
Unit Checked Arithmetic via Unitful.jl

Chris Rackauckas

October 25, 2020

Units and dimensional analysis are standard tools across the sciences for checking the cor-
rectness of your equation. However, most ODE solvers only allow for the equation to be in
dimensionless form, leaving it up to the user to both convert the equation to a dimensionless
form, punch in the equations, and hopefully not make an error along the way.
DifferentialEquations.jl allows for one to use Unitful.jl to have unit-checked arithmetic na-
tively in the solvers. Given the dispatch implementation of the Unitful, this has little over-
head.

0.1 Using Unitful

To use Unitful, you need to have the package installed. Then you can add units to your
variables. For example:
using Unitful
t = 1.0u"s"

1.0 s

Notice that t is a variable with units in seconds. If we make another value with seconds,
they can add
t2 = 1.02u"s"
t+t2

2.02 s

and they can multiply:
t*t2

1.02 s^2

You can even do rational roots:
sqrt(t)

1.0 s^1/2

Many operations work. These operations will check to make sure units are correct, and will
throw an error for incorrect operations:
t + sqrt(t)

Error: DimensionError: 1.0 s and 1.0 s^1/2 are not dimensionally compatible.

1

0.2 Using Unitful with DifferentialEquations.jl

Just like with other number systems, you can choose the units for your numbers by simply
specifying the units of the initial condition and the timestep. For example, to solve the linear
ODE where the variable has units of Newton’s and t is in Seconds, we would use:
using DifferentialEquations
f = (y,p,t) -> 0.5*y
u0 = 1.5u"N"
prob = ODEProblem(f,u0,(0.0u"s",1.0u"s"))
sol = solve(prob,Tsit5())

Error: DimensionError: N s^-1 and 0.75 N are not dimensionally compatible.

Notice that we recieved a unit mismatch error. This is correctly so! Remember that for an
ODE:

dy

dt
= f(t, y)

we must have that f is a rate, i.e. f is a change in y per unit time. So we need to fix the
units of f in our example to be N/s. Notice that we then do not receive an error if we do
the following:
f = (y,p,t) -> 0.5*y/3.0u"s"
prob = ODEProblem(f,u0,(0.0u"s",1.0u"s"))
sol = solve(prob,Tsit5())

retcode: Success
Interpolation: specialized 4th order "free" interpolation
t: 3-element Array{Unitful.Quantity{Float64,T@*(,Unitful.FreeUnits(*@{(s,),
T@*(,nothing(*@}},1}:

0.0 s
0.14311598261241779 s

1.0 s
u: 3-element Array{Unitful.Quantity{Float64,L@*((*@M@*(
(*@T@*((*@^-2,Unitful.FreeUnits{(N,),L@*((*@M@*((*@T@*((*@^-2,nothing}},1}:

1.5 N
1.5362091208988309 N
1.7720406194871123 N

This gives a a normal solution object. Notice that the values are all with the correct units:
print(sol[:])

Unitful.Quantity{Float64,L@*((*@M@*((*@T@*((*@^-2,Unitful.FreeUnits{(N,),L@*(
(*@M@*((*@T@*((*@^-2,nothing}}[1.5 N, 1.5362091208988309 N, 1.7720406194871123 N]

We can plot the solution by removing the units:
using Plots
gr()
plot(ustrip(sol.t),ustrip(sol[:]),lw=3)

2

0.3 Appendix

This tutorial is part of the SciMLTutorials.jl repository, found at: https://github.com/SciML/SciMLTutorials.jl.
For more information on doing scientific machine learning (SciML) with open source software,
check out https://sciml.ai/.
To locally run this tutorial, do the following commands:

using SciMLTutorials
SciMLTutorials.weave_file("type_handling","03-unitful.jmd")

Computer Information:

Julia Version 1.4.2
Commit 44fa15b150* (2020-05-23 18:35 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-8.0.1 (ORCJIT, skylake)

Environment:
JULIA_LOAD_PATH = /builds/JuliaGPU/DiffEqTutorials.jl:
JULIA_DEPOT_PATH = /builds/JuliaGPU/DiffEqTutorials.jl/.julia
JULIA_CUDA_MEMORY_LIMIT = 2147483648
JULIA_NUM_THREADS = 8

3

https://github.com/SciML/SciMLTutorials.jl
https://sciml.ai/

Package Information:

Status `/builds/JuliaGPU/DiffEqTutorials.jl/tutorials/type_handling/Project.toml`
[7e558dbc-694d-5a72-987c-6f4ebed21442] ArbNumerics 1.2.1
[55939f99-70c6-5e9b-8bb0-5071ed7d61fd] DecFP 1.0.0
[abce61dc-4473-55a0-ba07-351d65e31d42] Decimals 0.4.1
[0c46a032-eb83-5123-abaf-570d42b7fbaa] DifferentialEquations 6.15.0
[497a8b3b-efae-58df-a0af-a86822472b78] DoubleFloats 1.1.13
[eff96d63-e80a-5855-80a2-b1b0885c5ab7] Measurements 2.3.0
[1dea7af3-3e70-54e6-95c3-0bf5283fa5ed] OrdinaryDiffEq 5.43.0
[91a5bcdd-55d7-5caf-9e0b-520d859cae80] Plots 1.6.12
[1986cc42-f94f-5a68-af5c-568840ba703d] Unitful 1.5.0

4

	Using Unitful
	Using Unitful with DifferentialEquations.jl
	Appendix

