Numbers with Uncertainties

Mose Giordano, Chris Rackauckas

September 1, 2020

The result of a measurement should be given as a number with an attached uncertainties, be-
sides the physical unit, and all operations performed involving the result of the measurement
should propagate the uncertainty, taking care of correlation between quantities.

There is a Julia package for dealing with numbers with uncertainties: Measurements.jl.
Thanks to Julia’s features, DifferentialEquations. j1 easily works together with Measurements. j1
out-of-the-box.

This notebook will cover some of the examples from the tutorial about classical Physics.

0.1 Caveat about Measurement type

Before going on with the tutorial, we must point up a subtlety of Measurements. j1 that
you should be aware of:

using Measurements

5.23 £ 0.14 === 5.23 £ 0.14

false
(5.23+ 0.14) - (5.23 + 0.14)

0.0+0.2
(6.23 £ 0.14) / (5.23 £ 0.14)

1.0 £ 0.038

The two numbers above, even though have the same nominal value and the same uncertain-
ties, are actually two different measurements that only by chance share the same figures and
their difference and their ratio have a non-zero uncertainty. It is common in physics to get
very similar, or even equal, results for a repeated measurement, but the two measurements
are not the same thing.

Instead, if you have one measurement and want to perform some operations involving it, you
have to assign it to a variable:

x =5.23 +£ 0.14
X === X

true

X — X

https://github.com/JuliaPhysics/Measurements.jl

0.0£0.0

x / x

1.0+ 0.0

0.2 Radioactive Decay of Carbon-14

The rate of decay of carbon-14 is governed by a first order linear ordinary differential equation

du(t) u(t)

dt T
where 7 is the mean lifetime of carbon-14, which is related to the half-life ¢, ,, = (5730 £ 40)
years by the relation 7 = ¢;/5/In(2).

using DifferentialEquations, Measurements, Plots
Half-life and mean lifetime of radiocarbon, in years

t_12 = 5730 £ 40
T =1t_12 / log(2)

#Setup
ulO=14+0
tspan = (0.0, 10000.0)

#Define the problem
radioactivedecay(u,p,t) = - u / 7

#Pass to solwer
prob = ODEProblem(radioactivedecay, u_0, tspan)
sol = solve(prob, Tsit5(), reltol = 1e-8)

Analytic solution
u = exp.(- sol.t / 7)

plot(sol.t, sol.u, label = "Numerical", xlabel = "Years", ylabel = "Fraction of
Carbon-14")
plot!(sol.t, u, label = "Analytic")

10 -

Numerical

—— Analytic

08 -

Fraction of Carbon-14

04 -

0 2500 5000 7500 10000
Years

The two curves are perfectly superimposed, indicating that the numerical solution matches
the analytic one. We can check that also the uncertainties are correctly propagated in the
numerical solution:

println("Quantity of carbon-14 after ", sol.t[11], " years:")

println("Numerical: ", sol[11])
println("Analytic: ", u[11])

Quantity of carbon-14 after 5207.541347908455 years:
Numerical: 0.5326 +@+(0.0023Analytic: 0.5326 (*x@+@+(0.0023

Both the value of the numerical solution and its uncertainty match the analytic solution
within the requested tolerance. We can also note that close to 5730 years after the beginning
of the decay (half-life of the radioisotope), the fraction of carbon-14 that survived is about
0.5.

0.3 Simple pendulum
0.3.1 Small angles approximation
The next problem we are going to study is the simple pendulum in the approximation of

small angles. We address this simplified case because there exists an easy analytic solution
to compare.

The differential equation we want to solve is

. g
b+ 29 =
+70=0

where g = (9.79+0.02) m/s? is the gravitational acceleration measured where the experiment
is carried out, and L = (1.00 £ 0.01) m is the length of the pendulum.

When you set up the problem for DifferentialEquations. j1 remember to define the mea-
surements as variables, as seen above.

using DifferentialEquations, Measurements, Plots

9.79 £ 0.02; # Gravitational constants
1.00 &+ 0.01; # Length of the pendulum

g
L

#Initial Conditions
ul0=1[0=x0, 7/ 60 &£ 0.01] # Initial speed and initial angle
tspan = (0.0, 6.3)

#Define the problem
function simplependulum(du,u,p,t)

0 = ul1]
dd = ul2]
dull] = df

dul2] = -(g/L)*0

end

#Pass to solvers
prob = ODEProblem(simplependulum, u_0, tspan)
sol = solve(prob, Tsit5(), reltol = le-6)

Analytic solution
u =u_0[2] .* cos.(sqrt(g / L) .* sol.t)

plot(sol.t, getindex.(sol.u, 2), label = "Numerical")
plot!(sol.t, u, label = "Analytic")

l I Numerical
0.050 - I‘ I — Analytic
q o]
] | 1 [
| ' V ‘ |
0.025 - T
I | | | I
‘ I
|
[i
0.000 - ‘
[I
I : 7 | ‘
~0.025 - ‘ ‘ | ; ! ,
T T T \
] |
—0.050 I
0 1 2 3 4 5 6

Also in this case there is a perfect superimposition between the two curves, including their
uncertainties.

We can also have a look at the difference between the two solutions:

plot(sol.t, getindex.(sol.u, 2) .- u, label = "")

2x107

1x10~/

T
—

-
i

—1x10~7

I
—
—]

—2x10”/

0.4 Arbitrary amplitude
Now that we know how to solve differential equations involving numbers with uncertainties
we can solve the simple pendulum problem without any approximation. This time the

differential equation to solve is the following:

9

0+ —sin(f) =0
L
g =9.79 £ 0.02; # Gravitational constants
L =1.00 &£ 0.01; # Length of the pendulum

#Initial Conditions
ul0=1[0=+0, 7/ 3 =£0.02] # Initial speed and initial angle
tspan = (0.0, 6.3)

#Define the problem
function simplependulum(du,u,p,t)
0 = ul1]
df = ul2]
dul1] = df
dul2] = -(g/L) * sin(#)

end

prob = ODEProblem(simplependulum, u_0, tspan)
sol = solve(prob, Tsit5(), reltol = 1e-6)

plot(sol.t, getindex.(sol.u, 2), label = "Numerical')

10+ ' Numerical
A /
1 A -
- 1
| J
I
05
T I
‘ I
1 'l
|] I
00 | I
I\
] I
[
1L
v I
[
1\
-05 T I
| [
| Il
\ |
:)
~10
0 1 2 3 4 5 6

We note that in this case the period of the oscillations is not constant.

0.5 Appendix

This tutorial is part of the SciMLTutorials.jl repository, found at: https://github.com/SciML/SciMLTutor
For more information on doing scientific machine learning (SciML) with open source software,
check out https://sciml.ai/.

To locally run this tutorial, do the following commands:

using SciMLTutorials
SciMLTutorials.weave_file("type_handling","0O2-uncertainties.jmd")

Computer Information:

Julia Version 1.4.2
Commit 44fal15b150* (2020-05-23 18:35 UTC)
Platform Info:

0S: Linux (x86_64-pc-linux-gnu)

CPU: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz

https://github.com/SciML/SciMLTutorials.jl
https://sciml.ai/

WORD_SIZE: 64
LIBM: libopenlibm
LLVM: 1ibLLVM-8.0.1 (ORCJIT, skylake)
Environment:
JULIA_LOAD_PATH = /builds/JuliaGPU/DiffEqTutorials.jl:
JULIA_DEPOT_PATH = /builds/JuliaGPU/DiffEqTutorials.jl/.julia
JULIA_CUDA_MEMORY_LIMIT = 2147483648
JULIA_NUM_THREADS = 8

Package Information:

Status “/builds/JuliaGPU/DiffEqTutorials.jl/tutorials/type_handling/Project.toml”
[7e558dbc-694d-5a72-987c-6f4ebed21442] ArbNumerics 1.2.1
[66939f99-70c6-5e9b-8bb0-5071ed7d61fd] DecFP 1.0.0
[abce61dc-4473-55a0-ba07-351d65e31d42] Decimals 0.4.1
[0c462a032-eb83-5123-abaf-570d42b7fbaal] DifferentialEquations 6.15.0
[497a8b3b-efae-58df-a0af-a86822472b78] DoubleFloats 1.1.13
[eff96d63-e80a-5855-80a2-b1b0885c5ab7] Measurements 2.2.1
[1dea7af3-3e70-54e6-95c3-0bf5283fabed] OrdinaryDiffEq 5.42.5
[91abbcdd-55d7-5caf-9e0b-520d859cae80] Plots 1.6.1
[1986cc42-f94f-5a68-af5c-568840ba703d] Unitful 1.4.0

	Caveat about Measurement type
	Radioactive Decay of Carbon-14
	Simple pendulum
	Small angles approximation

	Arbitrary amplitude
	Appendix

