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This tutorial gives and overview of how to leverage the efficient Koopman expectation method
from DiffEqUncertainty to perform optimization under uncertainty. We demonstrate this
by using a bouncing ball model with an uncertain model parameter. We also demonstrate
its application to problems with probabilistic constraints, in particular a special class of
constraints called chance constraints.

0.1 System Model

First lets consider a 2D bouncing ball, where the states are the horizontal position x, hor-
izontal velocity ẋ, vertical position y, and vertical velocity ẏ. This model has two system
parameters, acceleration due to gravity and coefficient of restitution (models energy loss when
the ball impacts the ground). We can simulate such a system using ContinuousCallback
as
using OrdinaryDiffEq, Plots

function ball!(du,u,p,t)
du[1] = u[2]
du[2] = 0.0
du[3] = u[4]
du[4] = -p[1]

end

ground_condition(u,t,integrator) = u[3]
ground_affect!(integrator) = integrator.u[4] = -integrator.p[2] * integrator.u[4]
ground_cb = ContinuousCallback(ground_condition, ground_affect!)

u0 = [0.0,2.0,50.0,0.0]
tspan = (0.0,50.0)
p = [9.807, 0.9]

prob = ODEProblem(ball!,u0,tspan,p)
sol = solve(prob,Tsit5(),callback=ground_cb)
plot(sol, vars=(1,3), label = nothing, xlabel="x", ylabel="y")
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For this particular problem, we wish to measure the impact distance from a point y = 25 on
a wall at x = 25. So, we introduce an additional callback that terminates the simulation on
wall impact.
stop_condition(u,t,integrator) = u[1] - 25.0
stop_cb = ContinuousCallback(stop_condition, terminate!)
cbs = CallbackSet(ground_cb, stop_cb)

tspan = (0.0, 1500.0)
prob = ODEProblem(ball!,u0,tspan,p)
sol = solve(prob,Tsit5(),callback=cbs)

To help visualize this problem, we plot as follows, where the star indicates a desired impace
location
rectangle(xc, yc, w, h) = Shape(xc .+ [-w,w,w,-w]./2.0, yc .+ [-h,-h,h,h]./2.0)

begin
plot(sol, vars=(1,3), label=nothing, lw = 3, c=:black)
xlabel!("x [m]")
ylabel!("y [m]")
plot!(rectangle(27.5, 25, 5, 50), c=:red, label = nothing)
scatter!([25],[25],marker=:star, ms=10, label = nothing,c=:green)
ylims!(0.0,50.0)

end

2



0.2 Considering Uncertainty

We now wish to introduce uncertainty in p[2], the coefficient of restitution. This is defined
via a continuous univiate distribution from Distributions.jl. We can then run a Monte Carlo
simulation of 100,000 trajectories via the EnsembleProblem interface.
using Distributions

cor_dist = truncated(Normal(0.9, 0.02), 0.9-3*0.02, 1.0)
trajectories = 100000

prob_func(prob,i,repeat) = remake(prob, p = [p[1], rand(cor_dist)])
ensemble_prob = EnsembleProblem(prob,prob_func=prob_func)
ensemblesol = solve(ensemble_prob,Tsit5(),EnsembleThreads(),trajectories=trajectories,
callback=cbs)

begin # plot
plot(ensemblesol, vars = (1,3), lw=1,alpha=0.2, label=nothing, idxs = 1:350)
xlabel!("x [m]")
ylabel!("y [m]")
plot!(rectangle(27.5, 25, 5, 50), c=:red, label = nothing)
scatter!([25],[25],marker=:star, ms=10, label = nothing, c=:green)
plot!(sol, vars=(1,3), label=nothing, lw = 3, c=:black, ls=:dash)
xlims!(0.0,27.5)

end
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Here, we plot the first 350 Monte Carlo simulations along with the trajectory corrresponding
to the mean of the distribution (dashed line).
We now wish to compute the expected squared impact distance from the star. This is called
an ”observation” of our system or an ”observable” of interest.
We define this observable as
obs(sol) = abs2(sol[3,end]-25)

obs (generic function with 1 method)

With the observable defined, we can compute the expected squared miss distance from our
Monte Carlo simulation results as
mean_ensemble = mean([obs(sol) for sol in ensemblesol])

35.92650745078051

Alternatively, we can use the Koopman() algorithm in DiffEqUncertainty.jl to compute this
expectation much more efficiently as
using DiffEqUncertainty

p_uncertain = [9.807, cor_dist]
expectation(obs, prob, u0, p_uncertain, Koopman(), Tsit5();

ireltol = 1e-5, callback=cbs)

u: 36.008628214169704
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