WildBootTests.wildboottest
— Functionwildboottest([T::DataType=Float32,] R::AbstractMatrix, r::AbstractVector; resp, <optional keyword arguments>) -> WildBootTest.BoottestResult
Function to perform wild-bootstrap-based hypothesis test
Positional arguments
T::DataType
: data type for inputs, results, and computations: Float32 (default) or Float64R::AbstractMatrix
andr::AbstractVector
: required matrix and vector expressesing the null Rβ=r; see Notes
Required keyword argument
resp::AbstractVector
: response/dependent variable (y/y₁)
Optional keyword arguments
predexog::AbstractVecOrMat
: exogenous predictors, including constant term, if any (X/X₁)predendog::AbstractVecOrMat
: endogenous predictors (Y₂)inst::AbstractVecOrMat
: instruments (X₂)R1::AbstractMatrix
andr1::AbstractVector
: model constraints; same format as forR
andr
clustid::AbstractVecOrMat{<:Integer}
: data vector/matrix of error and bootstrapping cluster identifiers; see Notesnbootclustvar::Integer=1
: number of bootstrap-clustering variablesnerrclustvar::Integer=nbootclustvar
: number of error-clustering variableshetrobust::Bool=true
: true unless errors are treated as iidfeid::AbstractVector{<:Integer}
: data vector for fixed effect group identifierfedfadj::Bool=true
: true if small-sample adjustment should reflect number of fixed effectsobswt::AbstractVector
: observation weight vector; default is equal weightingfweights::Bool=false
: true for frequency weightsmaxmatsize::Number
: maximum size of auxilliary weight matrix (v), in gigabytesptype::PType=symmetric
: p value type (symmetric
,equaltail
,lower
,upper
)bootstrapc::Bool=false
: true for bootstrap-cLIML::Bool=false
: true for LIML or Fuller LIMLFuller::Number
: Fuller factorκ::Number
: fixed κ for k-class estimationARubin::Bool=false
: true for Anderson-Rubin testsmall::Bool=true
: true for small-sample correctionsscorebs::Bool=false
: true for score bootstrap instead of wild bootstrapreps::Integer=999
: number of bootstrap replications;reps
= 0 requests classical Rao (or Wald) test ifimposenull
=true
(orfalse
)imposenull::Bool=true
: true to impose nullauxwttype::AuxWtType=rademacher
: auxilliary weight type (rademacher
,mammen
,webb
,normal
,gamma
)rng::AbstractRNG=MersenneTwister()
: randon number generatorlevel::Number=.95
: significance level (0-1)rtol::Number=1e-6
: tolerance for CI bound determinationmadjtype::MAdjType=nomadj
: multiple hypothesis adjustment (nomadj
,bonferroni
,sidak
)NH₀::Integer=1
: number of hypotheses tested, including one being tested nowML::Bool=false
: true for (nonlinear) ML estimationscores::AbstractVecOrMat
: for ML, pre-computed scoresβ::AbstractVector
: for ML, parameter estimatesA::AbstractMatrix
: for ML, covariance estimatesgridmin
: vector of graph lower bounds, max length 2,missing
entries ask wildboottest() to choosegridmax
: vector of graph upper boundsgridpoints
: vector of number of sampling pointsdiststat::DistStatType=nodiststat
: t to save bootstrap distribution of Wald/χ²/F/t statistics; numer to save numerators thereofgetCI::Bool=true
: whether to return CIgetplot::Bool=getCI
: whether to generate plot datagetauxweights::Bool=false
: whether to save auxilliary weight matrix (v)
Notes
The columns of R
in the statement of the null should correspond to those of the matrix [predexog
predendog
], where predendog
is non-empty only in instrumental variables regression.
Order the columns of clustid
this way:
- Variables only used to define bootstrapping clusters, as in the subcluster bootstrap.
- Variables used to define both bootstrapping and error clusters.
- Variables only used to define error clusters.
In the most common case, clustid
is a single column of type 2.
The code does not handle missing data values: all data and identifier matrices must be restricted to the estimation sample.
WildBootTests.AuxWtType
— TypeAuxilliary weight types: rademacher
, mammen
, webb
, normal
, gamma
WildBootTests.PType
— Typep value types: symmetric
, equaltail
, lower
, upper
WildBootTests.MAdjType
— TypeMultiple hypothesis adjustment types: nomadj
, bonferroni
, sidak
WildBootTests.DistStatType
— TypeBootstrap distribution statistics optionally returned
WildBootTests.teststat
— FunctionReturn test statistic subject to wild bootstrap test
WildBootTests.stattype
— FunctionReturn type of test statistic subject to wild bootstrap test: "t", "z", "F", or "χ²"
WildBootTests.p
— FunctionReturn p value from wild bootstrap test
WildBootTests.padj
— FunctionReturnp p value from wild bootstrap test after multiple-hypothesis adjustment, if any
WildBootTests.reps
— FunctionReturn requested number of replications in wild bootstrap test
WildBootTests.repsfeas
— FunctionReturn actual number of replications in wild bootstrap test, subject to enumeration of Rademacher draws
WildBootTests.NBootClust
— FunctionReturn number of bootstrapping clusters in wild bootstrap test
WildBootTests.dof
— FunctionReturn degrees of freedom wild bootstrap test
WildBootTests.dof_r
— FunctionReturn residual degrees of freedom wild bootstrap test
WildBootTests.plotpoints
— FunctionReturn data for confidence plot of wild bootstrap test. Return value is a 2-tuple with named entries X
and p
holding the confidence sampling locations and p values respectively. X
is in turn a 1- or 2-tuple of vectors of sampling coordinates for each dimension of the tested hypothesis.
WildBootTests.peak
— FunctionReturn parameter value with peak p value in wild bootstrap test
WildBootTests.CI
— FunctionReturn confidence interval matrix from wild bootstrap test, one row per disjoint piece
WildBootTests.dist
— FunctionReturn bootstrap distribution of statistic or statistic numerator in wild bootstrap test
WildBootTests.statnumer
— FunctionReturn numerator of test statistic in wild bootstrap test
WildBootTests.statvar
— FunctionReturn denominator of test statistic in wild bootstrap test
WildBootTests.auxweights
— FunctionReturn auxilliary weight matrix for wild bootstrap