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0.1 System Model

First, lets consider the following linear model.

u′ = pu

f(u,p,t) = p.*u

f (generic function with 1 method)

We then wish to solve this model on the timespan t=0.0 to t=10.0, with an intial condition
u0=10.0 and parameter p=-0.3. We can then setup the differential equations, solve, and
plot as follows
using DifferentialEquations, Plots
u0 = [10.0]
p = [-0.3]
tspan = (0.0,10.0)
prob = ODEProblem(f,u0,tspan,p)
sol = solve(prob)
plot(sol)
ylims!(0.0,10.0)
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However, what if we wish to consider a random initial condition? Assume u0 is distributed
uniformly from -10.0 to 10.0, i.e.,
using Distributions
u0_dist = [Uniform(-10.0,10.0)]

1-element Array{Distributions.Uniform{Float64},1}:
Distributions.Uniform{Float64}(a=-10.0, b=10.0)

We can then run a Monte Carlo simulation of 100,000 trajectories by solving an EnsembleProblem.
prob_func(prob,i,repeat) = remake(prob, u0 = rand.(u0_dist))
ensemble_prob = EnsembleProblem(prob,prob_func=prob_func)

ensemblesol = solve(ensemble_prob,Tsit5(),EnsembleThreads(),trajectories=100000)

EnsembleSolution Solution of length 100000 with uType:
DiffEqBase.ODESolution{Float64,2,Array{Array{Float64,1},1},Nothing,Nothing,
Array{Float64,1},Array{Array{Array{Float64,1},1},1},DiffEqBase.ODEProblem{A
rray{Float64,1},Tuple{Float64,Float64},false,Array{Float64,1},DiffEqBase.OD
EFunction{false,typeof(Main.##WeaveSandBox#722.f),LinearAlgebra.UniformScal
ing{Bool},Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,N
othing,Nothing,Nothing,Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{
},NamedTuple{(),Tuple{}}},DiffEqBase.StandardODEProblem},OrdinaryDiffEq.Tsi
t5,OrdinaryDiffEq.InterpolationData{DiffEqBase.ODEFunction{false,typeof(Mai
n.##WeaveSandBox#722.f),LinearAlgebra.UniformScaling{Bool},Nothing,Nothing,
Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Not
hing},Array{Array{Float64,1},1},Array{Float64,1},Array{Array{Array{Float64,
1},1},1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float64}},DiffEqBase.DES
tats}

Plotting the first 250 trajectories produces
plot(ensemblesol, vars = (0,1), lw=1,alpha=0.1, label=nothing, idxs = 1:250)
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Given the ensemble solution, we can then compute the expectation of a function g (·) of the
system state u at any time in the timespan, e.g. the state itself at t=4.0 as
g(sol) = sol(4.0)
mean([g(sol) for sol in ensemblesol])

1-element Array{Float64,1}:
-0.005122773536927457

Alternatively, DiffEqUncertainty.jl offers a convenient interface for this type of calculation,
expectation().
using DiffEqUncertainty
expectation(g, prob, u0_dist, p, MonteCarlo(), Tsit5(); trajectories=100000)

1-element Array{Float64,1}:
0.0018703223632946565

expectation() takes the function of interest g, an ODEProblem, the initial conditions and
parameters, and an AbstractExpectationAlgorithm. Here we use MonteCarlo() to use
the Monte Carlo algorithm. Note that the initial conditions and parameters can be arrays
that freely mix numeric and continuous distribution types from Distributions.jl. Recall,
that u0_dist = [Uniform(-10.0,10.0)], while p = [-0.3]. From this specification, the
expectation is solved as

E [g (X) |X ∼ Pf ]

where Pf is the ”push-forward” density of the initial joint pdf f on initial conditions and
parameters.
Alternatively, we could solve the same problem using the Koopman() algorithm.
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expectation(g, prob, u0_dist, p, Koopman(), Tsit5())

u: 1-element Array{Float64,1}:
0.0

Being that this system is linear, we can analytically compute the solution as a deterministic
ODE with its initial condition set to the expectation of the initial condition, i.e.,

eptE [u0]

exp(p[1]*4.0)*mean(u0_dist[1])

0 . 0
We see that for this case the Koopman() algorithm produces a more accurate solution than
MonteCarlo(). Not only is it more accurate, it is also much faster
@time expectation(g, prob, u0_dist, p, MonteCarlo(), Tsit5(); trajectories=100000)

2.248979 seconds (79.32 M allocations: 7.160 GiB, 71.23% gc time)
1-element Array{Float64,1}:
0.008434257856487841

@time expectation(g, prob, u0_dist, p, Koopman(), Tsit5())

0.000814 seconds (12.27 k allocations: 1.111 MiB)
u: 1-element Array{Float64,1}:
0.0

Changing the distribution, we arrive at
u0_dist = [Uniform(0.0,10.0)]
@time expectation(g, prob, u0_dist, p, MonteCarlo(), Tsit5(); trajectories=100_000)

1.017875 seconds (79.30 M allocations: 7.160 GiB, 43.67% gc time)
1-element Array{Float64,1}:
1.501535608546008

and
@time expectation(g, prob, u0_dist, p, Koopman(), Tsit5())[1]

0.004295 seconds (14.03 k allocations: 1.221 MiB)

1 . 5 0 5 9 7 2 2 1 3 3 0 0 1 5 3 9
where the analytical solution is
exp(p[1]*4.0)*mean(u0_dist[1])

1 . 5 0 5 9 7 1 0 5 9 5 6 1 0 1 0 5
Note that the Koopman() algorithm doesn’t currently support infinite or semi-infinite inte-
gration domains, where the integration domain is determined by the extrema of the given
distributions. So, trying to using a Normal distribution will produce NaN
u0_dist = [Normal(3.0,2.0)]
expectation(g, prob, u0_dist, p, Koopman(), Tsit5())

u: 1-element Array{Float64,1}:
NaN
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Here, the analytical solution is
exp(p[1]*4.0)*mean(u0_dist[1])

0 . 9 0 3 5 8 2 6 3 5 7 3 6 6 0 6 2
Using a truncated distribution will alleviate this problem. However, there is another gotcha.
If a large majority of the probability mass of the distribution exists in a small region in the
support, then the adaptive methods used to solve the expectation can ”miss” the non-zero
portions of the distribution and errantly return 0.0.
u0_dist = [truncated(Normal(3.0,2.0),-1000,1000)]
expectation(g, prob, u0_dist, p, Koopman(), Tsit5())

u: 1-element Array{Float64,1}:
0.0

whereas truncating at ±4σ produces the correct result
u0_dist = [truncated(Normal(3.0,2.0),-5,11)]
expectation(g, prob, u0_dist, p, Koopman(), Tsit5())

u: 1-element Array{Float64,1}:
0.9035833577709517

If a large truncation is required, it is best practice to center the distribution on the truncated
interval. This is because many of the underlying quadrature algorithms use the center of the
interval as an evaluation point.
u0_dist = [truncated(Normal(3.0,2.0),3-1000,3+1000)]
expectation(g, prob, u0_dist, p, Koopman(), Tsit5())

u: 1-element Array{Float64,1}:
0.903584360812248

0.2 Vector-Valued Functions

expectation() can also handle vector-valued functions. Simply pass the vector-valued
function and set the nout kwarg to the length of the vector the function returns.
Here, we demonstrate this by computing the expectation of u at t=4.0s and t=6.0s
g(sol) = [sol(4.0)[1], sol(6.0)[1]]
expectation(g, prob, u0_dist, p, Koopman(), Tsit5(); nout = 2)

u: 2-element Array{Float64,1}:
0.903584360812248
0.49589556820916314

with analytical solution
exp.(p.*[4.0,6.0])*mean(u0_dist[1])

2-element Array{Float64,1}:
0.9035826357366062
0.4958966646647597

this can be used to compute the expectation at a range of times simultaneously
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saveat = tspan[1]:.5:tspan[2]
g(sol) = Matrix(sol)
mean_koop = expectation(g, prob, u0_dist, p, Koopman(), Tsit5(); nout = length(saveat),
saveat=saveat)

u: 1×@*(21 Array(*@{Float64,2}:
3.0 2.58213 2.22246 1.91289 1.64644 . . .@*( 0.201619 0.173536 0.149364

We can then plot these values along with the analytical solution
plot(t->exp(p[1]*t)*mean(u0_dist[1]),tspan..., xlabel="t", label="analytical")
scatter!(collect(saveat),mean_koop.u[:],marker=:o, label=nothing)

0.2.1 Benefits of Using Vector-Valued Functions

In the above examples we used vector-valued expectation calculations to compute the vari-
ous expectations required. Alternatively, one could simply compute multiple scalar-valued
expectations. However, in most cases it is more efficient to use the vector-valued form. This
is especially true when the ODE to be solved is computationally expensive.
To demonstrate this, lets compute the expectation of x, x2, and x3 using both approaches
while counting the number of times g() is evaluated. This is the same as the number of
simulation runs required to arrive at the solution. First, consider the scalar-valued approach.
Here, we follow the same method as before, but we add a counter to our function evaluation
that stores the number of function calls for each expectation calculation to an array.
function g(sol, power, counter)

counter[power] = counter[power] + 1
sol(4.0)[1]^power

end
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counters = [0,0,0]
x_koop = expectation(s->g(s,1,counters), prob, u0_dist, p, Koopman(), Tsit5())
x2_koop = expectation(s->g(s,2,counters), prob, u0_dist, p, Koopman(), Tsit5())
x3_koop = expectation(s->g(s,3,counters), prob, u0_dist, p, Koopman(), Tsit5())
counters

3-element Array{Int64,1}:
375
405
375

Leading to a total of
1155function evaluations.
Now, lets compare this to the vector-valued approach
function g(sol, counter)

counter[1] = counter[1] + 1
v = sol(4.0)[1]
[v, v^2, v^3]

end

counter = [0]
expectation(s->g(s,counter), prob, u0_dist, p, Koopman(), Tsit5(); nout = 3)
counter

1-element Array{Int64,1}:
405

This is
3 5 . 0 6% the number of simulations required when using scalar-valued expectations. Note
how the number of evaluations used in the vector-valued form is equivelent to the maximum
number of evaluations for the 3 scalar-valued expectation calls.

0.3 Higher-Order Moments

Leveraging this vector-valued capability, we can also efficiently compute higher-order central
moments.

0.3.1 Variance

The variance, or 2nd central moment, of a random variable X is defined as

Var (X) = E
[
(X − µ)2

]
where

µ = E [X]
The expression for the variance can be expanded to

Var (X) = E
[
X2

]
− E [X]2
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Using this, we define a function that returns the expectations of X and X2 as a vector-valued
function and then compute the variance from these
function g(sol)

x = sol(4.0)[1]
[x, x^2]

end

koop = expectation(g, prob, u0_dist, p, Koopman(), Tsit5(); nout = 2)
mean_koop = koop[1]
var_koop = koop[2] - mean_koop^2

0 . 3 6 2 8 7 2 3 7 1 7 5 4 9 8 1 4 4
For a linear system, we can propagate the variance analytically as

e2ptVar (u0)

exp(2*p[1]*4.0)*var(u0_dist[1])

0 . 3 6 2 8 7 1 8 1 3 1 5 7 6 5 0 0 5
This can be computed at multiple time instances as well
saveat = tspan[1]:.5:tspan[2]
g(sol) = [Matrix(sol)'; (Matrix(sol).^2)']

koop = expectation(g, prob, u0_dist, p, Koopman(), Tsit5(); nout = length(saveat)*2,
saveat=saveat)
µ = koop.u[1:length(saveat)]
σ = sqrt.(koop.u[length(saveat)+1:end] - µ.^2)

plot(t->exp(p[1]*t)*mean(u0_dist[1]),tspan..., ribbon =
t->-sqrt(exp(2*p[1]*t)*var(u0_dist[1])), label="Analytical Mean, 1 std bounds")
scatter!(collect(saveat),µ,marker=:x, yerror = σ, c=:black, label = "Koopman Mean, 1 std
bounds")
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0.3.2 Skewness

A similar approach can be used to compute skewness
function g(sol)

v = sol(4.0)[1]
[v, v^2, v^3]

end

koop = expectation(g, prob, u0_dist, p, Koopman(), Tsit5(); nout = 3)
mean_koop = koop[1]
var_koop = koop[2] - mean_koop^2
(koop[3] - 3.0*mean_koop*var_koop - mean_koop^3) / var_koop^(3/2)

3 . 7 9 5 2 8 2 2 3 8 9 7 7 4 4 4 5 e - 9
As the system is linear, we expect the skewness to be unchanged from the inital distribution.
Becasue the distribution is a truncated Normal distribution centered on the mean, the true
skewness is 0.0.

0.3.3 nth Central Moment

DiffEqUncertainty provides a convenience function centralmoment around this approach for
higher-order central moments. It takes an integer for the number of central moments you
wish to compute. While the rest of the arguments are the same as for expectation(). The
following will return central moments 1-5.
g(sol) = sol(4.0)[1]
centralmoment(5, g, prob, u0_dist, p, Koopman(), Tsit5(),

ireltol = 1e-9, iabstol = 1e-9)
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5-element Array{Float64,1}:
0.0
0.3628723692985327
4.026725619610261e-10
0.39502906894683987
1.2523240222606091e-9

0.4 Batch-Mode

It is also possible to solve the various simulations in parallel by using the batch kwarg and a
batch-mode supported quadrature algorithm via the quadalg kwarg. To view the list of batch
compatible quadrature algorithms, refer to Quadrature.jl. Note: Batch-mode operation
is built on top of DifferentialEquation.jl’s EnsembleProblem. See the EnsembleProblem
documentation for additional options.
The default quadtrature algorithm used by expectation() does not support batch-mode
evaluation. So, we first load dependencies for additional quadrature algorithms
using Quadrature, Cuba

We then solve our expectation as before using a batch=10 multi-thread parallelization via
EnsembleThreads() of Cuba’s SUAVE algorithm. However, in this case we introduce addi-
tional uncertainty in the model parameter.
u0_dist = [truncated(Normal(3.0,2.0),-5,11)]
p_dist = [truncated(Normal(-.7, .1), -1,0)]

g(sol) = sol(6.0)[1]

expectation(g, prob, u0_dist, p_dist, Koopman(), Tsit5(), EnsembleThreads();
quadalg = CubaSUAVE(), batch=10)[1]

0 . 0 5 3 9 7 8 6 0 7 8 6 4 5 6 1 3 6
Now, lets compare the performance of the batch and non-batch modes
using BenchmarkTools

@btime expectation(g, prob, u0_dist, p_dist, Koopman(), Tsit5();
quadalg = CubaSUAVE())[1]

44.218 ms (1006187 allocations: 91.55 MiB)

0 . 0 5 3 9 7 8 6 0 7 8 6 4 5 6 1 3 6
@btime expectation(g, prob, u0_dist, p_dist, Koopman(), Tsit5(), EnsembleThreads();

quadalg = CubaSUAVE(), batch=10)[1]

22.148 ms (1019424 allocations: 93.00 MiB)

0 . 0 5 3 9 7 8 6 0 7 8 6 4 5 6 1 3 6
It is also possible to parallelize across the GPU. However, one must be careful of the limita-
tions of ensemble solutions with the GPU. Please refer to DiffEqGPU.jl for details.
Here we load DiffEqGPU and modify our problem to use Float32 and to put the ODE in the
required GPU form
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using DiffEqGPU

function f(du, u,p,t)
@inbounds begin

du[1] = p[1]*u[1];
end
nothing

end

u0 = Float32[10.0]
p = Float32[-0.3]
tspan = (0.0f0,10.0f0)
prob = ODEProblem(f,u0,tspan,p)

g(sol) = sol(6.0)[1]

u0_dist = [truncated(Normal(3.0f0,2.0f0),-5f0,11f0)]
p_dist = [truncated(Normal(-.7f0, .1f0), -1f0,0f0)]

@btime expectation(g, prob, u0_dist, p_dist, Koopman(), Tsit5(), EnsembleGPUArray();
quadalg = CubaSUAVE(), batch=1000)[1]

6.849 ms (76204 allocations: 3.71 MiB)

0 . 0 5 6 0 9 3 9 6 6 9 1 0 4 3 3 0 1 6
The performance gains realized by leveraging batch GPU processing is problem dependent.
In this case, the number of batch evaluations required to overcome the overhead of using the
GPU exceeds the number of simulations required to converge to the quadrature solution.

0.5 Appendix

This tutorial is part of the SciMLTutorials.jl repository, found at: https://github.com/SciML/SciMLTutorials.jl.
For more information on doing scientific machine learning (SciML) with open source software,
check out https://sciml.ai/.
To locally run this tutorial, do the following commands:

using SciMLTutorials
SciMLTutorials.weave_file("DiffEqUncertainty","01-expectation_introduction.jmd")

Computer Information:

Julia Version 1.4.2
Commit 44fa15b150* (2020-05-23 18:35 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-8.0.1 (ORCJIT, skylake)

Environment:
JULIA_LOAD_PATH = /builds/JuliaGPU/DiffEqTutorials.jl:
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JULIA_DEPOT_PATH = /builds/JuliaGPU/DiffEqTutorials.jl/.julia
JULIA_CUDA_MEMORY_LIMIT = 2147483648
JULIA_NUM_THREADS = 8

Package Information:

Status `/builds/JuliaGPU/DiffEqTutorials.jl/tutorials/DiffEqUncertainty/Project.toml`
[6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf] BenchmarkTools 0.5.0
[8a292aeb-7a57-582c-b821-06e4c11590b1] Cuba 2.1.0
[071ae1c0-96b5-11e9-1965-c90190d839ea] DiffEqGPU 1.6.0
[41bf760c-e81c-5289-8e54-58b1f1f8abe2] DiffEqSensitivity 6.31.1
[ef61062a-5684-51dc-bb67-a0fcdec5c97d] DiffEqUncertainty 1.5.0
[0c46a032-eb83-5123-abaf-570d42b7fbaa] DifferentialEquations 6.15.0
[31c24e10-a181-5473-b8eb-7969acd0382f] Distributions 0.23.8
[f6369f11-7733-5829-9624-2563aa707210] ForwardDiff 0.10.12
[76087f3c-5699-56af-9a33-bf431cd00edd] NLopt 0.6.0
[1dea7af3-3e70-54e6-95c3-0bf5283fa5ed] OrdinaryDiffEq 5.42.3
[91a5bcdd-55d7-5caf-9e0b-520d859cae80] Plots 1.6.0
[67601950-bd08-11e9-3c89-fd23fb4432d2] Quadrature 1.3.0
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