 2 is presented in Figure 4.4. Inspecting the plot it is evident that a change in wall loss model
has a large effect on the overall simulation. Again potential and and electron temperature are very close
to the reference data. The plasma density is overpredicted close to the anode. This results in a high ion
flux towards the anode, and by recombination therefore raises the neutral density as well. A dispersive
shift in ionization rate can be noticed as well. The reason for the strong discrepancy in plasma density
could not be determined and remains unknown. The most likely culprit are the boundary conditions.
The presheath region in case 2 is much longer, leading to a smoother electron velocity profile and longer
ion backflow region. Electric field and potential are well approximated.

Case 3 νew = 0.4 ∗ 107 s−1 (x ≤ l), νew = 107 s−1 (x > l)

Case 3 is presented in Figure 4.6. The results are very similar to case 2. The plasma and neutral
density close to the anode are overestimated as before. Electron temperature and potential profile al-
most match exactly. Overall, the simulations tend to agree. The discharge currents are compared to the
fluid and hybrid LANDMARK cases in Table 4.1. The electron currents are overpredicted by 1 Ampere
by all schemes for case 1. The reason might an excessively high plasma density, caused by delayed ioniza-
tion. The ion exit velocity is notable lower in case 1 compared to cases 2 and 3. A long presheath forms
close to the anode, corresponding to a long ion backflow region and moderate electron velocities. A direct
comparison of the presheath region in case 1 and 3 focusing on ion velocity and electron temperature
profiles is shown in Figure 4.5. In the case of a long presheath region, the electric field is negative or zero
over a longer axial distance. This turns the Ohmic heating term in the energy equation, j ·E, effectively
into a cooling term. This is an entropy violation and unphysical since random kinetic (thermal) energy
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is converted into directed energy without any loss. The effect on the electron temperature of case 3 is
clearly visible in Figure 4.5. The ion velocities are differing at the anode since the ion Bohm velocity is
enforced as a maximum, but the velocity is allowed to be more negative. As a result, he electric field is
actually more negative close to the anode in case 1, albeit over a much shorter axial distance. A higher
fidelity anode boundary condition model which self-consistently takes the sheath potential into account
and adapts the ion velocity constraint accordingly.

Figure 4.5: The presheath region in case 1 vs case 3

4.3.2 Comparison of flux schemes

In order to gain further insight into code behaviour and be able to make a recommendation as to which
approximate Riemann solver to use, the results of the LANDMARK cases have been compared using the
global Lax-Friedrichs, local Lax-Friedrichs and HLLE scheme. Looking at the timeaveraged results of
case 1, it is evident that the HLLE scheme predicts the highest plasma density, followed by the local and
then global Lax Friedrichs FVS schemes. The generally least diffusive scheme therefore results in the
highest plasma density. The opposite is true for the electron temperatures. It may look like the Global
Lax-Friedrichs scheme best approximates the LANDMARK benchmark, however that might be simply
due to the fact that similar flux scheme was employed. The deviation between the different schemes is
much smaller in case 2 and 3. One of the reasons might be a similar transient behaviour in these cases,
which is highly scheme dependent in case one. Applying second order accuracy in space using piecewise
linear reconstruction and the Osher limiter, the time-averaged results are basically identical to the first
order schemes. In the transient case however, it can be noted that the oscillation amplitude increases
with increasing spatial order of accuracy. The reason is most likely less dissipation in the numerical
method.

4.3.3 Transient results

The transient response is of interest, as the breathing mode and transit time oscillations are naturally
occurring in Hall Thrusters. Ideally, HallThruster.jl could be used to infer time-resolved anomalous
collision frequency profiles. In this case, an accurate and well characterised transient behaviour is of
utmost importance. The parameters of interest are the individual ion and electron as well as the total
discharge current. The current has been computed at the right boundary, corresponding to the location
of the cathode in a 1D domain. The simulations were initialized using coarse approximations of the
eventual system states in the domain. This effectively leads to a step input, showing the damping of the
system in case the simulation is non-oscillatory. The results for 200 cells are shown in Figure 4.7. In
case 1, the local Lax-Friedrichs scheme and the HLLE flux enter a stable oscillatory mode with neither
damping nor growth, while in case 3 all three schemes exhibit strong damping. This is in contrast to
the results of the LANDMARK study, which predicts a stationary solution in Case 1 and and large
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LANDMARK HallThruster.jl
δ = 0.5mm δ = 1mm hybrid (HALLIS) Global LF Local LF HLLE

Electron current
Case 1 4.54 4.48 4.67 5.16 5.58 5.89
Case 2 4.47 4.37 4.54 4.34 4.34 4.37
Case 3 4.27 4.22 4.37 4.14 4.14 4.16

Ion current
Case 1 3.67 3.67 3.68 3.69 3.71 3.72
Case 2 3.68 3.68 3.68 3.65 3.65 3.65
Case 3 3.63 3.67 3.66 3.63 3.62 3.62

Total current
Case 1 8.21 8.15 8.36 8.84 9.30 9.61
Case 2 8.15 8.05 8.22 7.99 7.99 8.02
Case 3 7.90 7.89 8.03 7.77 7.75 7.78

Table 4.1: Comparison of discharge currents using different schemes, Values in Ampere

amplitude low-frequency breathing mode oscillations in Case 3, with Case 2 showing weak low-frequency
discharge current oscillations.

Case 1 has been simulated for 5 milliseconds to increase the resolution of the power spectral density
in the frequency domain shown in Figure 4.8. The saving interval was 1 µs, which sets the highest
resolvable frequency to about 2 Mhz. The range on the x-axis is from 5 to 200 kHz. It was chosen to
include such a large range as the increase in spectral density between the 100 and 150 kHz could be
interpreted as corresponding to transit time oscillations. The main peak in the Local Lax-Friedrichs
scheme can be found at around 8.2 kHz, while in the HLLE case it is around 13.4 kHz. Both show
a relatively strong secondary peak at the first harmonic, and strongly attenuated multiple harmonics
thereafter. The difference in both oscillation amplitude and frequency is very large. Consequently, these
tests show a very high sensitivity of the transient response to the flux scheme used.

The results described above match responses reported by Reference [22]. In this paper, Chapurin et
al. study the response of a 1D fluid model to cases similar to the LANDMARK benchmarks. The fluid
model is basically identical to HallThruster.jl, solving the continuity equation for neutrals, assuming
isothermal ions and also solves for internal electron energy with the same loss terms and employs the
drift-diffusion approximation. Neutral and ion losses to the walls are neglected. As in LANDMARK,
Chapurin et al. solve the non-conservative ion momentum equation. As in the HLLE case, Chapurin et
al. report a high frequency oscillation around 150 kHz, which is modulated by a low frequency breathing
mode type oscillation around 15 kHz. In case 3, Ref. [22] report a stable low frequency oscillation
without any higher frequency components, which they termed the solo regime. This does not agree with
the result in Figure 4.7. However it is shown that the transient behaviour in case 3 is grid dependent.
In this case, the higher the amount of cells, the lower the damping in the oscillations. The discharge
current response of case 3 with 1024 cells can be inspected in Figure 4.9. The stable oscillations for
all three schemes agree with the results predicted by LANDMARK. On the other hand, LANDMARK
reports and amplitude of approximately 5 Amperes, while the results show an amplitude of the order 1.
Both the frequency and amplitude are flux dependent.

It was hypothesized that the artificial diffusion term in the LANDMARK study might dampen the
oscillations in case 1. Consequently, this term has been added to the conservative isothermal equations
as well. However, no change in the transient response was observed.
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(a) LANDMARK case 1, 200 cells (b) LANDMARK case 3, 200 cells

Figure 4.7: Comparison of total discharge current over time

(a) LANDMARK case 1, 200 cells,
Local Lax-Friedrichs scheme

(b) LANDMARK case 3, 200 cells, HLLE scheme

Figure 4.8: Power spectral densities, normalized by maximum value in positive domain
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Figure 4.9: Total discharge current, LANDMARK case 3, 1024 cells

4.4 Grid independence study

Ideally, the solution of a numerical simulation should approach the exact solution as the number of com-
putational cells increases. It is expected that the absolute value of the error decreases as a function of
the spatial order of accuracy. Vastly differing results between different grid sizes can indicate discretiza-
tion or implementation errors. Lacking a Hall Thruster realistic time-variant analytical solution to the
entire system, the solutions at different grid sizes are merely compared to each other. The CFL num-
ber for the heavy species was kept constant throughout grid refinement, which led to ∆tnew = ∆told/2
if ∆xnew = ∆xold/2. The computational effort scaled linearly with both grid size and timestep, in-
creasing 4 fold with every time the cell size and timestep were halfed. Simulating 1 millisecond, which
corresponded to 143000 timesteps for a grid size of 200 cells, took 14 seconds on a machine with 16GB
random access memory and an Intel(R) Core(TM) i7-8565U CPU at 1.80GHz. LANDMARK case 1 has
been simulated four times with 100, 200, 400 and 800 cells using the electron-pressure coupled method
and the HLLE scheme. The time-averaged results are shown in Figure 4.10. The x-axis is normalized
over the thruster channel length lch = 0.025 mm. The electron properties and the potential profile look
virtually identical as the grid is refined, while a deviation is apparent in the plasma density and ioniza-
tion rate. Interestingly, there is a large jump in plasma density from 400 to 800 cells, while there seems
to be another phenomenon affecting the ion velocity which occurs between 200 and 400 cells. Further
investigation is necessary. Figure 4.11 display the total discharge currents over time. The profiles look
qualitatively similar, with mid frequency oscillations paired with a lower frequency wave. The oscillation
amplitudes and frequencies are comparable. All cases exhibit stable oscillations. The simulations were
started from similar initial conditions corresponding to the 200 cell case, which make the 100 cell case
appear decaying, however the mode it enters from about t = 0.0003 s is stable. Analysing the frequency
spectra in Figure 4.12, shows that the oscillation frequencies change with grid refinement. The first large
peak corresponding to breathing mode oscillations can found at 14.8 kHz with 100 cells, 13.2 kHz with
200 cells, and 13 kHz with 400 and 800 cells. This might indicate that the oscillation period reaches
a natural plateau with sufficiently small grid size. The solutions experience further very low frequency
oscillations not shown at the range of the plots in Figure 4.12. The 200 cell case for example has a
stable mode at about 400 Hz and one at 1000 Hz. It is concluded that the transient response is grid
dependent in both amplitude and frequency, which is not ideal when trying to apply HallThruster.jl
to infer time-resolved anomalous collision frequency profiles. Further investigation may reveal that the
oscillations are independent of the grid at sufficiently small cell sizes.
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Figure 4.11: Discharge current LANDMARK case 1 at various numbers of cells, HLLE flux
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(a) 100 cells (b) 200 cells

(c) 400 cells (d) 800 cells

Figure 4.12: Power spectral densities, normalized by maximum value in positive domain, HLLE flux,
LANDMARK case 1

4.5 Comparison to HALLIS2D

To gain further understanding of simulation behaviour, the LANDMARK case results have been com-
pared to results obtained with the hybrid 2 dimensional HALLIS code. One difference is that the
simulation domain has been extended to 8 cm. The results agree reasonably well, except for the much
higher neutral density close to the anode. This might be due to different anode boundary condition in
HALLIS.
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Figure 4.3: Landmark benchmark case 1, 1024 cells
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Figure 4.4: Landmark benchmark case 2, 1024 cells
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Figure 4.6: Landmark benchmark case 3, 1024 cells
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Figure 4.10: LANDMARK case 1 at various numbers of cells, time-averaged results, HLLE flux
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Figure 4.13: Comparison of Landmark case 3 simulated with HALLIS 2D and HallThruster.jl
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Chapter 5

Comparison to Hall2De results
The implementation of HallThruster.jl has been verified in the previous chapter. The code can now
be applied to a more realistic problem, trying to approximate the SPT-100 thruster. A higher fidelity
anomalous collision frequency profile is used, and the results are compared to a simulation obtained
by Hall2De. Ultimately the goal is to use HallThruster.jl for anomalous collision frequency calibration
tasks, therefore robustness and accuracy with employing higher fidelity source terms is of paramount
importance.

5.1 Simulation of SPT-100

A SPT-100 is shown in Figure 5.1. In operation, it produces a thrust of about 90 mN at a nominal
power rating of 1.35 kW. It is the same thruster the LANDMARK study attempts to emulate. However,
in this section, higher fidelity physics are applied to achieve a more realistic simulation. The simulation
characteristics are listed here for repeatability.

• Anomalous collision frequency model The model chosen has been identified by [17] and was
calibrated by [18]. The model is shown and explained below.

• Electron ion collisions are considered.

• Number ion charge states 1.

• Ion temperature 500 [K].

• Gas Xenon.

• Neutral mass inflow 4.93 g/s.

• Injection velocity 300 m/s.

• Electron temperature at cathode 2 eV.

• Potential drop 300 V.

• Geometry Lch = 0.025 m. Figure 5.1: A SPT-100 flight model [1]

The magnetic field is described by Equation 4.7. The anomalous collision frequency model is of the
form

νAN = ωce

(
c0 +

c1|ui|
c2cs + νde

)
(5.1)

where ωce is the electron cyclotron frequency, |ui| is the local magnitude of the ion velocity, cs =
√
Tev/mi

the local ion acoustic speed and νde = |EB | the ratio of electric to magnetic field.

In the 1D code, a Dirichlet boundary to the electron temperature was applied at the anode as well,
forcing it to 2eV. The following physics models were applied in HallThruster.jl.

• Wall loss model The Hobbs Wesson wall loss model is adopted. The sheath potential is evaluated
self-consistently a function of electron temperature and secondary electron emission coefficient.
Boron Nitride is used as a wall material.

• Electron Neutral collisions The higher fidelity lookup table for electron neutral collisions is
used. The coefficients were generated integrating the collisional cross sections over the maxwellian
velocity distribution.
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• Ionization and excitation model Ionization and excitation rates created with the BOLSIG+
code are used. [25]

Here, a simulation of a SPT-100 is carried out and compared to the results obtained using the Hall2De
code developed by JPL [13]. The domain length in the 1D simulation was 0.08 m, which is slightly more
than 3 channel lengths. The coefficients in the anomalous collision frequency model were chosen to be
c0 = 0, c1 = 2 and c2 = 3. In addition, in an effort to display sensitivity, HallThruster.jl has been run 49
times were the coefficients were drawn from normal distributions centered around previously mentioned
values. The standard deviations were estimated from [18] and are σ0 = 0.005, σ1 = 0.5 and σ2 = 2.5.
Figure 5.3 presents the time-averaged results. Averaging was started once the discharge currents seemed
to have reached steady-state. The computational complexity of a Hall2De simulation is about 4000 times
higher than HallThruster.jl. 1

The neutral density at the anode is extremely low in HallThruster.jl compared to Hall2De. This is
most likely a result of the boundary conditions. Hall2De uses a higher fidelity anode model that self-
consistently evaluates the sheath potential and does not enforce an ion attracting sheath. Interestingly,
the plasma density at the anode is higher in HallThruster.jl. Looking at the evolution over the axial
domain, the plasma density is notably higher in the one-dimensional simulation. This coupled with
a higher exit velocity overpredicts the thrust, as evident in Figure 5.2b. The acceleration profile and
location of the maximum electric field is shifted between the two simulations. This is also evident in
the electron temperature profile. The discharge currents are compared in Figure 5.2a. Both simulations
show low frequency breathing mode oscillations together with lower amplitude transit time oscillations.
The pattern in HallThruster.jl is much more uniform, which could be a result of the lower dimensionality.
In order to quantitatively compare the simulation results on a global scale, the Hall thruster efficiency
model first proposed by Hofer can be applied. [47] The model breaks the anode efficiency down into five
individual efficiencies, shown in Equation 5.2. See Appendix A for a definition of the components.

ηa =
T 2

2ṁaVdId
= ηmηdηbηvηq (5.2)

In Table 5.1 the efficiencies of both simulations are presented. Since HallThruster.jl is a 1D code,
the divergence efficiency ηd is by definition 1, which is a stark contrast to Hall2De’s 60%. The mass
utilization efficiency ηm is one in the 1D simulation, which would mean that all propellant is ionized,
which is certainly not realistic. The beam utilization efficiency ηb is comparable in both cases, indicating
a similar fraction of ion to total current. Voltage utilization ηv in the case of HallThruster.jl is higher than
1, meaning that the average ion sees a larger potential drop than the applied voltage. One contributing
factor are the simple boundary conditions and the lack of a cathode coupling model, forcing the potential
to be 0 at the outflow. The discrepancy is evident comparing the potential profiles at the right boundary.
In addition, the potential at the anode is increased by the presheath. The charge utilization efficiency ηq is
1 in both cases by definition, since only singly charged ions were considered in this simulation. Histograms
showing the sensitivity of the efficiencies on the coefficients in the anomalous collision frequency model
are shown in Figure B.1. This has been mostly done for illustrative purposes showing the impact of the
coefficients.

Ia (A) T (mN) ηm ηb ηv ηd ηq ηa
Hall2De 8.47 65.1 0.96 0.41 0.81 0.61 1.00 0.19
HallThruster.jl 8.72 105.6 1.00 0.42 1.04 1.00 1.00 0.43

Table 5.1: Efficiencies obtained with Hall2De and HallThruster.jl

Insights from this study can be applied to make recommendations for future work. First, the discrepancy
in beam divergence ηd is expected and can be relatively easily compensated for, by making an educated

1Evaluated from the ratio of runtimes of each simulation using the same machine.
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(a) Anode current

(b) Thrust

Figure 5.2: Transient behaviour of HallThruster.jl and Hall2De simulations of the SPT-100

guess on the divergence for HallThruster.jl. Such a mapping can be calibrated. Second, the discrepancy
in the voltage utilization ηv can be decreased by employing higher fidelity anode and cathode coupling
models. Especially the potential difference at the cathode is immediately apparent. Thirdly, the beam
utilization efficiency ηb matches very well between the two simulations, instilling confidence that the
results can be extrapolated to higher dimensions. Last but not least, the discrepancy in the mass
utilization ηm should be investigated further. The root cause is immediately clear and might have to
do with the ionization rate coefficients. Investigating these points and applying corrections will lead to
closer alignment between the anode efficiencies and thrust values.
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Figure 5.3: Time-averaged results of the SPT-100 simulation. Solid lines: c0 = 0, c1 = 2, c2 = 3 in
Equation 5.1. Dotted lines: 49 simulations with HallThruster.jl where coefficients c0, c1 and c2 were
drawn from normal distributions
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Chapter 6

Conclusion & Outlook
The demand for predictive Hall thruster simulations has been outlined in Chapter 1. It was shown that
the main issue preventing predictive simulations is the increased electron cross field transport compared
to classical theory when employing fluid approximations. The need to calibrate new closure models
comes along with a requirement for more data for inference tasks. It was shown that 2D fluid or hybrid
codes are too expensive to evaluate for such purposes, while a 1D fluid model wins the trade-off between
fidelity and complexity. However, no openly accessible 1D fluid models were easily adaptable or had the
ability to change physical approximations by the user. Consequently, a 1D fluid model for Hall thruster
discharges has been derived and implemented in the programming language Julia, applying Julia’s mul-
tiple dispatch architecture.

The correct implementation of the governing equations has been verified. Additionally, the model was
compared to the LANDMARK case study and the deviations have been discussed, with the time-averaged
results matching very well. A grid independence study was carried out showing overall consistency in
the time-averaged results, while the oscillatory behaviour changed both in amplitude and in frequency.
Furthermore, the time-averaged results have been compared to the 2D hybrid code HALLIS, with the
results aligning well.

The runtime of HallThruster.jl is drastically lower than a 2D fluid simulation. A discharge simula-
tion over 1 ms after reaching steady-state is usually considered sufficient to resolve the axial transient
phenomena of interest. On the same machine, the runtime of such a simulation for Hall2De is typically
on the order of 10 hours, while it takes HallThruster.jl about 10 seconds. The simulation thus fulfills the
requirements outlined in the introduction.

Before applying HallThruster.jl to inference tasks, it is recommended to adapt the electron energy source
terms, as discussed in Chapter 2 and Section 4.3. Furthermore, the implementation of a self-consistent
anode sheath model would increase model fidelity. This would result in relaxing the requirement for a
strictly ion attracting sheath, which means the strict enforcement of the ion Bohm velocity at the anode
could be relaxed as well. One model requiring an iterative procedure is outlined in [48] [49], while a
direct evaluation is possible with the model proposed in [50]. In addition to that, the model fidelity
could be increased by treating the boundary conditions more carefully. Rather than assuming flux con-
servation at the anode, the velocity distribution function could be reconstructed and a kinetic flux vector
splitting scheme applied. This would allow capturing the recombination at the anode in a more realistic
way. An implementation is discussed in [21] and is based on the methodologies outlined in [51] and [52].
Due to the nature of the 1D geometry, the cathode is coincident with the outflow. By enforcing a 0
potential at the outflow, the voltage utilization efficiency will always be overestimated, as cathode cou-
pling is not modelled. Including such a model could lead to lower and more realistic acceleration voltages.

The code can then be compared again to higher fidelity simulations and experiments. HallThruster.jl
can subsequently be applied to Bayesian inference tasks to find anomalous collision frequency model
coefficients, similar to what has been described in [18]. The quick runtime enables running many more
simulations while sampling parameters of interest from probability distributions. Through applying a
surrogate modelling approach, the results from the lower fidelity 1D simulations can inform the pa-
rameter space for 2D simulations, therefore requiring less high fidelity simulations and reducing overall
computational cost.

Another approach inspired by dynamical systems theory would be to represent the time evolution of
state parameters in a Hall thruster simulation as a time-lagged phase portrait, where the parameter
evolution is mapped against itself at a different time. When both the reference (training) data and
simulation data are represented in such a way, the difference between the two can be evaluated using
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a defined metric. The difference, or cost function, can then be optimised by drawing input coefficients
from a probability distribution until the cost function converges to a minimum. This approach allows to
calibrate anomalous collision frequency models. [53]

Further possibilities are opened by applying Kalman Filters. Greve et al. [54] have been applying
an extended Kalman Filter to estimate state variables in Hall thrusters from discharge current mea-
surements. For application to data assimilation and parameter estimation tasks, such as calibrating
anomalous collision frequency models, ensemble Kalman Filters are suited well. [55] One advantage of
ensemble Kalman Filters is that they do not require an underlying linear model. It could therefore be
directly integrated with Hallthruster.jl. The best version to apply is probably the ensemble transform
Kalman Filter, in which the gain K is computed in a lower dimensional subspace. In their standard form
these filters, merely estimate the state based on current and past measurements, while in the setting of
parameter calibration against already existing data, future states could be used for parameter estimation
as well. This is exactly the principle of the Ensemble Kalman Smoother (EnKs). [56]

To conclude, the stage is set for exciting model calibration tasks. Paired with physical insights gained
through experiments and possibly the application of turbulent theory, this will one day lead to practical
and predictive Hall thruster simulations. These seem, in light of the volatility of the inert gas market,
more important than ever. In addition to reducing expensive testing, predictive simulations will allow
more advanced system optimisation and thus contribute to better Hall thruster designs. In the high
power segment, it is these very designs that have the potential to power human spaceflight ambitions to
the Moon, Mars and beyond.
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Appendix A

The individual efficiencies contributing to the Hall thruster anode efficiency model Equation 5.2 first
defined by Hofer [47] are presented here.

ηm represents the mass utilization efficiency. It is defined as the ratio between ion mass flow rate
at the outflow ṁi and the anode neutral gas mass flow rate ṁa.

ηm =
ṁi

ṁa
(A.1)

The beam utilization efficiency ηb relates the ion beam current Ib to the total discharge current Id. The
ion beam current is the total ion current at the outflow.

ηb =
Ib
Id

(A.2)

ηd is the divergence efficiency. It is a measure of the ion beam collimation, where Ibz is the purely axial
component of the total ion beam current.

ηd = cos2 θd =

(
Ibz
Ib

)2

(A.3)

The voltage utilization efficiency ηv relates the discharge voltage to the effective acceleration voltage Va.
Va is defined as the equivalent potential required to accelerate an ion to the mean ion exit velocity, which
results from a simple energy balance (shown here for singly charged ions) qVa = 1

2miu
2
i .

ηv =
Va

Vd
(A.4)

ηq is the charge utilization efficiency, which corrects for multiply charged ions. Zj refers to the charge
state.

ηq =

(∑3
j=1 Ωj/

√
Zj

)2
∑3

j=1 Ωj/Zj

(A.5)
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Appendix B

(a) (b)

(c) (d)

(e)

Figure B.1: Sensitivity of efficiency components to coefficients in anomalous collision frequency model
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Appendix C

(a)

(b)

(c)

Figure C.1: OVS of neutrals and ions, HLLE flux, piecewise constant reconstruction, first order,
wavenumber = 1
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(a)

(b)

(c)

Figure C.2: OVS of neutrals and ions, HLLE flux, piecewise constant reconstruction, first order,
wavenumber = 2
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(a)

(b)

(c)

Figure C.3: OVS of neutrals and ions, HLLE flux, minmod limiter, piecewise linear reconstruction,
wavenumber = 1
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(a)

(b)

(c)

Figure C.4: OVS of neutrals and ions, HLLE flux, osher limiter, piecewise linear reconstruction,
wavenumber = 1

Figure C.5: OVS of electron energy equation, implicit time integration, first order
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Figure C.6: OVS of electron energy equation, Crank Nicholson time integration, first order

Figure C.7: OVS of electron energy equation, implicit time integration, second order

Figure C.8: OVS of electron energy equation, Crank Nicholson time integration, second order
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Figure C.9: OVS of potential, second order
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