
Introduction

Machine Learning models like Deep Neural Networks have become so complex and opaque over
recent years that they are generally considered black-box systems. This lack of transparency
exacerbates several other problems typically associated with these models: they tend to be
unstable [?], encode existing biases [?] and learn representations that are surprising or even
counter-intuitive from a human perspective [?]. Nonetheless, they often form the basis for
data-driven decision-making systems in real-world applications.

As others have pointed out, this scenario gives rise to an undesirable principal-agent problem
involving a group of principals—i.e. human stakeholders—that fail to understand the behaviour
of their agent—i.e. the black-box system [?]. The group of principals may include programmers,
product managers and other decision-makers who develop and operate the system as well as
those individuals ultimately subject to the decisions made by the system. In practice, decisions
made by black-box systems are typically left unchallenged since the group of principals cannot
scrutinize them:

“You cannot appeal to (algorithms). They do not listen. Nor do they bend.”
oneil2016weapons

In light of all this, a quickly growing body of literature on Explainable Artificial Intelligence
(XAI) has emerged. Counterfactual Explanations fall into this broader category. They can
help human stakeholders make sense of the systems they develop, use or endure: they explain
how inputs into a system need to change for it to produce different decisions. Explainability
benefits internal as well as external quality assurance. Explanations that involve plausible
and actionable changes can be used for Algorithmic Recourse (AR): they offer the group of
principals a way to not only understand their agent’s behaviour but also adjust or react to it.

The availability of open-source software to explain black-box models through counterfactuals
is still limited. Through the work presented here, we aim to close that gap and thereby
contribute to broader community efforts towards XAI. We envision this package to one day be
the go-to place for Counterfactual Explanations in Julia. Thanks to Julia’s unique support for
interoperability with foreign programming languages we believe that this library may ultimately
also benefit the broader machine learning and data science community.

1



Our package provides a simple and intuitive interface to generate CE for many standard classifi-
cation models trained in Julia, as well as Python and R. It comes with detailed documentation
involving various illustrative example datasets, models and counterfactual generators for binary
and multi-class prediction tasks. A carefully designed package architecture allows for a seamless
extension of the package functionality through custom generators and models.

The remainder of this article is structured as follows: Section ?? presents related work on
XAI as well as a brief overview of the methodological framework underlying CE. Section ??
introduces the Julia package and its high-level architecture. Section ?? presents several basic
and advanced usage examples. In Section ?? we demonstrate how the package functionality
can be customized and extended. To provide a flavour of its practical use, we use the package
to explain models trained on real-world data in Section ??. Finally, we also discuss the current
limitations of our package, as well as its future outlook in Section ??. Section ?? concludes.

Background and related work

In this section, we first briefly introduce the broad field of Explainable AI, before narrowing it
down to Counterfactual Explanations. We introduce the methodological framework and finally
point to existing open-source software.

Literature on Explainable AI

The field of XAI is still relatively young and made up of a variety of subdomains, definitions,
concepts and taxonomies. Covering all of these is beyond the scope of this article, so we will
focus only on high-level concepts. The following literature surveys provide more detail: Arrieta
et al. (2020) provide a broad overview of XAI [?]; Fan et al. (2020) focus on explainability in the
context of deep learning [?]; and finally, Karimi et al. (2020) [?] and Verma et al. (2020) [?] offer
detailed reviews of the literature on Counterfactual Explanations and Algorithmic Recourse
(see also [?] and [?]). Finally, Miller (2019) explicitly discusses the concept of explainability
from the perspective of a social scientist [?].

The first broad distinction we want to make here is between Interpretable and Explainable
AI. These terms are often used interchangeably, but this can lead to confusion. We find the
distinction made in [?] useful: Interpretable AI involves models that are inherently interpretable
and transparent such as general additive models (GAM), decision trees and rule-based models;
Explainable AI may involve models that are not inherently interpretable but require additional
tools to be explainable to humans. Examples of the latter include Ensembles, Support Vector
Machines and Deep Neural Networks. Some would argue that we best avoid the second category
of models altogether and instead focus solely on interpretable AI [?]. While we agree that
initial efforts should always be geared towards interpretable models, avoiding black boxes
altogether would entail missed opportunities and anyway is probably not very realistic at
this point. For that reason, we expect the need for explainable AI to persist in the medium

2



term. Explainable AI can further be broadly divided into global and local explainability:
the former is concerned with explaining the average behaviour of a model, while the latter
involves explanations for individual predictions [?]. Tools for global explainability include
partial dependence plots (PDP), which involve the computation of marginal effects through
Monte Carlo, and global surrogates. A surrogate model is an interpretable model that is trained
to explain the predictions of a black-box model.

Counterfactual Explanations fall into the category of local methods: they explain how individual
predictions change in response to individual feature perturbations. Among the most popular
alternatives to Counterfactual Explanations are local surrogate explainers including local
interpretable model-agnostic explanations (LIME) and Shapley additive explanations (SHAP).
Since explanations produced by LIME and SHAP typically involve simple feature importance
plots, they arguably rely on reasonably interpretable features at the very least. Contrary to
Counterfactual Explanations, for example, it is not obvious how to apply LIME and SHAP to
visual or audio data. Nonetheless, local surrogate explainers are among the most widely used
XAI tools today, potentially because they are easy to interpret and implemented in popular
programming languages. Proponents of surrogate explainers also commonly mention that there
is a straightforward way to assess their reliability: a surrogate model that generates predictions
in line with those produced by the black-box model is said to have high fidelity and therefore
considered reliable. As intuitive as this notion may be, it also points to an obvious shortfall of
surrogate explainers: even a high-fidelity surrogate model that produces the same predictions
as the black-box model 99 per cent of the time is useless and potentially misleading for every 1
out of 100 individual predictions.

A recent study has shown that even experienced data scientists tend to put too much trust
in explanations produced by LIME and SHAP [?]. Another recent work has shown that both
methods can be easily fooled: both methods depend on random input perturbations, a property
that can be abused by adverse agents to essentially whitewash strongly biased black-box
models [?]. In related work, the same authors find that while gradient-based Counterfactual
Explanations can also be manipulated, there is a straightforward way to protect against this
in practice [?]. In the context of quality assessment, it is also worth noting that—contrary
to surrogate explainers—CE always achieve full fidelity by construction: counterfactuals are
searched with respect to the black-box classifier, not some proxy for it. That being said, CE
should also be used with care and research around them is still in its early stages.

A framework for Counterfactual Explanations

Counterfactual search happens in the feature space: we are interested in understanding how
we need to change individual attributes in order to change the model output to a desired
value or label [?]. Typically the underlying methodology is presented in the context of binary
classification: M : X 7→ Y where X ⊂ RD and Y = {0, 1}. Further, let t = 1 be the target
class and let x denote the factual feature vector of some individual sample outside of the target

3



class, so y = M(x) = 0. We follow this convention here, though it should be noted that the
ideas presented here also carry over to multi-class problems and regression [?].

The counterfactual search objective originally proposed by Wachter et al. (2017) [?] is as
follows

min
x′∈X

h(x′) s. t. M(x′) = t (1)

where h(·) quantifies how complex or costly it is to go from the factual x to the counterfactual
x′. To simplify things we can restate this constrained objective as the following unconstrained
and differentiable problem:

x′ = arg min
x′

ℓ(M(x′), t) + λh(x′) (2)

Here ℓ denotes some loss function targeting the deviation between the target label and the
predicted label and λ governs the strength of the complexity penalty. Provided we have gradient
access for the black-box model M the solution to this problem (Equation ??) can be found
through gradient descent. This generic framework lays the foundation for most state-of-the-art
approaches to counterfactual search and is also used as the baseline approach in our package.
The hyperparameter λ is typically tuned through grid search or in some sense pre-determined
by the nature of the problem. Conventional choices for ℓ include margin-based losses like
cross-entropy loss and hinge loss. It is worth pointing out that the loss function is typically
computed with respect to logits rather than predicted probabilities, a convention that we have
chosen to follow.1

Numerous extensions to this simple approach have been developed since CE were first proposed
in 2017 (see [?] and [?] for surveys). The various approaches largely differ in that they use
different flavours of search objective defined in Equation ??. Different penalties are often used
to address many of the desirable properties of effective CE that have been set out. These
desiderata include: proximity — the distance between factual and counterfactual features
should be small [?]; actionability — the proposed recourse should be actionable ([?], [?]);
plausibility — the counterfactual explanation should be plausible to a human ([?], [?]);
unambiguity — a human should have no trouble assigning a label to the counterfactual [?];
sparsity — the counterfactual explanation should involve as few individual feature changes as
possible [?]; robustness — the counterfactual explanation should be robust to domain and
model shifts [?]; diversity — ideally multiple diverse counterfactuals should be provided [?];
and causality — counterfactuals should respect the structural causal model underlying the
data generating process ([?],[?]).

1Implementations of loss functions with respect to logits are often numerically more stable. For example,
the logitbinarycrossentropy(ŷ, y) implementation in Flux.Losses (used here) is more stable than the
mathematically equivalent binarycrossentropy(ŷ, y).

4



Beyond gradient-based counterfactual search, which has been the main focus in our development
so far, various methodologies have been proposed that can handle non-differentiable models like
decision trees. We have implemented some of these approaches and will discuss them further
in Section ??.

Existing software

To the best of our knowledge, the package introduced here provides the first implementation
of Counterfactual Explanations in Julia and therefore represents a novel contribution to the
community. As for other programming languages, we are only aware of one other unifying
framework: the Python library CARLA [?].2 In addition to that, there exists open-source
code for some specific approaches to CE that have been proposed in recent years. The
approach-specific implementations that we have been able to find are generally well-documented,
but exclusively in Python. For example, a PyTorch implementation of a greedy generator
for Bayesian models proposed in [?] has been released. As another example, the popular
InterpretML library includes an implementation of a diverse counterfactual generator [?].

Generally speaking, software development in the space of XAI has largely focused on various
global methods and surrogate explainers: implementations of PDP, LIME and SHAP are
available for both Python (e.g. lime, shap) and R (e.g. lime, iml, shapper, fastshap). In
the Julia space there exist two package related to XAI: firstly, ShapML.jl, which provides
a fast implementation of SHAP; and, secondly, ExplainableAI.jl, which enables users to
easily visualise gradients and activation maps for Flux.jl models. We also should not fail
to mention the comprehensive Interpretable AI infrastructure, which focuses exclusively on
interpretable models. Arguably the current availability of tools for explaining black-box models
in Julia is limited, but it appears that the community is invested in changing that. The team
behind MLJ.jl, for example, recruited contributors for a project about both Interpretable and
Explainable AI in 2022.3 With our work on Counterfactual Explanations we hope to contribute
to these efforts. We think that because of its unique transparency the Julia language naturally
lends itself towards building a greater degree of trust in Machine Learning and Artificial
Intelligence.

Introducing: CounterfactualExplanations.jl

Figure ?? provides an overview of the package architecture. It is built around two core
modules that are designed to be as extensible as possible through dispatch: 1) Models is
concerned with making any arbitrary model compatible with the package; 2) Generators

2While we were writing this paper, the R package counterfactuals was released [?]. The developers seem to
also envision a unifying framework, but the project appears to still be in its early stages.

3For details, see the Google Summer of Code 2022 project proposal: https://julialang.org/jsoc/gsoc/MLJ/#int
erpretable_machine_learning_in_julia.

5

https://carla-counterfactual-and-recourse-library.readthedocs.io/en/latest/?badge=latest
https://github.com/interpretml
https://github.com/marcotcr/lime
https://github.com/slundberg/shap
https://cran.r-project.org/web/packages/lime/index.html
https://cran.r-project.org/web/packages/lime/index.html
https://modeloriented.github.io/shapper/
https://github.com/bgreenwell/fastshap
https://github.com/nredell/ShapML.jl
https://github.com/adrhill/ExplainableAI.jl
https://docs.interpretable.ai/stable/IAIBase/data/
https://julialang.org/jsoc/gsoc/MLJ/#interpretable_machine_learning_in_julia
https://julialang.org/jsoc/gsoc/MLJ/#interpretable_machine_learning_in_julia


is used to implement arbitrary counterfactual search algorithms. The core function of the
package generate_counterfactual uses an instance of type <:AbstractFittedModel pro-
duced by the Models module and an instance of type <:AbstractGenerator produced by the
Generators module. Relating this to the methodology outlined in Section ??, the former
instance corresponds to the model M , while the latter defines the rules for the counterfactual
search (Equation ??).

Figure 1: High-level schematic overview of package architecture. Modules are shown in red,
structs in green and functions in purple.

Models

The package currently offers native support for models built and trained in Flux as well as a
small subset of models made available through MLJ [?]. While in general it is assumed that
users will use this package to explain their pre-trained models, we provide a simple API call to
train the following models:

• Linear Classifier (Logistic Regression and Multinomial Logit)

• Multi-Layer Perceptron (Deep Neural Network)

• Deep Ensemble [?]

• Decision Tree, Random Forest, Gradient Boosted Trees

As we demonstrate below, it is straightforward to extend the package through custom models.
Support for torch models trained in Python or R is also available.

6

https://fluxml.ai/
https://alan-turing-institute.github.io/MLJ.jl/dev/
https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/model_catalogue/


Table 1: Overview of implemented counterfactual generators.

Generator Model Type Search Space Composable

ClaPROAR [?] gradient based feature yes
CLUE [?] gradient based latent yes
DiCE [?] gradient based feature yes
FeatureTweak [?] tree based feature no
Gravitational [?] gradient based feature yes
Greedy [?] gradient based feature yes
GrowingSpheres [?] agnostic feature no
PROBE [?] gradient based feature no
REVISE [?] gradient based latent yes
Wachter [?] gradient based feature yes

Generators

A large and growing number of counterfactual generators have already been implemented in
our package (Table ??). At a high level, we distinguish generators in terms of their compatible
model types, their default search space, and their composability. All “gradient-based” generators
are compatible with differentiable models, e.g. Flux and torch, while “tree-based” generators
are only applicable to models that involve decision trees. Concerning the search space, it is
possible to search counterfactuals in a lower-dimensional latent embedding of the feature space
that implicitly encodes the data-generating process (DGP). To learn the latent embedding,
existing work has typically relied on generative models or existing causal knowledge ([?], [?]).
While this notion is compatible with all of our gradient-based generators, only some generators
search a latent space by default. Composability implies that the given generator can be blended
with any other composable generator, which we discuss in Section ??.

Beyond these broad technical distinctions, generators largely differ in terms of how they
address the various desiderata mentioned above: ClapROAR aims to preserve the classifier,
i.e. to generate counterfactuals that are robust to endogenous model shifts [?]; CLUE searches
plausible counterfactuals in the latent embedding of a generative model by explicitly minimising
predictive entropy [?]; DiCE is designed to generate multiple, maximally diverse counterfactuals
[?]; FeatureTweak leverages the internals of decision trees to search counterfactuals on a feature-
by-feature basis [?]; Gravitational aims to generate plausible and robust counterfactuals by
minimising the distance to observed samples in the target class [?]; Greedy aims to generate
plausible counterfactuals by implicitly minimising predictive uncertainty of Bayesian classifiers
[?]; GrowingSpheres is model-agnostic, relying solely on identifying nearest neighbours of
counterfactuals in the target class by gradually increasing the search radius and then moving
counterfactuals in that direction [?]; PROBE generates probabilistically robust counterfactuals
[?]; REVISE addresses the need for plausibility by searching counterfactuals in the latent
embedding of a Variational Autoencoder (VAE) [?]; Wachter is the baseline approach that only
penalises the distance to the original sample [?].

7

https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/explanation/generators/overview/


Data Catalogue

To allow researchers and practitioners to test and compare counterfactual generators, the
package ships with catalogues of pre-processed synthetic and real-world benchmark datasets
from different domains. Real-world datasets include:

• Adult Census [?]

• California Housing [?]

• CIFAIR10 [?]

• German Credit [?]

• Give Me Some Credit [?]

• MNIST [?] and Fashion MNIST [?]

• UCI defaultCredit [?]

Custom datasets can also be easily preprocessed as explained in the documentation.

Plotting

The package also extends common Plots.jl methods to facilitate the visualiza-
tion of results. Calling the generic Plots.plot() method on an instance of type
<:CounterfactualExplanation, for example, generates a plot visualizing the entire
counterfactual path in the feature space4. We will see several examples of this below.

Basic Usage

In the following, we begin our exploration of the package functionality with a simple example
(Section ??). We then demonstrate how more advanced generators can be easily composed
(Section ??) and show how users can impose mutability constraints on features (Section ??).
Finally, we also briefly explore the topics of counterfactual evaluation and benchmarking
(Section ??).

4For multi-dimensional input data, standard dimensionality reduction techniques are used to compress the
data. In this case, the classifier’s decision boundary is approximated through a Nearest Neighbour model.
This is still somewhat experimental and will be improved in the future.

8

https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/data_catalogue/
https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/data_preprocessing/


A Simple Generic Generator

Code ?? below provides a complete example demonstrating how the framework presented in
Section ?? can be implemented through our package. Using a synthetic data set with linearly
separable features we first fit a linear classifier (line ??). Next, we define the target class (line
??) and then draw a random sample from the other class (line ??). Finally, we instantiate a
generic generator (line ??) and run the counterfactual search (line ??). Figure ?? illustrates
the resulting counterfactual path in the two-dimensional feature space. Features go through
iterative perturbations until the desired confidence level is reached as illustrated by the contour
in the background, which shows the softmax output for the target class.

[language=Julia, escapechar=@, numbers=left, label=lst:simple, caption=Standard
workflow for generating counterfactuals.] Data and Classifier: counterfactualdata =
loadlinearlyseparable()M = fitmodel(counterfactualdata, : Linear)@@

Factual and Target: yhat = predictlabel(M, counterfactualdata)target = 2targetlabel@@candidates =
findall(vec(yhat).! = target)chosen = rand(candidates)x = selectf actual(counterfactualdata, chosen)@@

Counterfactual search: generator = GenericGenerator() @@ ce = generatecounterfactual(x, target, counterfactualdata, M, generator)@@

Figure 2: Counterfactual path using generic counterfactual generator for conventional binary
classifier.

In this simple example, the generic generator produces a valid counterfactual, since the decision
boundary is crossed and the predicted label is flipped. But the counterfactual is not plausible:
it does not appear to be generated by the same DGP as the observed data in the target class.
This is because the generic generator does not take into account any of the desiderata mentioned
in Section ??, except for the distance to the factual sample.

9



Composing Generators

To address the issues outlined above, we can leverage the ideas underlying some of the more
advanced counterfactual generators introduced above. In particular, we will now show how easy
it is to compose custom generators that blend different ideas through user-friendly macros.

Suppose we wanted to address the desiderata of plausibility and diversity. We could do this
by blending ideas underlying the DiCE generator with the REVISE generator. Formally, the
corresponding search objective would be defined as follows,

Z′ = arg min
Z′∈ZL×K

{ℓ(M(f(Z′)), t) + λ · diversity(f(Z′))} (3)

where X′ is an L-dimensional array of counterfactuals, f : ZL×K 7→ X L×D is a function that
maps the L × K-dimensional latent space Z to the L × D-dimensional feature space X and
diversity(·) is the penalty proposed by Mothilal et al. (2020) [?] that favour diverse sets of
counterfactuals. As in Equation ??, ℓ is the loss function, M is the black-box model, t is the
target class, and λ is the strength of the penalty.

Code ?? demonstrates how Equation ?? can be seamlessly translated into Julia code. We
begin by instantiating a GradientBasedGenerator in line ??. Next, we use chained macros for
composition: firstly, we define the counterfactual search @objective corresponding to DiCE in
line ??; secondly, we define the latent space search strategy corresponding to REVISE using the
@search_latent_space macro in line ??; finally, we specify our prefered optimisation method
using the @with_optimiser macro in line ??.

[language=Julia, escapechar=§, numbers=left, label=lst:composed, caption=Composing a cus-
tom generator.] generator = GradientBasedGenerator() §§ @chain generator begin @objective
logitcrossentropy + 0.2ddpdiversity§§@searchlatentspace§§@withoptimiserAdam(0.005)§§end

In this case, the counterfactual search is performed in the latent space of a Variational
Autoencoder (VAE) that is automatically trained on the factual data. It is important to
specify the keyword argument num_counterfactuals of the generate_counterfactual to
some value higher than 1 (default), to ensure that the diversity penalty is effective. The resulting
counterfactual path is shown in Figure ?? below. It was generated by calling the generic plot
method directly on the object returned by generate_counterfactual. We observe that the
resulting counterfactuals are diverse and the majority of them are plausible.

Mutability Constraints

In practice, features usually cannot be perturbed arbitrarily. Suppose, for example, that
one of the features used by a bank to predict the creditworthiness of its clients is age. If a
counterfactual explanation for the prediction model indicates that older clients should “grow
younger” to improve their creditworthiness, then this is an interesting insight (it reveals age

10

https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/generators/


Figure 3: Counterfactual path using the DiCE generator.

bias), but the provided recourse is not actionable. In such cases, we may want to constrain
the mutability of features. To illustrate how this can be implemented in our package, we will
continue with the example from above.

Mutability can be defined in terms of four different options: 1) the feature is mutable in both
directions, 2) the feature can only increase (e.g. age), 3) the feature can only decrease (e.g. time
left until your next deadline) and 4) the feature is not mutable (e.g. skin colour, ethnicity, . . . ).
To specify which category a feature belongs to, users can pass a vector of symbols containing
the mutability constraints at the pre-processing stage. For each feature one can choose from
these four options: :both (mutable in both directions), :increase (only up), :decrease (only
down) and :none (immutable). By default, nothing is passed to that keyword argument and
it is assumed that all features are mutable in both directions.5

We can impose that the first feature is immutable as follows: counterfactual_data.mutability
= [:none, :both]. The resulting counterfactual path is shown in Figure ?? below. Since
only the second feature can be perturbed, the sample can only move along the vertical axis.

Evaluation and Benchmarking

The package also makes it easy to evaluate counterfactuals with respect to many of the
desiderata mentioned above. For example, users may want to infer how costly the provided
recourse is to individuals. To this end, we can measure the distance of the counterfactual from
its original value. The API call to compute the distance metric defined in Wachter et al. (2017)
[?], for instance, is as simple as evaluate(ce; measure=distance_mad), where ce can also
be a vector of CounterfactualExplanations.

5Mutability constraints are currently not yet implemented for Latent Space generators.

11

https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/evaluation/


Figure 4: Counterfactual path with immutable feature.

Additionally, the package provides a benchmarking framework that allows users to compare
the performance of different generators on a given dataset. In Figure ?? we show the results of
a benchmark comparing several generators in terms of the average cost and implausibility of
the generated counterfactuals. The cost is proxied by the L1-norm of the difference between
the factual and counterfactual features, while implausibility is measured by the distance of the
counterfactuals from samples in the target class. The results illustrate that there is a tradeoff
between minimizing costs to individuals and generating plausible counterfactuals.

Figure 5: Benchmarking results for different generators.

12

https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/benchmarking/


Customization and Extensibility

One of our priorities has been to make our package customizable and extensible. In the long
term, we aim to add support for more default models and counterfactual generators. In the
short term, it is designed to allow users to integrate models and generators themselves. These
efforts will facilitate our long-term goals.

Adding Custom Models

At the high level, only two steps are necessary to make any supervised learning model compatible
with our package:

Subtyping: We need to subtype the AbstractFittedModel.

Dispatch: The functions logits and probs need to be extended through custom methods for
the model in question.

To demonstrate how this can be done in practice, we will reiterate here how native support
for Flux.jl ([?]) deep learning models was enabled.6 Once again we use synthetic data for an
illustrative example. Code ?? below builds a simple model architecture that can be used for a
multi-class prediction task. Note how outputs from the final layer are not passed through a
softmax activation function, since the counterfactual loss is evaluated with respect to logits as
we discussed earlier. The model is trained with dropout.

[language=Julia, escapechar=@, numbers=left, label=lst:nn, caption=A simple neural
network model.] nhidden = 32outputdim = length(unique(y))inputdim = 2model =
Chain(Dense(inputdim, nhidden, activation), Dropout(0.1), Dense(nhidden, outputdim))

Code ?? below implements the two steps that were necessary to make Flux mod-
els compatible with the package. In line ?? we declare our new struct as a subtype of
AbstractDifferentiableModel, which itself is an abstract subtype of AbstractFittedModel.7
Computing logits amounts to just calling the model on inputs. Predicted probabilities for
labels can be computed by passing logits through the softmax function.

[language=Julia, escapechar=@, numbers=left, label=lst:mymodel, caption=A wrapper for
Flux models.] Step 1) struct MyFluxModel <: AbstractDifferentiableModel @@ model::Any
likelihood::Symbol @@ end

Step 2) import functions in order to extend import CounterfactualExplanations.Models: logits
import CounterfactualExplanations.Models: probs logits(M::MyFluxModel, X::AbstractArray)

6Flux models are now natively supported by our package and can be instantiated by calling FluxModel().
7Note that in line ?? we also provide a field determining the likelihood. This is optional and only used internally

to determine which loss function to use in the counterfactual search. If this field is not provided to the model,
the loss function needs to be explicitly supplied to the generator.

13

https://fluxml.ai/


= M.model(X) probs(M::MyFluxModel, X::AbstractArray) = softmax(logits(M, X)) M =
MyFluxModel(model)

The API call for generating counterfactuals for our new model is the same as before. Figure ??
shows the resulting counterfactual path for a randomly chosen sample. In this case, the contour
shows the predicted probability that the input is in the target class (t = 1).

Figure 6: Counterfactual path using generic counterfactual generator for multi-class classifier.

Adding Custom Generators

In some cases, composability may not be sufficient to implement specific logics underlying certain
counterfactual generators. In such cases, users may want to implement custom generators. To
illustrate how this can be done we will consider a simple extension of our GenericGenerator.
As we have seen above, Counterfactual Explanations are not unique. In light of this, we
might be interested in quantifying the uncertainty around the generated counterfactuals [?].
One idea could be, to use dropout to randomly switch features on and off in each iteration.
Without dwelling further on the merit of this idea, we will now briefly show how this can be
implemented.

A Generator with Dropout

Code ?? below implements two important steps: 1) create an abstract subtype of
the AbstractGradientBasedGenerator and 2) create a constructor similar to the
GenericConstructor, but with one additional field for the probability of dropout.

14



[language=Julia, escapechar=@, numbers=left, label=lst:dropout, caption=Building
a custom generator with dropout.] Abstract suptype: abstract type Abstract-
DropoutGenerator <: AbstractGradientBasedGenerator end Constructor: struct
DropoutGenerator <: AbstractDropoutGenerator loss::Symbol loss function com-
plexity::Function complexity function @λ@::AbstractFloat strength of penalty
decisionthreshold :: UnionNothing, AbstractF loatopt :: Anyoptimizer@τ@::AbstractFloat
tolerance for convergence pdropout :: AbstractF loatdropoutrateend

Next, in Code ?? we define how feature perturbations are generated for our custom dropout
generator: in particular, we extend the relevant function through a method that implements
the dropout logic. Finally, we proceed to generate counterfactuals in the same way we always
do. The resulting counterfactual path is shown in Figure ??.

[language=Julia, escapechar=@, numbers=left, label=lst:generate, caption=Generating
feature perturbations with dropout.] using CounterfactualExplanations.Generators
function Generators.generateperturbations(generator :: AbstractDropoutGenerator, ce ::
CouterfactualExplanation)@s′@ = deepcopy(ce.@s′@) new@s′@ = Generators.proposestate(generator, ce)@∆s′@
= new@s′@ - @s′@ gradient step Dropout: settozero = sample(1 : length(@∆s′@),
Int(round(generator.pdropout ∗ length(@∆s′@))), replace=false ) @∆s′@[settozero]. =
0return@∆s′@ end

Figure 7: Counterfactual path for a generator with dropout.

A Real-World Examples

Now that we have explained the basic functionality of CounterfactualExplanations.jl
through some synthetic examples, it is time to work through examples involving real data.

15



Give Me Some Credit

The Give Me Some Credit dataset is one of the tabular real-world datasets that ship with the
package [?]. It can be used to train a binary classifier to predict whether a borrower is likely to
experience financial difficulties in the next two years. In particular, we have an output variable
y ∈ {0 = no stress, 1 = stress} and a feature matrix X that includes socio-demographic
variables like age and income. A retail bank might use such a classifier to determine if potential
borrowers should receive credit or not.

For the classification task, we use a Multi-Layer Perceptron with dropout regularization.

Using the Gravitational generator [?] we will generate counterfactuals for ten randomly chosen
individuals that would be denied credit based on our pre-trained model. Concerning the
mutability of features, we only impose that the age cannot be decreased.

Figure ?? shows the resulting counterfactuals proposed by Wachter in the two-dimensional
feature space spanned by the age and income variables. An increase in income and age is
recommended for the majority of individuals, which seems plausible: both age and income are
typically positively related to creditworthiness.

Figure 8: Give Me Some Credit: counterfactuals for would-be borrowers proposed by the
Gravitational Generator.

MNIST

For our second example, we will look at image data. The MNIST dataset contains 60,000
training samples of handwritten digits in the form of 28x28 pixel grey-scale images [?]. Each
image is associated with a label indicating the digit (0-9) that the image represents. The data
makes for an interesting case study of Counterfactual Explanations because humans have a
good idea of what plausible counterfactuals of digits look like. For example, if you were asked
to pick up an eraser and turn the digit in the left panel of Figure ?? into a four (4) you would
know exactly what to do: just erase the top part.

On the model side, we will use a simple multi-layer perceptron (MLP). Code ?? loads the data
and the pre-trained MLP. It also loads two pre-trained Variational Auto-Encoders, which will
be used by our counterfactual generator of choice for this task: REVISE.

16



[language=Julia, escapechar=@, numbers=left, label=lst:mnist-setup, caption=Loading
pre-trained models and data for MNIST.] counterfactualdata = loadmnist()X, y =
unpackdata(counterfactualdata)inputdim, nobs = size(counterfactualdata.X)M =
loadmnistmlp()vae = loadmnistvae()vaeweak = loadmnistvae(; strong = false)

The proposed counterfactuals are shown in Figure ??. In the case in which REVISE has access
to an expressive VAE (centre), the result looks convincing: the perturbed image does look like
it represents a four (4). In terms of explainability, we may conclude that removing the top part
of the handwritten nine (9) leads the black-box model to predict that the perturbed image
represents a four (4). We should note, however, that the quality of counterfactuals produced by
REVISE hinges on the performance of the underlying generative model, as demonstrated by
the result on the right. In this case, REVISE uses a weak VAE and the resulting counterfactual
is invalid. In light of this, we recommend using Latent Space search with care.

Figure 9: Counterfactual explanations for MNIST using a Latent Space generator: turning a
nine (9) into a four (4).

Discussion and Outlook

We believe that this package in its current form offers a valuable contribution to ongoing efforts
towards XAI in Julia. That being said, there is significant scope for future developments, which
we briefly outline in this final section.

Candidate models and generators

The package supports various models and generators either natively or through minimal
augmentation. In future work, we would like to prioritize the addition of further predictive
models and generators. Concerning the former, it would be useful to add native support for any
supervised models built in MLJ.jl, an extensive Machine Learning framework for Julia [?]. This
may also involve adding support for regression models as well as additional non-differentiable
models. In terms of counterfactual generators, there is a list of recent methodologies that we
would like to implement including MINT [?], ROAR [?] and FACE [?].

17



Additional datasets

For benchmarking and testing purposes it will be crucial to add more datasets to our library.
We have so far prioritized tabular datasets that have typically been used in the literature on
counterfactual explanations including Adult, Give Me Some Credit and German Credit [?].
There is scope for adding data sources that have so far not been explored much in this context
including additional image datasets as well as audio, natural language and time-series data.

Concluding remarks

CounterfactualExplanation.jl is a package for generating Counterfactual Explanations and
Algorithmic Recourse in Julia. Through various synthetic and real-world examples, we have
demonstrated the basic usage of the package as well as its extensibility. The package has already
served us in our research to benchmark various methodological approaches to Counterfactual
Explanations and Algorithmic Recourse. We therefore strongly believe that it should help other
practitioners and researchers in their own efforts towards Trustworthy Artificial Intelligence.

We envision this package to one day constitute the go-to place for explaining arbitrary predictive
models through an extensive suite of counterfactual generators. As a major next step, we aim
to make our library as compatible as possible with the popular MLJ.jl package for machine
learning in Julia. We invite the Julia community to contribute to these goals through usage,
open challenge and active development.

Acknowledgements

We are immensely grateful to the group of TU Delft students who contributed huge improvements
to this package as part of a school project in 2023: Rauno Arike, Simon Kasdorp, Lauri Kesküll,
Mariusz Kicior, Vincent Pikand. We also want to thank the broader Julia community for
being welcoming and open and for supporting research contributions like this one. Some of the
members of TU Delft were partially funded by ICAI AI for Fintech Research, an ING—TU
Delft collaboration.

18

https://alan-turing-institute.github.io/MLJ.jl/dev/

	Background and related work
	Literature on Explainable AI
	A framework for Counterfactual Explanations
	Existing software

	Introducing: CounterfactualExplanations.jl
	Models
	Generators
	Data Catalogue
	Plotting

	Basic Usage
	A Simple Generic Generator
	Composing Generators
	Mutability Constraints
	Evaluation and Benchmarking

	Customization and Extensibility
	Adding Custom Models
	Adding Custom Generators
	A Generator with Dropout


	A Real-World Examples
	Give Me Some Credit
	MNIST

	Discussion and Outlook
	Candidate models and generators
	Additional datasets

	Concluding remarks
	Acknowledgements

