ScenTrees.jl: A Julia Library for Generating Scenario Trees
and Scenario Lattices for Multistage Stochastic
Programming

Kipngeno Kirui* Alois Pichler* Georg Ch. Pflug’

November 5, 2019

Summary

In multistage stochastic optimization we are interested in approximations of stochastic processes.
In this setting, stochastic processes have random and uncertain outcomes and therefore decisions
must be made at different stages of the process. It is generally intractable to solve mathematical
programs with uncertain parameters described by an underlying distribution. The common
approach is to form an approximation of the original stochastic process or underlying distribution
by discretization. The procedure of discretizing a stochastic process is called scenario tree
generation. We depict the possible sequences of data for this processes in form of a scenario
tree in the case of a discrete time stochastic process and a scenario lattice for Markov processes.

Since the paper of Hgyland and Wallace (2001), scenario tree generation has been used
to solve various multistage stochastic problems in the industry and academia. Various authors
including Pflug (2001), Kovacevic and Pichler (2015) and Pflug and Pichler (2016) have come
up to add and improve various ideas into the process of generating scenario trees. However, there
is no fast and open-source implementation of the algorithm that has been available in the public
domain for various users to appreciate. Instead, various researchers and industries have been
forced to code their own implementations in a variety of languages they like themselves. This has
limited many researchers and industries who would not like to code themselves from generating
scenario trees with available implementations. Many researchers and industries also would not
get the taste of comparing ideas against their own implementations and hence they may end up
trusting their own results and implementations and maybe there is a better implementation.

The natural question when dealing with scenario generation for multistage stochastic opti-
mization problems is how to approximate a continuous distribution of the stochastic process in
such a way that the distance between the initial distribution and its approximation is minimized.
We start with an initial scenario tree and use stochastic approximation to improve the scenario

*University of Technology, Chemnitz, Germany
TUniversity of Vienna

tree. To quantify the quality of the approximation, we use the process distance between the orig-
inal process and the final scenario tree (Pflug (2009)). Process distance extends and generalizes
the Wasserstein distance to stochastic processes. It was analyzed by Pflug and Pichler (2012) and
used by Kovacevic and Pichler (2015) directly to generate scenario trees.

Generally, we consider a stochastic process X over a discrete time, i.e., X = (Xo, X1, ..., X7)
where X is deterministic. A scenario tree is a discrete time and discrete state process approxi-
mating the process X. We represent a scenario tree by X = (Xo, X1, ..., X7).

A scenario tree is a set of nodes and branches used in models of decision making under
uncertainty. Every node in a scenario tree represents a possible state of the stochastic process
at a particular point in time and a position where a decision can be made. Each scenario tree
node has only a single predecessor, but can have multiple successors. This makes the difference
with scenario lattices since nodes of scenario lattices can have multiple predecessors. A scenario
tree is organized in levels which corresponds to stages 0,1,...,7. Each node in a stage has a
specified number of predecessors as defined by the branching structure of the scenario tree. An
edge from a node indicates a possible transition of the uncertain variables from that state. The
first node of a scenario tree is called the root node and the set of nodes in the last stage are called
the leaves. Any possible path from the root node to any of the leaf nodes is called a trajectory
(also called a path or a scenario).

ScenTrees.jl is a Julia (Julia (2019)) library for generating scenario trees and scenario lattices
which can be used, for example, for multistage stochastic optimization problems. The theory and
design of the ScenTrees.jl library follows Algorithm 5 in Pflug and Pichler (2015). The library’s
design allows us to obtain a fast code with high flexibility and excellent computational efficiency.
The design choices were highly motivated by the properties of the Julia (Bezanson et al. (2017))
language. It starts with a tree which is a qualified guess by the user or an expert opinion and
iterates over the nodes of the tree updating them with scenarios drawn from a user-defined
distribution. In this way, the approximating quality of the tree is improved for each scenario
generated. The iteration stops when the predefined number of scenarios have been performed.

Main features of the library

The stochastic approximation framework allows ScenTrees.jl to be generally applicable to any
stochastic process to be approximated. The following are key features that ScenTrees.jl provides.
Implementation details and examples of usage can be found in the software’s documentation. !

(i) Generation of scenario trees and scenario lattices from stochastic processes using the
stochastic approximation algorithm: Here, the structure of the scenario tree or the scenario
lattice is fixed in terms of the branching vector then stochastic approximation is used to
improve the states of the nodes considering all the data available for every approximation.
This improvement goes on until a pre-specified number of iterations have been performed
and then the process distance is calculated.?

Documentation: https://kirui93.github.io/ScenTrees.jl/latest
2Tutorial4: https://kirui93.github.io/ScenTrees.jl/latest/tutorial/tutorial4/

https://kirui93.github.io/ScenTrees.jl/latest
https://kirui93.github.io/ScenTrees.jl/latest/tutorial/tutorial4/

(i) Generation of scenarios based on data: This is a non-parametric technique for generating
new samples from a given data. Here we have data from some observed trajectories of
a scenario process with an unknown distribution and we want to use conditional density
estimation to generate new but different samples based on the above trajectories. The new
samples can then be used to generate scenario trees or scenario lattices using the stochastic
approximation procedure.?

Example: Scenario generation from observed trajectories

We want to use the concept of density estimation and stochastic approximation to generate
scenario trees and scenario lattices for a (1000 x 5) dimensional data. The first step is to load the
library and the data into Julia as follows:

Load the package

julia> using ScenTrees

Load the csv data from a directory
julia> df = CSV.read("../RData.csv'");
Convert the DataFrame into a Matrix
julia> data = Matrix(df);

The following shows an example of a non-Markovian trajectory generated from the data using
conditional density estimation:

julia> Example = KernelScenarios(data,Logistic;Markovian=false) ()
[1.5595,0.8150,1.5058,2.6475,4.6137]

The generated data has a length equal to the number of columns of the original data. These
generated trajectories are the ones we use to approximate a scenario tree and a scenario lattice in
the following subsections.

Approximating with a scenario tree

Consider a scenario tree with a branching vector [1, 3,3, 3,2] (cf. Fig.1). We approximate this
process using 1,000, 000 number of iterations as follows:

julia> ApproxTree = TreeApproximation!(Tree([1,3,3,3,2],1),
KernelScenarios(data,Logistic;Markovian=false),1000000,2,2);
julia> treeplot(ApproxTree)

julia> savefig("ApproxTree.pdf")

3Tutorial41: https://kirui93.github.io/ScenTrees.jl/latest/tutorial/tutorialdl/

https://kirui93.github.io/ScenTrees.jl/latest/tutorial/tutorial41/

states probabilities

stage, time

Figure 1: Scenario tree with branching structure (1, 3, 3, 3, 2)

The number of possible trajectories in the scenario tree equals its number of leaves. In Figure 1,
there are 54 possible trajectories as the total number of leaves are (1 X 3 X 3 X 3 X 2) = 54. One
important thing to note also is that a tree with more branches will have a better approximation
quality. The algorithm returns the multistage distance between Figure 1 and the original stochastic
process as d = 0.23092.

Approximating with a scenario lattice

Consider a scenario lattice with a branching vector [1,3,4,5,6] (cf. Fig. 2). Clearly, this
scenario lattice has 5 stages as shown by the number of elements in the branching vector, which
is equal to number of columns in the data. We consider 1, 000, 000 iterations for the stochastic
approximation algorithm.

julia> ApproxLattice = LatticeApproximation([1,3,4,5,6],
KernelScenarios(data,Logistic;Markovian=true) ,1000000);
julia> PlotLattice(ApproxLattice)

julia> savefig("ApproxLattice.pdf")

states probabilities

stage,time
Figure 2: Scenario lattice with branching structure (1, 3,4, 5, 6)

The number of nodes in the scenario lattice is equal to the sum of elements in the branching
structure, i.e., 1 + 3+ 4+ 5+ 6 = 19 nodes. The scenario tree in Fig. 1 has 94 nodes and 54
possible scenarios while the scenario lattice in Fig. 2 has 19 nodes and (1 X2 x 3 x4 x 5) = 360
scenarios. This shows that a scenario lattice with fewer number of nodes can have many possible
trajectories than a scenario tree with more number of nodes. The algorithm returns the multistage
distance between the scenario lattice and the original process as d = 1.1718.

Acknowledgments

This work was supported by the German Academic Exchange Service (DAAD).

References

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical
computing. SIAM Review, 59(1):65-98, 2017. doi:10.1137/141000671. 2

K. Hgyland and S. W. Wallace. Generating scenario trees for multistage decision problems.
Management Sceince, 47:295-307, 2001. doi:10.1287/mnsc.47.4.295.9834. 1

Julia. Julia version 1.2. Julia Computing, MIT, 2019. URL https://docs.julialang.org/
en/vl. 2

>vacevicPich1er\ R. M. Kovacevic and A. Pichler. Tree approximation for discrete time stochastic pro-

http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1287/mnsc.47.4.295.9834
https://docs.julialang.org/en/v1
https://docs.julialang.org/en/v1

cesses: a process distance approach. Annals of Operations Research, pages 1-27, 2015.
doi:10.1007/s10479-015-1994-2. 1, 2

G. Ch. Pflug. Scenario tree generation for multiperiod financial optimization by optimal dis-
cretization. Mathematical Programming, 89:251-271, 2001. doi:10.1007/s101070000202.
1

G. Ch. Pflug. Version-independence and nested distributions in multistage stochastic optimiza-
tion. SIAM Journal on Optimization, 20:1406-1420, 2009. doi:10.1137/080718401. 2

flugPichler2011 ‘ G. Ch. Pflug and A. Pichler. A distance for multistage stochastic optimization models. SIAM
Journal on Optimization, 22(1):1-23, 2012. doi:10.1137/110825054. 2

"DynScenarioGen ‘ G. Ch. Pflug and A. Pichler. Dynamic generation of scenario trees. Computational Optimization
and Applications, 62(3):641-668, 2015. doi:10.1007/s10589-015-9758-0. 2

ElugPichler2®16‘ G. Ch. Pflug and A. Pichler. From empirical observations to tree models for stochastic opti-
mization: Convergence properties. SIAM Journal on Optimization, 26(3):1715-1740, 2016.
doi:10.1137/15M1043376. 1

http://dx.doi.org/10.1007/s10479-015-1994-2
http://dx.doi.org/10.1007/s101070000202
http://dx.doi.org/10.1137/080718401
http://dx.doi.org/10.1137/110825054
http://dx.doi.org/10.1007/s10589-015-9758-0
http://dx.doi.org/10.1137/15M1043376

