
Lightweight finite element mesh database in Julia

Petr Krysl

University of California, San Diego, CA

Abstract

A simple, lightweight, and flexible, package in the programming language Julia

for managing finite element mesh data structures is presented. The key role

in the design of the data structures is granted to the incidence relation. This

concept has some interesting implications for the simplicity and efficiency of the

implementation. The entire library has less than 500 executable lines. The low

memory requirements are also notable. The design of the data structures is not

fixed a priori. The user of the library is given the power over the decisions which

mesh entities should be represented explicitly in the data structures, and which

of the topological relationships should be computed and stored. This enables

a small memory footprint, yet affords a sufficiently rich topology description

capability.

Keywords: finite element, mesh, topology, data structure, incidence relation

2010 MSC: 00-01, 99-00

1. Introduction

A number of mesh data structures have been proposed in the literature [1, 2,

3, 4, 5]: radial-edge, winged, half-edge and half-face, entity-based, etc. Usually

with the goal of accommodating richer representations of functions on meshes,

and supporting complex topological queries. Alas, flexibility and power to sup-5

port mesh adaptation tend to increase the complexity of the implementation,
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and speed is hard-won in such designs. A common feature of these approaches

is the use of pointers to objects in memory [6]. One disadvantage of this im-

plementation is that even when the indices are 32-bit, the pointers on current

machines are typically 64-bit. Consequently the memory used for such data10

structures is not insignificant.

Hence, array-based structures geared towards efficient access, and parsi-

monious storage of static meshes, also find a receptive ground: STK [7] and

MOAB [8, 9] are array-based mesh structures. The innovative and unusual

Sieve [10], which in its high-performance incarnation is available as DMPlex [11,15

12], is a prime example. Consult also the mesh data structure implemented in

FENiCS [13], but that is limited to simplex shapes.

The goal of this paper is to present a simple, lightweight, and flexible, pack-

age for managing finite element mesh data structures [14] in the programming

language Julia [15, 16]. There are one or two points which the readers may find20

of interest. The key role is assigned to the incidence relation. This idea has

some interesting implications for the simplicity and efficiency of the implemen-

tation. The entire library has less than 500 executable lines. The low memory

requirements are also of note. Importantly, the data structures are not fixed by

the design of the library. The decisions as to (a) which of the of mesh entities25

of the four manifold dimensions (cells, faces, edges, and vertices) to represent

explicitly in the data structures, and(b) which of the 12 topological relationships

to compute and store, is configurable on the fly. This is in contrast to the usual

“take it or leave it” design.

The database is currently limited to a serial implementation. Adaptivity is30

also not supported directly, although it can be layered on top of the current

design. The data structures are intended for homogeneous meshes, but mixed

meshes can be modeled with multiple incidence relations. As such, the presented

software is lacking in power compared to some of the full-featured data bases

mentioned above. However, this may be (in our opinion, easily) balanced out35

by the non-negligible advantages the present mesh library has over the heavy-

weights in terms of flexibility and sparing use of resources. The reader should
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keep in mind that the goal is not to replace full-featured mesh databases, but

rather to complement them.

Julia is a high-level, dynamic, high-performance, programming language [15,40

16]. It is a general-purpose language, but many of its features are closely fitted

to the demands of numerical analysis and computational science. Julia’s design

includes a type system with parametric polymorphism; multiple dispatch as its

core programming paradigm; concurrent, parallel and distributed computing

(including MPI); direct calling of C and Fortran libraries; agile and efficient45

compilation approach which uses a ”just-ahead-of-time” (JAOT) compiler. The

powerful compiler can reason about the Julia code, producing very efficient ma-

chine representation, so that well-written programs run at C or Fortran speeds.

Yet, at the same time the programming environment provides a read-eval-print

loop (REPL) typical of languages such as Python, so that the programmer can50

engage in interactive work. The language is very consistent and intuitive, so

that high productivity is typically reported.

The present library was designed and implemented in Julia, and it is believed

that the unique characteristics of this language contributed to the remarkable

conciseness and speed of the library. Importantly, we do not use pointers to55

objects in memory. In fact, we believe that a major factor contributing to the

efficiency and simplicity of our library is that it is not object-oriented.

The paper is organized as follows: We present the essential ideas and con-

cepts in Section 2, and we describe the basic objects and operations. Section 3

provides some experimental data points concerning the usability, flexibility, and60

costs of the representation. Discussion and conclusions round off the paper in

Section 4.

2. Description of meshes

In finite element analysis there is no such thing as “the” mesh. Even the

simplest finite element program will require two meshes: one for the evaluation65

of the integrals over the interior, and one for the evaluation of the boundary
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integrals. Complex finite element programs typically work with a multitude of

meshes, depending on the requirements of the application. Super-convergent

patch recovery, mixed methods, high-order finite element methods with degrees

of freedom at the edges, faces, and interiors, in addition to the nodes [4], dis-70

continuous and hybrid Galerkin methods [17], nodal integration methods [18],

and so on, need access to mesh entities at various levels of mesh topology. The

present mesh library provides enough support for these complex applications,

as will be described below.

On the other hand, many basic forms of the finite element method will75

require only the connectivity, albeit for both the interior and boundary integrals,

enumerating for each element its nodes (i.e. a single downward adjacency). If

that is so, for efficiency reasons there’s no point in constructing and storing

additional topological information when it isn’t used. Hence, the present library

can also attend to the needs of low complexity – low storage requirements cases.80

In the next section we describe the basic objects1 with which the library

works: the shape descriptors, and the shape collections, the incidence relations,

and the attributes. The reader may also find the Glossary in Appendix A to

be of use.

2.1. Shape descriptors, shapes, and shape collections85

We consider finite elements here to be shapes, such as line elements, trian-

gles, hexahedra, etc. The shapes are classified according to their manifold di-

mension, so that we work with the usual vertices (0-dimensional manifolds), line

segments (1-dimensional manifolds), triangles and quadrilaterals (2-dimensional

manifolds), tetrahedra and hexahedra (3-dimensional manifolds).90

The topology of an instance of the shape, which comprises information such

as how many nodes are connected together, how many bounding facets there are

1We wish to emphasize that we use the term object not in the sense of “object-oriented”.

The programming language Julia [15, 16] itself is not object-oriented, and our implementation

does not attempt graft itself upon the object-oriented tree.

4



Figure 1: The shape descriptor for an eight-node hexahedron element.

and their definition, is described by shape descriptors. An example of a shape

descriptor is provided in Figure 1 which shows the local topological description

of a hexahedron shape. The encoding of the topological information into a shape95

descriptor allows for the functions constructing the incidence relations to work

for any shape, no matter what the manifold dimension or order of the element

is.

The tables in Figure 1 introduce the concept of facets and ridges [19]: A

facet is a bounding entity: faces for three-dimensional cells, edges for two-100

dimensional face elements, and vertices for one-dimensional line elements. A

ridge is the “bounding entity of the bounding entity”. So edges are the ridges

of the three-dimensional cells, and vertices are the ridges of the faces. Edges

and vertices have no ridges. A good visual picture of facets and ridges may be

the surface of a cut diamond.105

The shape itself is not oriented. However, the definition of the facets and

ridges in terms of the vertices defines an inherent orientation (orientability)

of the same. Therefore, our algorithms store the orientation of the uses of the

facets and ridges in order to facilitate geometric queries. For instance, for the

hexahedron the facets are numbered so that when viewed from the outside of110

the hexahedron, the vertices of each facet are numbered counterclockwise. The

ridges are numbered arbitrarily, as there is no intrinsic choice of numbering.
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The shapes are considered in the form of collections: Shape collections

are homogeneous collections of shapes. Collections of shapes do not hold any

information about how the individual shapes are defined. That is the role of the115

incidence relations. The shape collections only provide information about the

shape descriptor and the attributes of the shape collection, such as geometry

(discussed below).

Finally, Figure 1 introduces the so-called first-order vertices. This con-

cept is useful for applications of the library to high-order nodal elements, for120

instance. As introduced above, when computing relationships between three-

dimensional cells and faces or between two dimensional cells (faces) and edges,

it is useful to compute the orientation of the uses of the entity. As an example,

a quadratic serendipity quadrilateral has eight vertices, but in order to figure

out its orientation it is sufficient to refer to its four corner vertices. We call125

these the first-order vertices: they are the vertices of the first-order versions of

the shapes.

2.2. Incidence relation

Our database makes the incidence relation the central idea. This step has

also been taken in the Sieve [10] and DMPlex [11]: the “arrows” of the mesh130

graph. However, we do not think of the mesh in terms of a stratified graph. Our

incidence relation is not limited to the representation of the mesh as a bipartite

graph.

First, when do we consider entities of the mesh to be incident? An entity E

of manifold dimension d1 is considered to be incident on an entity e of manifold135

dimension d2 ≤ d1, if e is contained in the topological covering of the entity

E [10]. So, as an example, a tetrahedron is incident on its faces, edges, and

vertices. Due to our definition, a tetrahedron is also incident upon itself. The

last relation is of use for mixed finite element methods. It provides uniformity

of implementation, as is the case for all relations between entities d2 = d1: an140

edge, face, or a cell may have degrees of freedom of its own, in which case a map

from the mesh entity to other mesh entities will include a map to itself.
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Conversely, an entity e of manifold dimension d2 ≤ d1 is incident on an

entity E of manifold dimension d1 if e belongs to E’s cover. So a vertex e is

incident on all edges, faces, and cells that share it.145

By incidence relation we mean here the relationship between two shape

collections. We write

(dL, dR) (1)

where dL is the manifold dimension of the shape collection on the left of the

relation, and dR is the manifold dimension of the shape collection on the right

of the relation. The relationship can be understood as a function which takes

as input a serial number of an entity from the shape collection on the left and

produces as output a list of serial numbers of entities from the shape collec-150

tion on the right, iL → [jR,1, . . . jR,M ]. Compare with Table 1 which lists the

incidence relations that can be defined unambiguously between entities of the

four manifold dimensions. The downward relationships are contained in the

lower triangle of the matrix, moving from the bottom of the table upwards, and

the upward relationships are listed top to bottom in the upper triangle of the155

matrix.

The relation (0, 0) between two shape collections that consist of the same set

of vertices, possibly in different order, is “trivial”: Vertex from the collection

on the left is incident on itself in the collection on the right. This mapping

may be a permutation, a change of numbering, if necessary or convenient. In160

general, relations between two shape collections (d, d) are included in Table 1 for

reasons relating to mixed finite element methods outlined above: The relation

(0, 0) additionally closes the computation of the skeleton (see below).

Computational workflows typically start by creating a collection of d-dimensional165

shapes, where d > 0, such as a tetrahedral mesh produced by a mesh generator,

and the collection of shapes is described by the connectivity (incidence rela-

tion) (d, 0). This becomes the starting point for the computation of the required
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Table 1: Table of incidence relations. Assuming that the initial mesh is three-dimensional,

the first relationship to be established is the connectivity (3, 0), as indicated by the box. The

surface representation of the boundary, (2, 0), would be a derived incidence relation. Other

incidence relations may be subsequently computed as discussed in the text. MD= Manifold

dimension.

MD 0 1 2 3

0 (0, 0) (0, 1) (0, 2) (0, 3)

1 (1, 0) (1, 1) (1, 2) (1, 3)

2 (2, 0) (2, 1) (2, 2) (2, 3)

3 (3, 0) (3, 1) (3, 2) (3, 3)

topological relations, as dictated by the needs of the particular finite element

method (refer to Table 1). For definiteness, we assume in the following that170

we start with a three dimensional mesh (shown boxed in Table 1), so the basic

data structure consists of the incidence relation (3, 0). Should the initial mesh

be two-dimensional, the table would be pruned by removing the fourth row and

column.

2.3. Derived Incidence Relations175

Here we address the issue of generating any of the other incidence relations

of the table on demand. For instance, the incidence relation (2, 0) can be derived

by application of the skeleton procedure to the incidence relation (3, 0). Table 2

lists how the incidence relations in the rows and columns of the table are derived

by listing the operation and its arguments. Note the operations are not queries180

of existing incidence relations. Rather they are incidence relation producers. In

Table 2 the only incidence relation that is assumed as given is (3, 0), all others

are derived using the indicated operations (see examples in Section 2.9).

2.4. skt: Skeleton185

The incidence relation (2, 0) can be derived by application of the procedure

“skeleton” (source-code name ir_skeleton; here referred to by the abbreviation
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Table 2: Operations to populate the table of incidence relations, starting from (3, 0).

skt=skeleton, trp=transpose, bbf= bounded-by facets, bbr= bounded-by ridges, idt= iden-

tity. MD= Manifold dimension.

MD 0 1 2 3

0 skt[(1, 0)] trp[(1, 0)] trp[(2, 0)] trp[(3, 0)]

1 skt[(2, 0)] idt[(1, 1)] trp[(2, 1)] trp[(3, 1)]

2 skt[(3, 0)] bbf[(2, 0), (1, 0), (0, 1)] idt[(2, 2)] trp[(3, 2)]

3 (3, 0) bbr[(3, 0), (1, 0), (0, 1)] bbf[(3, 0), (2, 0), (0, 2)] idt[(3, 3)]

skt). Repeated application of the skeleton will yield the relation (1, 0), and

finally (0, 0). Note that at difference to other definitions of the incidence relation

(0, 0) (the paper of Logg comes to mind [13]) we consider this relation to be one-190

to-one, not one-to-many.

The skeleton procedure can be implemented in different ways. In our library

we use sorting of the connectivity of the entities of the skeleton as a two di-

mensional array in order to arrive at unique entities by eliminating duplicates

(shared entities).195

2.5. bbf: Bounded-by-facets

The incidence relations (3, 2) and (2, 1) are obtained by the application of the

“bounded-by-facets” procedure (source-code name ir_bbyfacets; here referred

to by the abbreviation bbf). In our implementation the process draws upon

three entity relations: the incidence of the mesh entities upon the vertices, and200

then bidirectional links between the facets and the vertices.

The facets are orientable. Therefore, the incidence relation stores signed

entity numbers of the facets: when the facet use traverses the vertices of the

facet in the same way in which the facet itself is stored, the orientation is positive

(plus sign), and vice versa.205

2.6. bbr: Bounded-by-ridges

The incidence relation (3, 1) is obtained by the application of the “bounded-

by-ridges” procedure (source-code name ir_bbyridges; here referred to by the
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abbreviation bbr). The process again draws upon three entity relations: the

incidence of the cells upon the vertices, and then bidirectional links between the210

ridges and the vertices.

The ridges are orientable. Therefore, the incidence relation stores signed

entity numbers of the ridges: when the ridge use traverses the vertices of the

ridge in the same way in which the ridge itself is stored, the orientation is

positive (plus sign), and vice versa.215

As an aside, it would also be possible to generate the incidence relation

(2, 0) by the “bounded-by-ridges” procedure. It is of course also available by

application of the skeleton procedure from the relation (3, 0).

It wouldn’t be unreasonable to ask what use is the (3, 1) relation? We

can provide at least one instance of clear utility: Take conversion of four-node220

tetrahedra to the quadratic 10-node tetrahedra. There will be a need to place

nodes (vertices) of unique identity at the midpoints of the edges. The conversion

routine would therefore build the (3, 1) relation and endow it with an attribute

consisting of the newly generated node numbers. The edges being unique will

then guarantee the uniqueness of the new nodes. The relation is finally used225

to construct the connectivity of the new quadratic tetrahedra, that is the (3, 0)

relation for the quadratic mesh.

2.7. trp: Transpose

All the incidence relations below the diagonal of the matrix of Table 2 yield

lists of entities of fixed cardinality. For example, the number of faces, edges,230

and vertices for hexahedron is always 6, 12, and 8 respectively. On the contrary,

the relationships in the upper triangle of the matrix are always of variable

cardinality. For example, the number of tetrahedra around an edge [i.e. the

incidence relation (1, 3)] depends very much upon which edge it is. All the

relations above the diagonal are obtained from the relations below the diagonal235

by the “transpose” operation (source-code name ir_transpose; here referred

to by the abbreviation trp).
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2.8. idt: Identity

All the incidence relations on the diagonal of the matrix of Table 2 are simple

one-to-one (identity) maps (source-code name ir_identity; here referred to by240

the abbreviation idt). These operations could also become permutations, if

necessary.

This is in contrast to some previously introduced mesh database designs. For

instance, Logg [13] defines the incidence relations (d, d), where d > 1, as being

one-to-many. As an example: the relation (3, 3) in [13] consists of all three-245

dimensional cells that share a vertex with the cell on the left of the incidence

relation. Incidence relations of this type do not fit our definition of incidence

of Section 2.2. Even if we were to extend the definition of what we meant by

“incident”, there would be difficulties: The definition of such a relation would

not be unique. In addition to the collections of shapes on the left and on250

the right, it would have to refer to a third, connecting, shape to make sense,

which does not fit Table 2 containing relations between two shape collections.

For instance, the relationship between faces, (2, 2), would need to state through

which shape the incidence occured: is it through a common vertex? Is it through

a common edge? Similarly, for cells the incidence relationship (3, 3) would be255

different for the incidences that follow from a common vertex, from a common

edge, or from a common face.

2.9. Constructing the full “one-level” representation

The full “one-level” representation (refer, for example, to [20]), namely the

incidence relations downward (3, 2), (2, 1), (1, 0), and upward (0, 1), (1, 2), and260

(2, 3) can be constructed by our library from the input (3, 0) using the sequence
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of operations

(2, 0) = skt[(3, 0)]

(0, 2) = trp[(2, 0)]

(3, 2) = bbf[(3, 0), (2, 0), (0, 2)]

(1, 0) = skt[(2, 0)]

(0, 1) = trp[(1, 0)]

(2, 1) = bbf[(2, 0), (1, 0), (0, 1)]

(1, 2) = trp[(2, 1)]

(2, 3) = trp[(3, 2)]

(2)

Recall that the arguments in the brackets are existing incidence relations. New

relations are on the left, and they are returned as output from the operations.

2.10. Relationship to comparable mesh databases265

A reasonable question is where does the present database centered on the

incidence relation fit in with the concepts described in the Sieve [10] mesh

structure, and the DMPlex [11] implementation of these concepts? The DMPlex

data structures consist of storing the “points” (the cells, faces, ...), and the

“arrows”, which are essentially “localized” incidence relations as described here.270

These data structures are according to the documentation capable of storing the

(d, 0) relation or the full “one-level” representation (see Section 2.9).

Consider the diagonal of the matrix in Table 1 as diagonal 0, the diagonal

shifted up as +1, and the diagonal below as -1. The full “one-level” repre-

sentation corresponds to diagonals -1, +1. If we consider the relations on the275

0-diagonal as identity, the DMPlex are capable of storing the -1, 0, +1 diagonals

of Table 1. When the DMPlex data structures store the full “one-level” repre-

sentation, the relations on diagonals (+/-)2 and (+/-)3 cannot be stored in the

same data structures. In particular, consider that to store simultaneously (2, 1)

and (2, 0) would require the two-manifold “points” to store two cones2 at the280

2See Knepley and Karpeev for the “Sieve” terminology “point”, “cone”, etc. [10]: put in a

12



same time, one cone to 0-manifold points, and one cone to 1-manifold points,

which is not allowed by the concept of the cone as a relation between “points”

at two different heights of the graph. The relations that the DMPlex cannot

store can still be calculated on the fly by the user code, but they cannot be

interpreted by the database.285

We note that it would be possible to construct additional mesh databases in

addition to the full “one-level” representation to store the incidence relations in

the diagonals (+/-)2 and(+/-)3.

Another difference between the present mesh database notions and the Sieve

lies in the metadata attached to the stored relations. In the Sieve conceptual290

structure for the one-level up-down representation, the cones for meshes of four-

node tetrahedra and the four-node quadrilaterals all consist of four “points”.

The DMPlex library does not distinguish between these, as the graph represen-

tations are identical. Hence it is up to the user of the library to make sense

of the mesh: the interpretation of the mesh is not provided by the database.295

In contrast, our library maintains the notions of manifold dimension and de-

scriptions of the shape topology, so that the above two meshes are explicitly

distinguished.

The incidence relations of Table 1 store in essence the equivalent cone and

support information. So we have all the data to form the closure and star queries300

of the Sieve [10]. Our library is at this point rather minimal, and therefore these

queries have not been programmed (yet).

2.11. Mesh

Meshes are understood here simply as incidence relations. At the starting

point of a computation, initial meshes are defined by the connectivity of the305

finite elements and the finite element nodes, i.e. the incidence relation (d, 0),

where d ≥ 0, linking a d-dimensional shape to a collection of vertices as shapes

simplified way, the cone may be understood as the collection of the mesh entities covering a

given entity (“point”).
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in the form of 0-dimensional manifolds. Any other mesh can be derived by the

operations of Table 2.

2.12. Attributes310

At a minimum, the geometry of the mesh needs to be defined by specifying

the locations of the vertices. In our library we handle this data as attributes

of the shape collections. So the locations of the vertices are an attribute of the

shape collection of the vertices.

The attribute data can be attached to any incidence relation, which means315

that associating attributes with edges, faces, cells is easy. For instance, the

boundary of a mesh can be derived by calculating the skeleton, which distin-

guishes then boundary facets from interior facets in an attribute that measures

how many times the boundary facet is referenced (boundary facets are refer-

enced just once).320

The attribute data is in a sense equivalent to the concept of a “section”

from the DMPlex library [11]. In particular, in the DMPlex library the data is

attached to the arrows, and here it is attached to the incidence relations.

2.13. Implementation notes

Most mesh databases in current use favor the storage of entity identifiers325

as 32-bit integers. This allows for substantial ranges of approximately 2 billion

positive and 2 billion negative identifiers (which may be useful when storing

orientation together with the serial number). If this is not enough, the identifiers

may be stored as 64-bit integers. This practically doubles the requisite memory,

but considerably expands the range. The present library accommodates storage330

of the incidence relations with both and either integer types not only in the

same library, but also in the same running program: such is the magic of generic

programming as implemented in Julia [16] that in the same running program

some of the incidence relations may be stored as 32-bit integers while others are

stored as 64-bit integers. This mixing is entirely transparent to the user. To335

get this to work does not require anything beyond specifying parametric types.
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As outlined above, the incidence relations below the diagonal differ from the

incidence relations above the diagonal by being of fixed cardinality. The imple-

mentation in Julia can take proper advantage of this fact while maintaining a

single interface to the incidence relations. The incidence relation is stored as a340

vector of vectors (see 2). Variable-cardinality incidence relations (above the di-

agonal of the matrix of Table 2) are stored as shown on the left of the figure. This

is not as efficient as storing a fixed-cardinality vector of vectors: If all the vec-

tors stored in the master vector are of fixed size, the package StaticArrays [21]

can be used to enable operations on vectors that can be stored on the stack and345

that can be in-lined in a vector of vectors as shown in Figure 2. Thus in the

fixed-length case, each incidence vector is stored contiguously within one big

array (on the right of the figure). Clearly, this saves memory as no storage of

pointers for an indirection is needed.

The efficient storage of the fixed-cardinality vector of vectors is enabled by350

Julia compiler’s ability to reason about the code, producing optimized imple-

mentation that can take advantage of any information that is known at compile

time. At the same time, the programmer sees a uniform interface to the vector

of vectors. This is the complete definition of the type of the incidence relation

in our library:355

1 struct IncRel{LEFT <: AbsShapeDesc , RIGHT <: AbsShapeDesc , T}

2 left:: ShapeColl{LEFT} # left shape coll. (L, .)

3 right :: ShapeColl{RIGHT} # right shape coll. (., R)

4 _v:: Vector{T} # vec. of vec.s: shape num.s360

5 name:: String # name of the inc. relation

6 end

For instance, to find out how many entities in the shape collection on the right

are linked to the j−th entity in the shape collection on the left we use the365

definition of the function

1 nentities(ir::IncRel , j) = length(ir._v[j])
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(a) (b)

Figure 2: (a) Storage of variable-cardinality vector of vectors on the left. (b) Storage of

fixed-cardinality vector of vectors on the right.

Clearly, this function does not distinguish between fixed-cardinality and variable-370

cardinality vector of vectors.

3. Results

The computations described below were implemented in the Julia program-

ming language [15, 16]. The mesh-topology library is implemented as the

MeshCore.jl Julia package [14], and the computations referred to in this paper375

are available to the reader as part of the package PaperMeshTopo.jl [22].

3.1. Comparison with MOAB, MDS, GRUMMP, and STK

An interesting comparison of the memory usage for the data structures can

be gleaned from Figure 6 of [20]. The mesh is unfortunately not available

directly, it is only known that it consists of 100,000 tetrahedra. Hence in the380

present system we simply generate a tetrahedral mesh of approximately 102,000

elements and compare the resulting storage requirements. Note that we did not

generate the measurements for the other data bases ourselves, relying fully on

the paper [20]. There is some anecdotal evidence that in the meantime the STK
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software changed the way it stores data, and apparently it cannot store flat385

arrays anymore, and the current memory usage may well be less than reported

in [20]. Nevertheless, even with this caveat there is still something that can be

learned from this data.

In Figure 3 we compare with the following systems: The MDS database

of [20] was the full array representation. MDS-RED referred to as the “reduced390

array” was the element-to-vertex representation, both using 32-bit indices. Both

MDS versions were storing vertex coordinates, geometric model classification,

and coordinates of vertices. The MOAB database included element-to-vertex

downward and upward adjacency. Apparently only element connectivities and

vertices were stored in STK. All of these data bases stored 32-bit indices.395

1. First our database was constructed to hold all of the incidence relations

that correspond to the full one-level storage of MDS. That is we computed

and stored the (3, 2), (2, 1), (1, 0) and (0, 1), (1, 2), and (2, 3) incidence

relations. “MeshCore 32” refers to this structure with indices stored as 32-

bit integers, and “MeshCore 64” refers to the equivalent topology structure400

with indices stored as 64-bit integers. When we store this information in

32-bit integers, we use only 65% of the memory compared to the MDS.

2. Next, our database was constructed to hold the incidence relations that

correspond to the MOAB database with element-to-vertex downward and

vertex-to-element upward adjacency. “MeshCore D/U” refers to this struc-405

ture with indices stored as 32-bit integers. Hence we use only 37% of the

storage of MOAB, and 59% of the storage for the MDS-RED.

3. Finally, a third data structure for which we can configure our library,

“MeshCore D”, stores only the (“down”) (3, 0) incidence relation. The

storage requirement is an order of magnitude smaller than MDS, and410

amounts to around five times less memory than MOAB. It might not be

an appropriate comparison when the storage of more voluminous topolog-

ical information was justified, but when the finite element program has

no use for the additional incidence relations, there’s no point in storing
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Figure 3: Comparison of the required memory to store various data structures. Legends are

discussed in the text.

them, and a mesh storage scheme that avoided this cost would come out415

ahead. Our design can freely choose which incidence relations to store,

and therefore we have fine control over the amount of stored information.

The comparison data bases commit to the amount of information to store

by design. We have the advantage of the structure of the data being

configurable according to the needs of the simulation.420

We only compare the memory consumption for a non-adaptive use case. We

acknowledge that the power of the mesh data bases with which we compare may

well justify the increased demand for resources.

3.2. Comparison with DMPlex

Both the present library and DMPlex are centered on the incidence relation425

(arrows in DMPlex). Here we construct the same mesh of 102,000 four-node

tetrahedra in our library and in DMPlex. The memory consumption is recorded
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for the 32-bit integer index storage, of the full one-level representation of the

mesh. The present library uses 15.3 MB (as reported in Figure 3 as “MeshCore

32”). DMPlex [11] database for this very same mesh uses 22.6 MB of memory.430

Of course, we do recognize the greater flexibility of DMPlex: for instance,

the incidence relations (d, d − 1) are of variable cardinality, whereas ours are

of fixed cardinality and hence stored in-line. This flexibility clearly comes with

higher storage requirements, in this case 48% higher. It will depend on the

application whether or not that is a fair price to pay.435

3.3. Performance in finite element analysis

Comparison with DMPlex. On a Windows 10 laptop with an i7 processor and 16

GB of memory, the present library built the initial 100,000-tetrahedron mesh

in two seconds and and then created the full one-level representation of the440

adjacencies in 6.6 seconds. So, the total time was approximately 8.6 seconds.

A PETSC DMPlex sample code was written that built an equivalent tetra-

hedral mesh and an equivalent one-level mesh database. On the same machine,

running within the Windows Subsystem for Linux 2, this code took 10.7 seconds.

445

In-house mixed finite element package. The presented mesh library is being

used, for instance, in the package Elfel.jl [23], which supports mixed finite el-

ement methods with basis functions defined at the vertices, edges, faces, and

interiors.

A heat conduction problem with 1 million linear quadrilateral elements was450

completely solved, including mesh generation, calculation of the error, and writ-

ing out of postprocessing files, in less than 25 seconds. The assembly of the con-

ductivity matrix and the heat load vector, which is where the access to mesh

entities is especially tested, executed in less than 1.3 seconds. This is approxi-

mately the same speed as when the this problem was solved with the same mesh455

in the finite element package deal.II [24].
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In three dimensions, the conductivity matrix of a linear-tetrahedron mesh of

3 million elements (approximately 0.5 million degrees of freedom) was assembled

in 2.65 seconds.

Next we describe the use of the present library in a mixed finite element460

method, solving the Stokes problem with the Hood-Taylor approach based on

quadratic triangles for the velocities and linear triangles for the pressure. Two

meshes were used, sharing the corner nodes. A mesh of 2 million triangles and

9 million degrees of freedom was employed, with an integration rule of three

points per triangle, and the saddle-point matrix was constructed in less than465

6.5 seconds.

The above calculations were carried out with Julia for Windows 10. In

order to judge dependence of the measurements on the operating system, the

simulations were also repeated on the same machine with Windows Subsystem

for Linux 2 and Julia built for generic Linux. The timings were within 10% of470

each other. No code needed to be changed to run the model on two different

computer architectures.

4. Conclusions

The library MeshCore.jl implements a storage model for meshes composed

of common shapes such as triangles and quadrilaterals, tetrahedra and hexa-475

hedra. All incidence relations (sometimes known as adjacencies) that are com-

monly encountered in the literature can be produced by the library on the fly,

which implements the five operations (skeleton, bounded-by-facets, bounded-

by-ridges, transpose, and identity) that can derive for instance the full one-level

downward adjacencies (or downward and upward adjacencies, if desired). We480

avoid hardwiring the definition of the topological model in the implementation,

at difference to common mesh databases. Our separation of the data model

and the implementation allows for a nimble and flexible computation of just the

incidence relations that are actually needed. Consequently, the library is very

conservative in terms of memory consumption.485
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Importantly, we also avoid the use of pointers to memory, which is typical

with object-oriented mesh databases [6]. Hence we avoid the penalty associated

with storing pointers at 64-bits, which is the norm on current computer archi-

tectures. Our Julia implementation stores the database in contiguous arrays

whenever possible, and transparently switches to vector of vectors for variable-490

length data.

The current limitations include:

� The data structures do not prevent adaptivity, but the current implemen-

tation of the library does not actively support adaptive modifications of

the database. It is clear that if the mesh changed, the incidence relations495

could be recalculated, but not in an incremental fashion.

� Homogeneous meshes are implemented. Mixed-shape meshes (such as a

mixture of tetrahedra with a layer of prismatic elements, or a mostly-

quadrilateral mesh with some triangles mixed in) can be accommodated

by simply storing multiple meshes. Computing incidence relations from500

multiple meshes requires some care, but does not present major difficulties.

� No consideration has been given at this point to an extension to a dis-

tributed database for parallel computations.

The implementation in the Julia language produces code that can be at the

same time flexible, powerful, and concise: the entire library has under 500 ex-505

ecutable lines, and with copious comments it clocks in at around 1000 lines.

This may be contrasted with, for instance, the current version of MOAB which

consists of two orders of magnitude larger number of lines of code. Of course,

MOAB is much more powerful (it provides import/export, mesh modification,

parallel execution). But the point could be made that this creates an opportu-510

nity at the other end of the spectrum: something flexible, easy to understand,

and small in footprint. We believe that our library fits in that opening quite

well.

An interesting opportunity for considerably expanding the usefulness of this
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library has been identified by Rypl [25]: due to the generic form of the library, it515

is suitable for operating on four-dimensional (for instance space-time) meshes.

The needed modification entails the addition of a shape descriptor for the four-

dimensional cell. The three-dimensional cell would then become a facet, and

the faces would become ridges. The tables of incidence relations would acquire

a fifth row and column.520
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Appendix A. Glossary

Topological cover: A cover of a set X is a collection of sets whose union

contains X as a subset.615

Shape: Topological shape of any manifold dimension, 0 for vertices, 1 for edges,

2 for faces, and 3 for cells.
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Shape descriptor: Description of the type of the shape, such as the number

of vertices, facets, ridges, and so on.

Shape collection: Set of shapes of a particular shape description.620

Facet: Shape bounding another shape. A shape is bounded by facets: The

facet is a d− 1 -dimensional face of a d-dimensional entity.

Facet use: Facets are orientable. The incidence relation stores facet uses:

when a facet use orders the vertices in the same way (modulo circular

shift) as the referenced entity, the facet use is stored as a positive entity625

number; otherwise it is stored as a negative entity number.

Ridge: Shape one manifold dimension lower than the facet. For instance a

tetrahedron is bounded by facets, which in turn are bounded by edges.

These edges are the “ridges” of the tetrahedron. The ridges can also be

thought of as a ”leaky” bounding shapes of 3-D cells. The ridge is a d− 2630

-dimensional face of a d-dimensional entity.

Ridge use: Ridges are orientable. The incidence relation stores ridge uses:

when a ridge use orders the vertices in the same way (modulo circular

shift) as the referenced entity, the ridge use is stored as a positive entity

number; otherwise it is stored as a negative entity number.635

Incidence relation: Map from one shape collection to another shape collec-

tion. For instance, three-dimensional finite elements (cells) are typically

linked to the vertices by the incidence relation (3, 0), i. e. for each tetra-

hedron the four vertices are listed. Some incidence relations link a shape

to a fixed number of other shapes, other incidence relations are of variable640

cardinality. This is what is usually understood as a ”mesh”.

Incidence relation operations: The operations defined in the library are:

the identity operation, the skeleton operation, the transpose operation, the

bounded-by-facets operation, and the bounded-by-ridges operation. All

topological relations between the shapes of the four manifold dimensions645
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that are uniquely defined can be constructed using the sequence of these

operations.

Mesh topology: The mesh topology can be understood as an incidence rela-

tion between two shape collections.
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