
Spiking Neural Systems

Daniel Müller-Komorowska

September 18, 2020

This is an introduction to spiking neural systems with Julia’s DifferentialEquations pack-
age. We will cover three different models: leaky integrate-and-fire, Izhikevich, and Hodgkin-
Huxley. Finally we will also learn about two mechanisms that simulate synaptic inputs like
real neurons receive them. The alpha synapse and the Tsodyks-Markram synapse. Let’s get
started with the leaky integrate-and-fire (LIF) model.

0.1 The Leaky Integrate-and-Fire Model

The LIF model is an extension of the integrate-and-fire (IF) model. While the IF model
simply integrates input until it fires, the LIF model integrates input but also decays towards
an equilibrium potential. This means that inputs that arrive in quick succession have a much
higher chance to make the cell spike as opposed to inputs that are further apart in time. The
LIF is a more realistic neuron model than the IF, because it is known from real neurons that
the timing of inputs is extremely relevant for their spiking.
The LIF model has five parameters, gL, EL, C, Vth, I and we define it in the lif(u, p,
t) function.
using DifferentialEquations
using Plots
gr()

function lif(u,p,t);
gL, EL, C, Vth, I = p
(-gL*(u-EL)+I)/C

end

lif (generic function with 1 method)

Our system is described by one differential equation: (-gL*(u-EL)+I)/C, where u is the
voltage, I is the input, gL is the leak conductance, EL is the equilibrium potential of the
leak conductance and C is the membrane capacitance. Generally, any change of the voltage
is slowed down (filtered) by the membrane capacitance. That’s why we divide the whole
equation by C. Without any external input, the voltage always converges towards EL. If u is
larger than EL, u decreases until it is at EL. If u is smaller than EL, u increases until it is at
EL. The only other thing that can change the voltage is the external input I.
Our lif function requires a certain parameter structure because it will need to be compatible
with the DifferentialEquations interface. The input signature is lif(u, p, t) where
u is the voltage, p is the collection of the parameters that describe the equation and t is

1

time. You might wonder why time does not show up in our equation, although we need to
calculate the change in voltage with respect to time. The ODE solver will take care of time
for us. One of the advantages of the ODE solver as opposed to calculating the change of u
in a for loop is that many ODE solver algorithms can dynamically adjust the time step in a
way that is efficient and accurate.
One crucial thing is still missing however. This is supposed to be a model of neural spiking,
right? So we need a mechanism that recognizes the spike and hyperpolarizes u in response.
For this purpose we will use callbacks. They can make discontinuous changes to the model
when certain conditions are met.
function thr(u,t,integrator)

integrator.u > integrator.p[4]
end

function reset!(integrator)
integrator.u = integrator.p[2]

end

threshold = DiscreteCallback(thr,reset!)
current_step= PresetTimeCallback([2,15],integrator -> integrator.p[5] += 210.0)
cb = CallbackSet(current_step,threshold)

DiffEqBase.CallbackSet{Tuple{},Tuple{DiffEqBase.DiscreteCallback{DiffEqCall
backs.var"#61#64"{Array{Int64,1}},DiffEqCallbacks.var"#62#65"{Main.##WeaveS
andBox#322.var"#1#2"},DiffEqCallbacks.var"#63#66"{typeof(DiffEqBase.INITIAL
IZE_DEFAULT),Bool,Array{Int64,1},Main.##WeaveSandBox#322.var"#1#2"}},DiffEq
Base.DiscreteCallback{typeof(Main.##WeaveSandBox#322.thr),typeof(Main.##Wea
veSandBox#322.reset!),typeof(DiffEqBase.INITIALIZE_DEFAULT)}}}((), (DiffEqB
ase.DiscreteCallback{DiffEqCallbacks.var"#61#64"{Array{Int64,1}},DiffEqCall
backs.var"#62#65"{Main.##WeaveSandBox#322.var"#1#2"},DiffEqCallbacks.var"#6
3#66"{typeof(DiffEqBase.INITIALIZE_DEFAULT),Bool,Array{Int64,1},Main.##Weav
eSandBox#322.var"#1#2"}}(DiffEqCallbacks.var"#61#64"{Array{Int64,1}}([2, 15
]), DiffEqCallbacks.var"#62#65"{Main.##WeaveSandBox#322.var"#1#2"}(Main.##W
eaveSandBox#322.var"#1#2"()), DiffEqCallbacks.var"#63#66"{typeof(DiffEqBase
.INITIALIZE_DEFAULT),Bool,Array{Int64,1},Main.##WeaveSandBox#322.var"#1#2"}
(DiffEqBase.INITIALIZE_DEFAULT, true, [2, 15], Main.##WeaveSandBox#322.var"
#1#2"()), Bool[1, 1]), DiffEqBase.DiscreteCallback{typeof(Main.##WeaveSandB
ox#322.thr),typeof(Main.##WeaveSandBox#322.reset!),typeof(DiffEqBase.INITIA
LIZE_DEFAULT)}(Main.##WeaveSandBox#322.thr, Main.##WeaveSandBox#322.reset!,
DiffEqBase.INITIALIZE_DEFAULT, Bool[1, 1])))

Our condition is thr(u,t,integrator) and the condition kicks in when integrator.u >
integrator.p[4] where p[4] is our threshold parameter Vth. Our effect of the condition is
reset!(integrator). It sets u back to the equilibrium potential p[2]. We then wrap both
the condition and the effect into a DiscreteCallback called threshold. There is one more
callback called PresetTimeCallback that is particularly useful. This one increases the input
p[5] at t=2 and t=15 by 210.0. Both callbacks are then combined into a CallbackSet. We
are almost done to simulate our system we just need to put numbers on our initial voltage
and parameters.
u0 = -75
tspan = (0.0, 40.0)
p = (gL, EL, C, Vth, I)
p = [10.0, -75.0, 5.0, -55.0, 0]

prob = ODEProblem(lif, u0, tspan, p, callback=cb)

2

ODEProblem with uType Int64 and tType Float64. In-place: false
timespan: (0.0, 40.0)
u0: -75

Our initial voltage is u0 = - 75, which will be the same as our equilibrium potential, so we
start at a stable point. Then we define the timespan we want to simulate. The time scale of
the LIF as it is defined conforms roughly to milliseconds. Then we define our parameters as
p = [10.0, -75.0, 5.0, -55.0, 0]. Remember that gL, EL, C, Vth, I = p. Finally
we wrap everything into a call to ODEProblem. Can’t forget the CallbackSet. With that
our model is defined. Now we just need to solve it with a quick call to solve.
sol = solve(prob)

retcode: Success
Interpolation: automatic order switching interpolation
t: 153-element Array{Float64,1}:
0.0
9.999999999999999e-5
0.0010999999999999998
0.011099999999999997
0.11109999999999996
1.1110999999999995
2.0
2.0
2.6300346673750097
2.9226049547524595

...@*(38.3415793596820438.7821517900368338.7821517900368339.22272417370689439.22272417370689439.663296598226139.663296598226140.040.0u:
153-element Array(*@{Float64,1}:
-75.0
-75.0
-75.0
-75.0
-75.0
-75.0
-75.0
-75.0
-59.978080111690375
-57.32999167299642

...@*(-75.0-50.40489310815222-75.0-50.404894730067554-75.0-50.404893310891545-75.0-54.419318668318546-75.0

First of all the solve output tells us if solving the system generally worked. In this case we
know it worked because the return code (retcode) says Success. Then we get the numbers
for the timestep and the solution to u. The raw numbers are not super interesting to let’s
plot our solution.
plot(sol)

3

We see that the model is resting at -75 while there is no input. At t=2 the input increases
by 210 and the model starts to spike. Spiking does not start immediately because the input
first has to charge the membrane capacitance. Notice how once spiking starts it very quickly
becomes extremely regular. Increasing the input again at t=15 increases firing as we would
expect but it is still extremely regular. This is one of the features of the LIF. The firing
frequency is regular for constant input and a linear function of the input strength. There are
ways to make LIF models less regular. For example we could use certain noise types at the
input. We could also simulate a large number of LIF models and connect them synaptically.
Instead of going into those topics, we will move on to the Izhikevich model, which is known
for its ability to generate a large variety of spiking dynamics during constant inputs.

0.2 The Izhikevich Model

The Izhikevich model is a two-dimensional model of neuronal spiking. It was derived from
a bifurcation analysis of a cortical neuron. Because it is two-dimensional it can generate
much more complex spike dynamics than the LIF model. The kind of dynamics depend
on the four parameters and the input a, b, c, d, I = p. All the concepts are the same
as above, expect for some minor changes to our function definitions to accomodate for the
second dimension.
#Izhikevichch Model
using DifferentialEquations
using Plots

function izh!(du,u,p,t);
a, b, c, d, I = p

du[1] = 0.04*u[1]^2+5*u[1]+140-u[2]+I

4

https://www.izhikevich.org/publications/spikes.htm

du[2] = a*(b*u[1]-u[2])
end

izh! (generic function with 1 method)

This is our Izhikevich model. There are two important changes here. First of all, note the
additional input parameter du. This is a sequence of differences. du[1] corresponds to the
voltage (the first dimension of the system) and du[2] corresponds to the second dimension.
This second dimension is called u in the original Izhikevich work amnd it makes the notation
a little annoying. In this tutorial I will generally stick to Julia and DifferentialEquations
conventions as opposed to conventions of the specific models and du is commonly used.
We will never define du ourselves outside of the function but the ODE solver will use it
internally. The other change here is the ! after our function name. This signifies that
du will be preallocated before integration and then updated in-place, which saves a lot of
allocation time. Now we just need our callbacks to take care of spikes and increase the input.
function thr(u,t,integrator)

integrator.u[1] >= 30
end

function reset!(integrator)
integrator.u[1] = integrator.p[3]
integrator.u[2] += integrator.p[4]

end

threshold = DiscreteCallback(thr,reset!)
current_step= PresetTimeCallback(50,integrator -> integrator.p[5] += 10)
cb = CallbackSet(current_step,threshold)

DiffEqBase.CallbackSet{Tuple{},Tuple{DiffEqBase.DiscreteCallback{DiffEqCall
backs.var"#61#64"{Int64},DiffEqCallbacks.var"#62#65"{Main.##WeaveSandBox#32
2.var"#3#4"},DiffEqCallbacks.var"#63#66"{typeof(DiffEqBase.INITIALIZE_DEFAU
LT),Bool,Int64,Main.##WeaveSandBox#322.var"#3#4"}},DiffEqBase.DiscreteCallb
ack{typeof(Main.##WeaveSandBox#322.thr),typeof(Main.##WeaveSandBox#322.rese
t!),typeof(DiffEqBase.INITIALIZE_DEFAULT)}}}((), (DiffEqBase.DiscreteCallba
ck{DiffEqCallbacks.var"#61#64"{Int64},DiffEqCallbacks.var"#62#65"{Main.##We
aveSandBox#322.var"#3#4"},DiffEqCallbacks.var"#63#66"{typeof(DiffEqBase.INI
TIALIZE_DEFAULT),Bool,Int64,Main.##WeaveSandBox#322.var"#3#4"}}(DiffEqCallb
acks.var"#61#64"{Int64}(50), DiffEqCallbacks.var"#62#65"{Main.##WeaveSandBo
x#322.var"#3#4"}(Main.##WeaveSandBox#322.var"#3#4"()), DiffEqCallbacks.var"
#63#66"{typeof(DiffEqBase.INITIALIZE_DEFAULT),Bool,Int64,Main.##WeaveSandBo
x#322.var"#3#4"}(DiffEqBase.INITIALIZE_DEFAULT, true, 50, Main.##WeaveSandB
ox#322.var"#3#4"()), Bool[1, 1]), DiffEqBase.DiscreteCallback{typeof(Main.#
#WeaveSandBox#322.thr),typeof(Main.##WeaveSandBox#322.reset!),typeof(DiffEq
Base.INITIALIZE_DEFAULT)}(Main.##WeaveSandBox#322.thr, Main.##WeaveSandBox#
322.reset!, DiffEqBase.INITIALIZE_DEFAULT, Bool[1, 1])))

One key feature of the Izhikevich model is that each spike increases our second dimension
u[2] by a preset amount p[4]. Between spikes u[2] decays to a value that depends on p[1]
and p[2] and the equilibrium potential p[3]. Otherwise the code is not too different from
the LIF model. We will again need to define our parameters and we are ready to simulate.
p = [0.02, 0.2, -50, 2, 0]
u0 = [-65, p[2]*-65]
tspan = (0.0, 300)

prob = ODEProblem(izh!, u0, tspan, p, callback=cb)

5

ODEProblem with uType Array{Float64,1} and tType Float64. In-place: true
timespan: (0.0, 300.0)
u0: [-65.0, -13.0]

sol = solve(prob);
plot(sol, vars=1)

This spiking type is called chattering. It fires with intermittent periods of silence. Note that
the input starts at t=50 and remain constant for the duration of the simulation. One of
mechanisms that sustains this type of firing is the spike induced hyperpolarization coming
from our second dimension, so let’s look at this variable.
plot(sol, vars=2)

6

Our second dimension u[2] increases with every spike. When it becomes too large, the
system cannot generate another spike until u[2] has decayed to a value small enough that
spiking can resume. This process repeats. In this model, spiking is no longer regular like it
was in the LIF. Here we have two frequencies, the frequency during the spiking state and the
frequency between spiking states. The LIF model was dominated by one single frequency
that was a function of the input strength. Let’s see if we can generate another spiking type
by changing the parameters.
p = [0.02, 0.2, -65, 8, 0]
u0 = [-65, p[2]*-65]
tspan = (0.0, 300)

prob = ODEProblem(izh!, u0, tspan, p, callback=cb)
sol = solve(prob);
plot(sol, vars=1)

7

This type is called regularly spiking and we created it just by lowering p[3] and increasing
p[4]. Note that the type is called regularly spiking but it is not instantaneously regular. The
instantenous frequency is higher in the beginning. This is called spike frequency adaptation
and is a common property of real neurons. There are many more spike types that can be
generated. Check out the original Izhikevich work and create your own favorite neuron!

0.3 Hodgkin-Huxley Model

The Hodgkin-Huxley (HH) model is our first biophysically realistic model. This means that
all parameters and mechanisms of the model represent biological mechanisms. Specifically,
the HH model simulates the ionic currents that depolarize and hyperpolarize a neuron during
an action potential. This makes the HH model four-dimensional. Let’s see how it looks.
using DifferentialEquations
using Plots

Potassium ion-channel rate functions
alpha_n(v) = (0.02 * (v - 25.0)) / (1.0 - exp((-1.0 * (v - 25.0)) / 9.0))
beta_n(v) = (-0.002 * (v - 25.0)) / (1.0 - exp((v - 25.0) / 9.0))

Sodium ion-channel rate functions
alpha_m(v) = (0.182*(v + 35.0)) / (1.0 - exp((-1.0 * (v + 35.0)) / 9.0))
beta_m(v) = (-0.124 * (v + 35.0)) / (1.0 - exp((v + 35.0) / 9.0))

alpha_h(v) = 0.25 * exp((-1.0 * (v + 90.0)) / 12.0)
beta_h(v) = (0.25 * exp((v + 62.0) / 6.0)) / exp((v + 90.0) / 12.0)

function HH!(du,u,p,t);
gK, gNa, gL, EK, ENa, EL, C, I = p
v, n, m, h = u

8

https://www.izhikevich.org/publications/spikes.htm

du[1] = (-(gK * (n^4.0) * (v - EK)) - (gNa * (m ^ 3.0) * h * (v - ENa)) - (gL * (v -
EL)) + I) / C

du[2] = (alpha_n(v) * (1.0 - n)) - (beta_n(v) * n)
du[3] = (alpha_m(v) * (1.0 - m)) - (beta_m(v) * m)
du[4] = (alpha_h(v) * (1.0 - h)) - (beta_h(v) * h)

end

HH! (generic function with 1 method)

We have three different types of ionic conductances. Potassium, sodium and the leak. The
potassium and sodium conducance are voltage gated. They increase or decrease depending
on the voltage. In ion channel terms, open channels can transition to the closed state and
closed channels can transition to the open state. It’s probably easiest to start with the
potassium current described by gK * (n^4.0) * (EK - v). Here gK is the total possible
conductance that we could reach if all potassium channels were open. If all channels were
open, n would equal 1 which is usually not the case. The transition from open state to closed
state is modeled in alpha_n(v) while the transition from closed to open is in beta_n(v).
Because potassium conductance is voltage gated, these transitions depend on v. The num-
bers in alpha_n; beta_n were calculated by Hodgkin and Huxley based on their extensive
experiments on the squid giant axon. They also determined, that n needs to be taken to the
power of 4 to correctly model the amount of open channels.
The sodium current is not very different but it has two gating variables, m, h instead of one.
The leak conductance gL has no gating variables because it is not voltage gated. Let’s move
on to the parameters. If you want all the details on the HH model you can find a great
description here.
current_step= PresetTimeCallback(100,integrator -> integrator.p[8] += 1)

n, m & h steady-states
n_inf(v) = alpha_n(v) / (alpha_n(v) + beta_n(v))
m_inf(v) = alpha_m(v) / (alpha_m(v) + beta_m(v))
h_inf(v) = alpha_h(v) / (alpha_h(v) + beta_h(v))

p = [35.0, 40.0, 0.3, -77.0, 55.0, -65.0, 1, 0]
u0 = [-60, n_inf(-60), m_inf(-60), h_inf(-60)]
tspan = (0.0, 1000)

prob = ODEProblem(HH!, u0, tspan, p, callback=current_step)

ODEProblem with uType Array{Float64,1} and tType Float64. In-place: true
timespan: (0.0, 1000.0)
u0: [-60.0, 0.0007906538330645915, 0.08362733690208038, 0.41742979353768533
]

For the HH model we need only one callback. The PresetTimeCallback that starts our
input current. We don’t need to reset the voltage when it reaches threshold because the HH
model has its own repolarization mechanism. That is the potassium current, which activates
at large voltages and makes the voltage more negative. The three functions n_inf; m_inf;
h_inf help us to find good initial values for the gating variables. Those functions tell us that
the steady-state gating values should be for the initial voltage. The parameters were chosen
in a way that the properties of the model roughly resemble that of a cortical pyramidal cell
instead of the giant axon Hodgkin and Huxley were originally working on.
sol = solve(prob);
plot(sol, vars=1)

9

https://neuronaldynamics.epfl.ch/online/Ch2.S2.html

That’s some good regular voltage spiking. One of the cool things about a biophysically
realistic model is that the gating variables tell us something about the mechanisms behind
the action potential. You might have seen something like the following plot in a biology
textbook.
plot(sol, vars=[2,3,4], tspan=(105.0,130.0))

10

So far we have only given our neurons very simple step inputs by simply changing the
number I. Actual neurons recieve their inputs mostly from chemical synapses. They produce
conductance changes with very complex structures. In the next chapter we will try to
incorporate a synapse into our HH model.

0.4 Alpha Synapse

One of the most simple synaptic mechanisms used in computational neuroscience is the alpha
synapse. When this mechanism is triggered, it causes an instantanouse rise in conductance
followed by an exponential decay. Let’s incorporate that into our HH model.
function gSyn(max_gsyn, tau, tf, t);

if t-tf >= 0
return max_gsyn * exp(-(t-tf)/tau)

else
return 0.0

end
end
function HH!(du,u,p,t);

gK, gNa, gL, EK, ENa, EL, C, I, max_gSyn, ESyn, tau, tf = p
v, n, m, h = u

ISyn = gSyn(max_gSyn, tau, tf, t) * (v - ESyn)

du[1] = (-(gK * (n^4.0) * (v - EK)) - (gNa * (m ^ 3.0) * h * (v - ENa)) - (gL * (v -
EL)) + I - ISyn) / C

du[2] = (alpha_n(v) * (1.0 - n)) - (beta_n(v) * n)
du[3] = (alpha_m(v) * (1.0 - m)) - (beta_m(v) * m)
du[4] = (alpha_h(v) * (1.0 - h)) - (beta_h(v) * h)

end

11

HH! (generic function with 1 method)

gSyn models the step to the maximum conductance and the following exponential decay with
time constant tau. Of course we only want to integrate the conductance at and after time tf,
the onset of the synaptic response. Before tf, gSyn returns zero. To convert the conductance
to a current, we multiply by the difference between the current voltage and the synapses
equilibrium voltage: ISyn = gSyn(max_gSyn, tau, tf, t) * (v - ESyn). Later we will
set the parameter ESyn to 0, making this synapse an excitatory synapse. Excitatory synapses
have equilibrium potentials far above the resting potential. Let’s see what our synapse does
to the voltage of the cell.
p = [35.0, 40.0, 0.3, -77.0, 55.0, -65.0, 1, 0, 0.008, 0, 20, 100]
tspan = (0.0, 200)
prob = ODEProblem(HH!, u0, tspan, p)
sol = solve(prob);
plot(sol, vars=1)

What you see here is called an excitatory postsynaptic potential (EPSP). It is the voltage
response to a synaptic current. While our synaptic conductance rises instantly, the voltage
response rises at a slower time course that is given by the membrane capacitance C. This
particular voltage response is not strong enough to evoke spiking, so we say it is subthreshold.
To get a suprathreshold response that evokes spiking we simply increase the parameter
max_gSyn to increase the maximum conductance.
p = [35.0, 40.0, 0.3, -77.0, 55.0, -65.0, 1, 0, 0.01, 0, 20, 100]
tspan = (0.0, 200)
prob = ODEProblem(HH!, u0, tspan, p)
sol = solve(prob);
plot!(sol, vars=1)

12

This plot shows both the subthreshold EPSP from above as well as the suprathreshold
EPSP. Alpha synapses are nice because of their simplicity. Real synapses however, are
extremely complex structures. One of the most important features of real synapses is that
their maximum conductance is not the same on every event. The number and frequency
of synaptic events changes the size of the maximum conductance in a dynamic way. While
we usually avoid anatomical and biophysical details of real synapses, there is a widely used
phenomenological way to capture those dynamics called the Tsodyks-Markram synapse.

0.5 Tsodyks-Markram Synapse

The Tsodyks-Markram synapse (TMS) is a dynamic system that models the changes of max-
imum conductance that occur between EPSPs at different frequencies. The single response
is similar to the alpha synapse in that it rises instantaneously and decays exponentially. The
maximum conductance it reaches depends on the event history. To simulate the TMS we
need to incorporate three more dimensions, u, R, gsyn into our system. u decays towards 0,
R decays towards 1 and gsyn decays towards 0 as it did with the alpha synapse. The crucial
part of the TMS is in epsp!, where we handle the discontinuities when a synaptic event
occurs. Instead of just setting gsyn to the maximum conductance gmax, we increment gsyn
by a fraction of gmax that depends on the other two dynamic parameters. The frequency
dependence comes from the size of the time constants tau_u and tau_R. Enough talk, let’s
simulate it.
function HH!(du,u,p,t);

gK, gNa, gL, EK, ENa, EL, C, I, tau, tau_u, tau_R, u0, gmax, Esyn = p
v, n, m, h, u, R, gsyn = u

du[1] = ((gK * (n^4.0) * (EK - v)) + (gNa * (m ^ 3.0) * h * (ENa - v)) + (gL * (EL -
v)) + I + gsyn * (Esyn - v)) / C

13

du[2] = (alpha_n(v) * (1.0 - n)) - (beta_n(v) * n)
du[3] = (alpha_m(v) * (1.0 - m)) - (beta_m(v) * m)
du[4] = (alpha_h(v) * (1.0 - h)) - (beta_h(v) * h)

Synaptic variables
du[5] = -(u/tau_u)
du[6] = (1-R)/tau_R
du[7] = -(gsyn/tau)

end

function epsp!(integrator);
integrator.u[5] += integrator.p[12] * (1 - integrator.u[5])
integrator.u[7] += integrator.p[13] * integrator.u[5] * integrator.u[6]
integrator.u[6] -= integrator.u[5] * integrator.u[6]

end

epsp_ts= PresetTimeCallback(100:100:500, epsp!)

p = [35.0, 40.0, 0.3, -77.0, 55.0, -65.0, 1, 0, 30, 1000, 50, 0.5, 0.005, 0]
u0 = [-60, n_inf(-60), m_inf(-60), h_inf(-60), 0.0, 1.0, 0.0]
tspan = (0.0, 700)
prob = ODEProblem(HH!, u0, tspan, p, callback=epsp_ts)
sol = solve(prob);
plot(sol, vars=1)

plot(sol, vars=7)

14

Both the voltage response as well as the conductances show what is called short-term facili-
tation. An increase in peak conductance over multiple synaptic events. Here the first event
has a conductance of around 0.0025 and the last one of 0.004. We can plot the other two
varialbes to see what underlies those dynamics
plot(sol, vars=[5,6])

15

Because of the time courses at play here, this facilitation is frequency dependent. If we
increase the period between these events, facilitation does not occur.
epsp_ts= PresetTimeCallback(100:1000:5100, epsp!)

p = [35.0, 40.0, 0.3, -77.0, 55.0, -65.0, 1, 0, 30, 500, 50, 0.5, 0.005, 0]
u0 = [-60, n_inf(-60), m_inf(-60), h_inf(-60), 0.0, 1.0, 0.0]
tspan = (0.0, 5300)
prob = ODEProblem(HH!, u0, tspan, p, callback=epsp_ts)
sol = solve(prob);
plot(sol, vars=7)

16

plot(sol, vars=[5,6])

We can also change these time constants such that the dynamics show short-term depression
instead of facilitation.
epsp_ts= PresetTimeCallback(100:100:500, epsp!)

17

p = [35.0, 40.0, 0.3, -77.0, 55.0, -65.0, 1, 0, 30, 100, 1000, 0.5, 0.005, 0]
u0 = [-60, n_inf(-60), m_inf(-60), h_inf(-60), 0.0, 1.0, 0.0]
tspan = (0.0, 700)
prob = ODEProblem(HH!, u0, tspan, p, callback=epsp_ts)
sol = solve(prob);
plot(sol, vars=7)

plot(sol, vars=[5,6])

18

Just changing those two time constants has changed the dynamics to short-term depression.
This is still frequency dependent. Changing these parameters can generate a variety of
different short-term dynamics.

0.6 Summary

That’s it for now. Thanks for making it this far. If you want to learn more about neuronal
dynamics, this is a great resource. If you want to learn more about Julia check out the
official website and to learn more about the DifferentialEquations package you are in the
right place, because this chapter is part of a larger tutorial series about just that.

0.7 Appendix

This tutorial is part of the SciMLTutorials.jl repository, found at: https://github.com/SciML/SciMLTutorials.jl.
For more information on doing scientific machine learning (SciML) with open source software,
check out https://sciml.ai/.
To locally run this tutorial, do the following commands:

using SciMLTutorials
SciMLTutorials.weave_file("models","08-spiking_neural_systems.jmd")

Computer Information:

Julia Version 1.4.2

19

https://neuronaldynamics.epfl.ch/online/index.html
https://julialang.org/
https://github.com/SciML/SciMLTutorials.jl
https://github.com/SciML/SciMLTutorials.jl
https://sciml.ai/

Commit 44fa15b150* (2020-05-23 18:35 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-8.0.1 (ORCJIT, skylake)

Environment:
JULIA_LOAD_PATH = /builds/JuliaGPU/DiffEqTutorials.jl:
JULIA_DEPOT_PATH = /builds/JuliaGPU/DiffEqTutorials.jl/.julia
JULIA_CUDA_MEMORY_LIMIT = 2147483648
JULIA_NUM_THREADS = 8

Package Information:

Status `/builds/JuliaGPU/DiffEqTutorials.jl/tutorials/models/Project.toml`
[479239e8-5488-4da2-87a7-35f2df7eef83] Catalyst 5.0.0
[459566f4-90b8-5000-8ac3-15dfb0a30def] DiffEqCallbacks 2.14.1
[f3b72e0c-5b89-59e1-b016-84e28bfd966d] DiffEqDevTools 2.27.0
[055956cb-9e8b-5191-98cc-73ae4a59e68a] DiffEqPhysics 3.6.0
[0c46a032-eb83-5123-abaf-570d42b7fbaa] DifferentialEquations 6.15.0
[31c24e10-a181-5473-b8eb-7969acd0382f] Distributions 0.23.12
[587475ba-b771-5e3f-ad9e-33799f191a9c] Flux 0.11.1
[f6369f11-7733-5829-9624-2563aa707210] ForwardDiff 0.10.12
[23fbe1c1-3f47-55db-b15f-69d7ec21a316] Latexify 0.14.0
[961ee093-0014-501f-94e3-6117800e7a78] ModelingToolkit 3.20.0
[2774e3e8-f4cf-5e23-947b-6d7e65073b56] NLsolve 4.4.1
[315f7962-48a3-4962-8226-d0f33b1235f0] NeuralPDE 2.3.0
[429524aa-4258-5aef-a3af-852621145aeb] Optim 1.2.0
[1dea7af3-3e70-54e6-95c3-0bf5283fa5ed] OrdinaryDiffEq 5.42.8
[91a5bcdd-55d7-5caf-9e0b-520d859cae80] Plots 1.6.5
[731186ca-8d62-57ce-b412-fbd966d074cd] RecursiveArrayTools 2.7.0
[789caeaf-c7a9-5a7d-9973-96adeb23e2a0] StochasticDiffEq 6.26.0
[37e2e46d-f89d-539d-b4ee-838fcccc9c8e] LinearAlgebra
[2f01184e-e22b-5df5-ae63-d93ebab69eaf] SparseArrays

20

	The Leaky Integrate-and-Fire Model
	The Izhikevich Model
	Hodgkin-Huxley Model
	Alpha Synapse
	Tsodyks-Markram Synapse
	Summary
	Appendix

