
An Implicit/Explicit CUDA-Accelerated Solver for the
2D Beeler-Reuter Model

Shahriar Iravanian

June 27, 2019

0.1 Background

JuliaDiffEq is a suite of optimized Julia libraries to solve ordinary differential equations
(ODE). JuliaDiffEq provides a large number of explicit and implicit solvers suited for differ-
ent types of ODE problems. It is possible to reduce a system of partial differential equations
into an ODE problem by employing the method of lines (MOL). The essence of MOL is to
discretize the spatial derivatives (by finite difference, finite volume or finite element meth-
ods) into algebraic equations and to keep the time derivatives as is. The resulting differential
equations are left with only one independent variable (time) and can be solved with an ODE
solver. Solving Systems of Stochastic PDEs and using GPUs in Julia is a brief introduction
to MOL and using GPUs to accelerate PDE solving in JuliaDiffEq. Here we expand on this
introduction by developing an implicit/explicit (IMEX) solver for a 2D cardiac electrophys-
iology model and show how to use CuArray and CUDAnative libraries to run the explicit
part of the model on a GPU.

Note that this tutorial does not use the higher order IMEX methods built into DifferentialE-
quations.jl but instead shows how to hand-split an equation when the explicit portion has
an analytical solution (or approxiate), which is common in many scenarios.

There are hundreds of ionic models that describe cardiac electrical activity in various degrees
of detail. Most are based on the classic Hodgkin-Huxley model and define the time-evolution
of different state variables in the form of nonlinear first-order ODEs. The state vector for
these models includes the transmembrane potential, gating variables, and ionic concentra-
tions. The coupling between cells is through the transmembrame potential only and is
described as a reaction-diffusion equation, which is a parabolic PDE,

∂V/∂t = ∇(D∇V) − Iion

Cm

,

where V is the transmembrane potential, D is a diffusion tensor, Iion is the sum of the trans-
membrane currents and is calculated from the ODEs, and Cm is the membrane capacitance
and is usually assumed to be constant. Here we model a uniform and isotropic medium.
Therefore, the model can be simplified to,

∂V/∂t = D∆V − Iion

Cm

,

where D is now a scalar. By nature, these models have to deal with different time scales

1

https://github.com/JuliaDiffEq
https://en.wikipedia.org/wiki/Method_of_lines
http://www.stochasticlifestyle.com/solving-systems-stochastic-pdes-using-gpus-julia/
https://github.com/JuliaGPU/CuArrays.jl
https://github.com/JuliaGPU/CUDAnative.jl
http://docs.juliadiffeq.org/latest/solvers/split_ode_solve.html#Implicit-Explicit-(IMEX)-ODE-1
http://docs.juliadiffeq.org/latest/solvers/split_ode_solve.html#Implicit-Explicit-(IMEX)-ODE-1
https://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley_model

and are therefore classified as stiff. Commonly, they are solved using the explicit Euler
method, usually with a closed form for the integration of the gating variables (the Rush-
Larsen method, see below). We can also solve these problems using implicit or semi-implicit
PDE solvers (e.g., the Crank-Nicholson method combined with an iterative solver). Higher
order explicit methods such as Runge-Kutta and linear multi-step methods cannot overcome
the stiffness and are not particularly helpful.

In this tutorial, we first develop a CPU-only IMEX solver and then show how to move the
explicit part to a GPU.

0.1.1 The Beeler-Reuter Model

We have chosen the Beeler-Reuter ventricular ionic model as our example. It is a classic
model first described in 1977 and is used as a base for many other ionic models. It has eight
state variables, which makes it complicated enough to be interesting without obscuring the
main points of the exercise. The eight state variables are: the transmembrane potential
(V), sodium-channel activation and inactivation gates (m and h, similar to the Hodgkin-
Huxley model), with an additional slow inactivation gate (j), calcium-channel activation
and deactivations gates (d and f), a time-dependent inward-rectifying potassium current
gate (x1), and intracellular calcium concentration (c). There are four currents: a sodium
current (iNa), a calcium current (iCa), and two potassium currents, one time-dependent (ix1)
and one background time-independent (iK1).

0.2 CPU-Only Beeler-Reuter Solver

Let’s start by developing a CPU only IMEX solver. The main idea is to use the Differen-
tialEquations framework to handle the implicit part of the equation and code the analytical
approximation for explicit part separately. If no analytical approximation was known for the
explicit part, one could use methods from this list.

First, we define the model constants:

const v0 = -84.624
const v1 = 10.0
const C_K1 = 1.0f0
const C_x1 = 1.0f0
const C_Na = 1.0f0
const C_s = 1.0f0
const D_Ca = 0.0f0
const D_Na = 0.0f0
const g_s = 0.09f0
const g_Na = 4.0f0
const g_NaC = 0.005f0
const ENa = 50.0f0 + D_Na
const γ = 0.5f0
const C_m = 1.0f0

1.0f0

2

https://en.wikipedia.org/wiki/Crank%E2%80%93Nicolson_method
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1283659/
http://docs.juliadiffeq.org/latest/solvers/split_ode_solve.html#Implicit-Explicit-(IMEX)-ODE-1

Note that the constants are defined as Float32 and not Float64. The reason is that most
GPUs have many more single precision cores than double precision ones. To ensure uni-
formity between CPU and GPU, we also code most states variables as Float32 except for
the transmembrane potential, which is solved by an implicit solver provided by the Sundial
library and needs to be Float64.

0.2.1 The State Structure

Next, we define a struct to contain our state. BeelerReuterCpu is a functor and we will
define a deriv function as its associated function.

mutable struct BeelerReuterCpu <: Function
t::Float64 # the last timestep time to calculate ∆t
diff_coef::Float64 # the diffusion-coefficient (coupling strength)

C::Array{Float32, 2} # intracellular calcium concentration
M::Array{Float32, 2} # sodium current activation gate (m)
H::Array{Float32, 2} # sodium current inactivation gate (h)
J::Array{Float32, 2} # sodium current slow inactivaiton gate (j)
D::Array{Float32, 2} # calcium current activaiton gate (d)
F::Array{Float32, 2} # calcium current inactivation gate (f)
XI::Array{Float32, 2} # inward-rectifying potassium current (iK1)

∆u::Array{Float64, 2} # place-holder for the Laplacian

function BeelerReuterCpu(u0, diff_coef)
self = new()

ny, nx = size(u0)
self.t = 0.0
self.diff_coef = diff_coef

self.C = fill(0.0001f0, (ny,nx))
self.M = fill(0.01f0, (ny,nx))
self.H = fill(0.988f0, (ny,nx))
self.J = fill(0.975f0, (ny,nx))
self.D = fill(0.003f0, (ny,nx))
self.F = fill(0.994f0, (ny,nx))
self.XI = fill(0.0001f0, (ny,nx))

self.∆u = zeros(ny,nx)

return self
end

end

0.2.2 Laplacian

The finite-difference Laplacian is calculated in-place by a 5-point stencil. The Neumann
boundary condition is enforced. Note that we could have also used DiffEqOperators.jl to
automate this step.

3

https://github.com/JuliaDiffEq/DiffEqOperators.jl

5-point stencil
function laplacian(∆u, u)

n1, n2 = size(u)

internal nodes
for j = 2:n2-1

for i = 2:n1-1
@inbounds ∆u[i,j] = u[i+1,j] + u[i-1,j] + u[i,j+1] + u[i,j-1] - 4*u[i,j]

end
end

left/right edges
for i = 2:n1-1

@inbounds ∆u[i,1] = u[i+1,1] + u[i-1,1] + 2*u[i,2] - 4*u[i,1]
@inbounds ∆u[i,n2] = u[i+1,n2] + u[i-1,n2] + 2*u[i,n2-1] - 4*u[i,n2]

end

top/bottom edges
for j = 2:n2-1

@inbounds ∆u[1,j] = u[1,j+1] + u[1,j-1] + 2*u[2,j] - 4*u[1,j]
@inbounds ∆u[n1,j] = u[n1,j+1] + u[n1,j-1] + 2*u[n1-1,j] - 4*u[n1,j]

end

corners
@inbounds ∆u[1,1] = 2*(u[2,1] + u[1,2]) - 4*u[1,1]
@inbounds ∆u[n1,1] = 2*(u[n1-1,1] + u[n1,2]) - 4*u[n1,1]
@inbounds ∆u[1,n2] = 2*(u[2,n2] + u[1,n2-1]) - 4*u[1,n2]
@inbounds ∆u[n1,n2] = 2*(u[n1-1,n2] + u[n1,n2-1]) - 4*u[n1,n2]

end

laplacian (generic function with 1 method)

0.2.3 The Rush-Larsen Method

We use an explicit solver for all the state variables except for the transmembrane potential
which is solved with the help of an implicit solver. The explicit solver is a domain-specific
exponential method, the Rush-Larsen method. This method utilizes an approximation on
the model in order to transform the IMEX equation into a form suitable for an implicit
ODE solver. This combination of implicit and explicit methods forms a specialized IMEX
solver. For general IMEX integration, please see the IMEX solvers documentation. While
we could have used the general model to solve the current problem, for this specific model,
the transformation approach is more efficient and is of practical interest.

The Rush-Larsen method replaces the explicit Euler integration for the gating variables
with direct integration. The starting point is the general ODE for the gating variables in
Hodgkin-Huxley style ODEs,

dg

dt
= α(V)(1 − g) − β(V)g

where g is a generic gating variable, ranging from 0 to 1, and α and β are reaction rates.
This equation can be written as,

4

http://docs.juliadiffeq.org/latest/solvers/split_ode_solve.html#Implicit-Explicit-%28IMEX%29-ODE-1
https://ieeexplore.ieee.org/document/4122859/

dg

dt
= (g∞ − g)/τg,

where g∞ and τg are

g∞ = α

(α + β)
,

and,

τg = 1
(α + β)

.

Assuing that g∞ and τg are constant for the duration of a single time step (∆t), which is a
reasonable assumption for most cardiac models, we can integrate directly to have,

g(t + ∆t) = g∞ − (g∞ − g(∆t)) e−∆t/τg .

This is the Rush-Larsen technique. Note that as ∆t → 0, this equations morphs into the
explicit Euler formula,

g(t + ∆t) = g(t) + ∆t
dg

dt
.

rush_larsen is a helper function that use the Rush-Larsen method to integrate the gating
variables.

@inline function rush_larsen(g, α, β, ∆t)
inf = α/(α+β)
τ = 1f0 / (α+β)
return clamp(g + (g - inf) * expm1(-∆t/τ), 0f0, 1f0)

end

rush_larsen (generic function with 1 method)

The gating variables are updated as below. The details of how to calculate α and β are
based on the Beeler-Reuter model and not of direct interest to this tutorial.

function update_M_cpu(g, v, ∆t)
the condition is needed here to prevent NaN when v == 47.0
α = isapprox(v, 47.0f0) ? 10.0f0 : -(v+47.0f0) / (exp(-0.1f0*(v+47.0f0)) - 1.0f0)
β = (40.0f0 * exp(-0.056f0*(v+72.0f0)))
return rush_larsen(g, α, β, ∆t)

end

function update_H_cpu(g, v, ∆t)
α = 0.126f0 * exp(-0.25f0*(v+77.0f0))
β = 1.7f0 / (exp(-0.082f0*(v+22.5f0)) + 1.0f0)

return rush_larsen(g, α, β, ∆t)
end

function update_J_cpu(g, v, ∆t)

5

α = (0.55f0 * exp(-0.25f0*(v+78.0f0))) / (exp(-0.2f0*(v+78.0f0)) + 1.0f0)
β = 0.3f0 / (exp(-0.1f0*(v+32.0f0)) + 1.0f0)
return rush_larsen(g, α, β, ∆t)

end

function update_D_cpu(g, v, ∆t)
α = γ * (0.095f0 * exp(-0.01f0*(v-5.0f0))) / (exp(-0.072f0*(v-5.0f0)) + 1.0f0)
β = γ * (0.07f0 * exp(-0.017f0*(v+44.0f0))) / (exp(0.05f0*(v+44.0f0)) + 1.0f0)
return rush_larsen(g, α, β, ∆t)

end

function update_F_cpu(g, v, ∆t)
α = γ * (0.012f0 * exp(-0.008f0*(v+28.0f0))) / (exp(0.15f0*(v+28.0f0)) + 1.0f0)
β = γ * (0.0065f0 * exp(-0.02f0*(v+30.0f0))) / (exp(-0.2f0*(v+30.0f0)) + 1.0f0)
return rush_larsen(g, α, β, ∆t)

end

function update_XI_cpu(g, v, ∆t)
α = (0.0005f0 * exp(0.083f0*(v+50.0f0))) / (exp(0.057f0*(v+50.0f0)) + 1.0f0)
β = (0.0013f0 * exp(-0.06f0*(v+20.0f0))) / (exp(-0.04f0*(v+20.0f0)) + 1.0f0)
return rush_larsen(g, α, β, ∆t)

end

update_XI_cpu (generic function with 1 method)

The intracelleular calcium is not technically a gating variable, but we can use a similar
explicit exponential integrator for it.

function update_C_cpu(g, d, f, v, ∆t)
ECa = D_Ca - 82.3f0 - 13.0278f0 * log(g)
kCa = C_s * g_s * d * f
iCa = kCa * (v - ECa)
inf = 1.0f-7 * (0.07f0 - g)
τ = 1f0 / 0.07f0
return g + (g - inf) * expm1(-∆t/τ)

end

update_C_cpu (generic function with 1 method)

0.2.4 Implicit Solver

Now, it is time to define the derivative function as an associated function of BeelerReuter-
Cpu. We plan to use the CVODE_BDF solver as our implicit portion. Similar to other
iterative methods, it calls the deriv function with the same t multiple times. For example,
these are consecutive ts from a representative run:

0.86830 0.86830 0.85485 0.85485 0.85485 0.86359 0.86359 0.86359 0.87233 0.87233 0.87233
0.88598 ...

Here, every time step is called three times. We distinguish between two types of calls to the
deriv function. When t changes, the gating variables are updated by calling update_gates_cpu:

6

function update_gates_cpu(u, XI, M, H, J, D, F, C, ∆t)
let ∆t = Float32(∆t)

n1, n2 = size(u)
for j = 1:n2

for i = 1:n1
v = Float32(u[i,j])

XI[i,j] = update_XI_cpu(XI[i,j], v, ∆t)
M[i,j] = update_M_cpu(M[i,j], v, ∆t)
H[i,j] = update_H_cpu(H[i,j], v, ∆t)
J[i,j] = update_J_cpu(J[i,j], v, ∆t)
D[i,j] = update_D_cpu(D[i,j], v, ∆t)
F[i,j] = update_F_cpu(F[i,j], v, ∆t)

C[i,j] = update_C_cpu(C[i,j], D[i,j], F[i,j], v, ∆t)
end

end
end

end

update_gates_cpu (generic function with 1 method)

On the other hand, du is updated at each time step, since it is independent of ∆t.

iK1 is the inward-rectifying potassium current
function calc_iK1(v)

ea = exp(0.04f0*(v+85f0))
eb = exp(0.08f0*(v+53f0))
ec = exp(0.04f0*(v+53f0))
ed = exp(-0.04f0*(v+23f0))
return 0.35f0 * (4f0*(ea-1f0)/(eb + ec)

+ 0.2f0 * (isapprox(v, -23f0) ? 25f0 : (v+23f0) / (1f0-ed)))
end

ix1 is the time-independent background potassium current
function calc_ix1(v, xi)

ea = exp(0.04f0*(v+77f0))
eb = exp(0.04f0*(v+35f0))
return xi * 0.8f0 * (ea-1f0) / eb

end

iNa is the sodium current (similar to the classic Hodgkin-Huxley model)
function calc_iNa(v, m, h, j)

return C_Na * (g_Na * m^3 * h * j + g_NaC) * (v - ENa)
end

iCa is the calcium current
function calc_iCa(v, d, f, c)

ECa = D_Ca - 82.3f0 - 13.0278f0 * log(c) # ECa is the calcium reversal potential
return C_s * g_s * d * f * (v - ECa)

end

function update_du_cpu(du, u, XI, M, H, J, D, F, C)
n1, n2 = size(u)

for j = 1:n2
for i = 1:n1

7

v = Float32(u[i,j])

calculating individual currents
iK1 = calc_iK1(v)
ix1 = calc_ix1(v, XI[i,j])
iNa = calc_iNa(v, M[i,j], H[i,j], J[i,j])
iCa = calc_iCa(v, D[i,j], F[i,j], C[i,j])

total current
I_sum = iK1 + ix1 + iNa + iCa

the reaction part of the reaction-diffusion equation
du[i,j] = -I_sum / C_m

end
end

end

update_du_cpu (generic function with 1 method)

Finally, we put everything together is our deriv function, which is a call on BeelerReuterCpu.

function (f::BeelerReuterCpu)(du, u, p, t)
∆t = t - f.t

if ∆t != 0 || t == 0
update_gates_cpu(u, f.XI, f.M, f.H, f.J, f.D, f.F, f.C, ∆t)
f.t = t

end

laplacian(f.∆u, u)

calculate the reaction portion
update_du_cpu(du, u, f.XI, f.M, f.H, f.J, f.D, f.F, f.C)

...add the diffusion portion
du .+= f.diff_coef .* f.∆u

end

0.2.5 Results

Time to test! We need to define the starting transmembrane potential with the help of global
constants v0 and v1, which represent the resting and activated potentials.

const N = 192;
u0 = fill(v0, (N, N));
u0[90:102,90:102] .= v1; # a small square in the middle of the domain

The initial condition is a small square in the middle of the domain.

using Plots
heatmap(u0)

8

25 50 75 100 125 150 175

25

50

75

100

125

150

175

-80

-70

-60

-50

-40

-30

-20

-10

0

10

Next, the problem is defined:

using DifferentialEquations, Sundials

deriv_cpu = BeelerReuterCpu(u0, 1.0);
prob = ODEProblem(deriv_cpu, u0, (0.0, 50.0));

For stiff reaction-diffusion equations, CVODE_BDF from Sundial library is an excellent
solver.

@time sol = solve(prob, CVODE_BDF(linear_solver=:GMRES), saveat=100.0);

38.906200 seconds (2.66 M allocations: 138.287 MiB, 0.29% gc time)

heatmap(sol.u[end])

9

25 50 75 100 125 150 175

25

50

75

100

125

150

175

-80

-70

-60

-50

-40

-30

-20

-10

0

10

0.3 CPU/GPU Beeler-Reuter Solver

GPUs are great for embarrassingly parallel problems but not so much for highly coupled
models. We plan to keep the implicit part on CPU and run the decoupled explicit code on
a GPU with the help of the CUDAnative library.

0.3.1 GPUs and CUDA

It this section, we present a brief summary of how GPUs (specifically NVIDIA GPUs) work
and how to program them using the Julia CUDA interface. The readers who are familiar
with these basic concepts may skip this section.

Let’s start by looking at the hardware of a typical high-end GPU, GTX 1080. It has four
Graphics Processing Clusters (equivalent to a discrete CPU), each harboring five Streaming
Multiprocessor (similar to a CPU core). Each SM has 128 single-precision CUDA cores.
Therefore, GTX 1080 has a total of 4 x 5 x 128 = 2560 CUDA cores. The maximum
theoretical throughput for a GTX 1080 is reported as 8.87 TFLOPS. This figure is calculated
for a boost clock frequency of 1.733 MHz as 2 x 2560 x 1.733 MHz = 8.87 TFLOPS. The
factor 2 is included because two single floating point operations, a multiplication and an
addition, can be done in a clock cycle as part of a fused-multiply-addition FMA operation.
GTX 1080 also has 8192 MB of global memory accessible to all the cores (in addition to
local and shared memory on each SM).

A typical CUDA application has the following flow:

1. Define and initialize the problem domain tensors (multi-dimensional arrays) in CPU
memory.

10

2. Allocate corresponding tensors in the GPU global memory.

3. Transfer the input tensors from CPU to the corresponding GPU tensors.

4. Invoke CUDA kernels (i.e., the GPU functions callable from CPU) that operate on the
GPU tensors.

5. Transfer the result tensors from GPU back to CPU.

6. Process tensors on CPU.

7. Repeat steps 3-6 as needed.

Some libraries, such as ArrayFire, hide the complexicities of steps 2-5 behind a higher level of
abstraction. However, here we take a lower level route. By using CuArray and CUDAnative,
we achieve a finer-grained control and higher performance. In return, we need to implement
each step manually.

CuArray is a thin abstraction layer over the CUDA API and allows us to define GPU-side
tensors and copy data to and from them but does not provide for operations on tensors.
CUDAnative is a compiler that translates Julia functions designated as CUDA kernels into
ptx (a high-level CUDA assembly language).

0.3.2 The CUDA Code

The key to fast CUDA programs is to minimize CPU/GPU memory transfers and global
memory accesses. The implicit solver is currently CPU only, but it only needs access to the
transmembrane potential. The rest of state variables reside on the GPU memory.

We modify BeelerReuterCpu into BeelerReuterGpu by defining the state variables as CuAr-
rays instead of standard Julia Arrays. The name of each variable defined on GPU is prefixed
by d_ for clarity. Note that ∆v is a temporary storage for the Laplacian and stays on the
CPU side.

using CUDAnative, CuArrays

mutable struct BeelerReuterGpu <: Function
t::Float64 # the last timestep time to calculate ∆t
diff_coef::Float64 # the diffusion-coefficient (coupling strength)

d_C::CuArray{Float32, 2} # intracellular calcium concentration
d_M::CuArray{Float32, 2} # sodium current activation gate (m)
d_H::CuArray{Float32, 2} # sodium current inactivation gate (h)
d_J::CuArray{Float32, 2} # sodium current slow inactivaiton gate (j)
d_D::CuArray{Float32, 2} # calcium current activaiton gate (d)
d_F::CuArray{Float32, 2} # calcium current inactivation gate (f)
d_XI::CuArray{Float32, 2} # inward-rectifying potassium current (iK1)

d_u::CuArray{Float64, 2} # place-holder for u in the device memory
d_du::CuArray{Float64, 2} # place-holder for d_u in the device memory

∆v::Array{Float64, 2} # place-holder for voltage gradient

function BeelerReuterGpu(u0, diff_coef)

11

https://github.com/arrayfire/arrayfire
https://github.com/JuliaGPU/CuArrays.jl
https://github.com/JuliaGPU/CUDAnative.jl

self = new()

ny, nx = size(u0)
@assert (nx % 16 == 0) && (ny % 16 == 0)
self.t = 0.0
self.diff_coef = diff_coef

self.d_C = CuArray(fill(0.0001f0, (ny,nx)))
self.d_M = CuArray(fill(0.01f0, (ny,nx)))
self.d_H = CuArray(fill(0.988f0, (ny,nx)))
self.d_J = CuArray(fill(0.975f0, (ny,nx)))
self.d_D = CuArray(fill(0.003f0, (ny,nx)))
self.d_F = CuArray(fill(0.994f0, (ny,nx)))
self.d_XI = CuArray(fill(0.0001f0, (ny,nx)))

self.d_u = CuArray(u0)
self.d_du = CuArray(zeros(ny,nx))

self.∆v = zeros(ny,nx)

return self
end

end

The Laplacian function remains unchanged. The main change to the explicit gating solvers
is that exp and expm1 functions are prefixed by CUDAnative.. This is a technical nuisance
that will hopefully be resolved in future.

function rush_larsen_gpu(g, α, β, ∆t)
inf = α/(α+β)
τ = 1.0/(α+β)
return clamp(g + (g - inf) * CUDAnative.expm1(-∆t/τ), 0f0, 1f0)

end

function update_M_gpu(g, v, ∆t)
the condition is needed here to prevent NaN when v == 47.0
α = isapprox(v, 47.0f0) ? 10.0f0 : -(v+47.0f0) / (CUDAnative.exp(-0.1f0*(v+47.0f0))
- 1.0f0)
β = (40.0f0 * CUDAnative.exp(-0.056f0*(v+72.0f0)))
return rush_larsen_gpu(g, α, β, ∆t)

end

function update_H_gpu(g, v, ∆t)
α = 0.126f0 * CUDAnative.exp(-0.25f0*(v+77.0f0))
β = 1.7f0 / (CUDAnative.exp(-0.082f0*(v+22.5f0)) + 1.0f0)
return rush_larsen_gpu(g, α, β, ∆t)

end

function update_J_gpu(g, v, ∆t)
α = (0.55f0 * CUDAnative.exp(-0.25f0*(v+78.0f0))) /
(CUDAnative.exp(-0.2f0*(v+78.0f0)) + 1.0f0)
β = 0.3f0 / (CUDAnative.exp(-0.1f0*(v+32.0f0)) + 1.0f0)
return rush_larsen_gpu(g, α, β, ∆t)

end

function update_D_gpu(g, v, ∆t)
α = γ * (0.095f0 * CUDAnative.exp(-0.01f0*(v-5.0f0))) /
(CUDAnative.exp(-0.072f0*(v-5.0f0)) + 1.0f0)

12

β = γ * (0.07f0 * CUDAnative.exp(-0.017f0*(v+44.0f0))) /
(CUDAnative.exp(0.05f0*(v+44.0f0)) + 1.0f0)
return rush_larsen_gpu(g, α, β, ∆t)

end

function update_F_gpu(g, v, ∆t)
α = γ * (0.012f0 * CUDAnative.exp(-0.008f0*(v+28.0f0))) /
(CUDAnative.exp(0.15f0*(v+28.0f0)) + 1.0f0)
β = γ * (0.0065f0 * CUDAnative.exp(-0.02f0*(v+30.0f0))) /
(CUDAnative.exp(-0.2f0*(v+30.0f0)) + 1.0f0)
return rush_larsen_gpu(g, α, β, ∆t)

end

function update_XI_gpu(g, v, ∆t)
α = (0.0005f0 * CUDAnative.exp(0.083f0*(v+50.0f0))) /
(CUDAnative.exp(0.057f0*(v+50.0f0)) + 1.0f0)
β = (0.0013f0 * CUDAnative.exp(-0.06f0*(v+20.0f0))) /
(CUDAnative.exp(-0.04f0*(v+20.0f0)) + 1.0f0)
return rush_larsen_gpu(g, α, β, ∆t)

end

function update_C_gpu(c, d, f, v, ∆t)
ECa = D_Ca - 82.3f0 - 13.0278f0 * CUDAnative.log(c)
kCa = C_s * g_s * d * f
iCa = kCa * (v - ECa)
inf = 1.0f-7 * (0.07f0 - c)
τ = 1f0 / 0.07f0
return c + (c - inf) * CUDAnative.expm1(-∆t/τ)

end

update_C_gpu (generic function with 1 method)

Similarly, we modify the functions to calculate the individual currents by adding CUDAna-
tive prefix.

iK1 is the inward-rectifying potassium current
function calc_iK1(v)

ea = CUDAnative.exp(0.04f0*(v+85f0))
eb = CUDAnative.exp(0.08f0*(v+53f0))
ec = CUDAnative.exp(0.04f0*(v+53f0))
ed = CUDAnative.exp(-0.04f0*(v+23f0))
return 0.35f0 * (4f0*(ea-1f0)/(eb + ec)

+ 0.2f0 * (isapprox(v, -23f0) ? 25f0 : (v+23f0) / (1f0-ed)))
end

ix1 is the time-independent background potassium current
function calc_ix1(v, xi)

ea = CUDAnative.exp(0.04f0*(v+77f0))
eb = CUDAnative.exp(0.04f0*(v+35f0))
return xi * 0.8f0 * (ea-1f0) / eb

end

iNa is the sodium current (similar to the classic Hodgkin-Huxley model)
function calc_iNa(v, m, h, j)

return C_Na * (g_Na * m^3 * h * j + g_NaC) * (v - ENa)
end

13

iCa is the calcium current
function calc_iCa(v, d, f, c)

ECa = D_Ca - 82.3f0 - 13.0278f0 * CUDAnative.log(c) # ECa is the calcium reversal
potential
return C_s * g_s * d * f * (v - ECa)

end

calc_iCa (generic function with 1 method)

0.3.3 CUDA Kernels

A CUDA program does not directly deal with GPCs and SMs. The logical view of a CUDA
program is in the term of blocks and threads. We have to specify the number of block and
threads when running a CUDA kernel. Each thread runs on a single CUDA core. Threads
are logically bundled into blocks, which are in turn specified on a grid. The grid stands for
the entirety of the domain of interest.

Each thread can find its logical coordinate by using few pre-defined indexing variables (threa-
dIdx, blockIdx, blockDim and gridDim) in C/C++ and the corresponding functions (e.g.,
threadIdx()) in Julia. There variables and functions are defined automatically for each
thread and may return a different value depending on the calling thread. The return value
of these functions is a 1, 2, or 3 dimensional structure whose elements can be accessed as
.x, .y, and .z (for a 1-dimensional case, .x reports the actual index and .y and .z simply
return 1). For example, if we deploy a kernel in 128 blocks and with 256 threads per block,
each thread will see

gridDim.x = 128;
blockDim=256;

while blockIdx.x ranges from 0 to 127 in C/C++ and 1 to 128 in Julia. Similarly, threadIdx.x
will be between 0 to 255 in C/C++ (of course, in Julia the range will be 1 to 256).

A C/C++ thread can calculate its index as

int idx = blockDim.x * blockIdx.x + threadIdx.x;

In Julia, we have to take into account base 1. Therefore, we use the following formula

idx = (blockIdx().x-UInt32(1)) * blockDim().x + threadIdx().x

A CUDA programmer is free to interpret the calculated index however it fits the application,
but in practice, it is usually interpreted as an index into input tensors.

In the GPU version of the solver, each thread works on a single element of the medium,
indexed by a (x,y) pair. update_gates_gpu and update_du_gpu are very similar to their
CPU counterparts but are in fact CUDA kernels where the for loops are replaced with CUDA
specific indexing. Note that CUDA kernels cannot return a valve; hence, nothing at the end.

14

function update_gates_gpu(u, XI, M, H, J, D, F, C, ∆t)
i = (blockIdx().x-UInt32(1)) * blockDim().x + threadIdx().x
j = (blockIdx().y-UInt32(1)) * blockDim().y + threadIdx().y

v = Float32(u[i,j])

let ∆t = Float32(∆t)
XI[i,j] = update_XI_gpu(XI[i,j], v, ∆t)
M[i,j] = update_M_gpu(M[i,j], v, ∆t)
H[i,j] = update_H_gpu(H[i,j], v, ∆t)
J[i,j] = update_J_gpu(J[i,j], v, ∆t)
D[i,j] = update_D_gpu(D[i,j], v, ∆t)
F[i,j] = update_F_gpu(F[i,j], v, ∆t)

C[i,j] = update_C_gpu(C[i,j], D[i,j], F[i,j], v, ∆t)
end
nothing

end

function update_du_gpu(du, u, XI, M, H, J, D, F, C)
i = (blockIdx().x-UInt32(1)) * blockDim().x + threadIdx().x
j = (blockIdx().y-UInt32(1)) * blockDim().y + threadIdx().y

v = Float32(u[i,j])

calculating individual currents
iK1 = calc_iK1(v)
ix1 = calc_ix1(v, XI[i,j])
iNa = calc_iNa(v, M[i,j], H[i,j], J[i,j])
iCa = calc_iCa(v, D[i,j], F[i,j], C[i,j])

total current
I_sum = iK1 + ix1 + iNa + iCa

the reaction part of the reaction-diffusion equation
du[i,j] = -I_sum / C_m
nothing

end

update_du_gpu (generic function with 1 method)

0.3.4 Implicit Solver

Finally, the deriv function is modified to copy u to GPU and copy du back and to invoke
CUDA kernels.

function (f::BeelerReuterGpu)(du, u, p, t)
L = 16 # block size
∆t = t - f.t
copyto!(f.d_u, u)
ny, nx = size(u)

if ∆t != 0 || t == 0
@cuda blocks=(ny÷L,nx÷L) threads=(L,L) update_gates_gpu(

15

f.d_u, f.d_XI, f.d_M, f.d_H, f.d_J, f.d_D, f.d_F, f.d_C, ∆t)
f.t = t

end

laplacian(f.∆v, u)

calculate the reaction portion
@cuda blocks=(ny÷L,nx÷L) threads=(L,L) update_du_gpu(

f.d_du, f.d_u, f.d_XI, f.d_M, f.d_H, f.d_J, f.d_D, f.d_F, f.d_C)

copyto!(du, f.d_du)

...add the diffusion portion
du .+= f.diff_coef .* f.∆v

end

Ready to test!

using DifferentialEquations, Sundials

deriv_gpu = BeelerReuterGpu(u0, 1.0);
prob = ODEProblem(deriv_gpu, u0, (0.0, 50.0));
@time sol = solve(prob, CVODE_BDF(linear_solver=:GMRES), saveat=100.0);

9.493432 seconds (4.44 M allocations: 1.763 GiB, 7.45% gc time)

heatmap(sol.u[end])

25 50 75 100 125 150 175

25

50

75

100

125

150

175

-80

-70

-60

-50

-40

-30

-20

-10

0

10

16

0.4 Summary

We achieve around a 6x speedup with running the explicit portion of our IMEX solver on
a GPU. The major bottleneck of this technique is the communication between CPU and
GPU. In its current form, not all of the internals of the method utilize GPU acceleration. In
particular, the implicit equations solved by GMRES are performed on the CPU. This partial
CPU nature also increases the amount of data transfer that is required between the GPU
and CPU (performed every f call). Compiling the full ODE solver to the GPU would solve
both of these issues and potentially give a much larger speedup. JuliaDiffEq developers are
currently working on solutions to alleviate these issues, but these will only be compatible
with native Julia solvers (and not Sundials).

0.5 Appendix

This tutorial is part of the DiffEqTutorials.jl repository, found at: https://github.com/JuliaDiffEq/DiffEqTutorials.jl

To locally run this tutorial, do the following commands:

using DiffEqTutorials
DiffEqTutorials.weave_file("advanced","01-beeler_reuter.jmd")

Computer Information:

Julia Version 1.1.1
Commit 55e36cc308 (2019-05-16 04:10 UTC)
Platform Info:

OS: Linux (x86_64-pc-linux-gnu)
CPU: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-6.0.1 (ORCJIT, ivybridge)

Package Information:

Status `~/.julia/environments/v1.1/Project.toml`
[7e558dbc-694d-5a72-987c-6f4ebed21442] ArbNumerics 0.5.4
[6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf] BenchmarkTools 0.4.2
[be33ccc6-a3ff-5ff2-a52e-74243cff1e17] CUDAnative 2.2.0
[3a865a2d-5b23-5a0f-bc46-62713ec82fae] CuArrays 1.0.2
[55939f99-70c6-5e9b-8bb0-5071ed7d61fd] DecFP 0.4.8
[abce61dc-4473-55a0-ba07-351d65e31d42] Decimals 0.4.0
[ebbdde9d-f333-5424-9be2-dbf1e9acfb5e] DiffEqBayes 1.1.0
[eb300fae-53e8-50a0-950c-e21f52c2b7e0] DiffEqBiological 3.8.2
[459566f4-90b8-5000-8ac3-15dfb0a30def] DiffEqCallbacks 2.5.2
[f3b72e0c-5b89-59e1-b016-84e28bfd966d] DiffEqDevTools 2.9.0
[1130ab10-4a5a-5621-a13d-e4788d82bd4c] DiffEqParamEstim 1.6.0
[055956cb-9e8b-5191-98cc-73ae4a59e68a] DiffEqPhysics 3.1.0

17

http://www.stochasticlifestyle.com/solving-systems-stochastic-pdes-using-gpus-julia/
http://www.stochasticlifestyle.com/solving-systems-stochastic-pdes-using-gpus-julia/
https://github.com/JuliaDiffEq/DiffEqTutorials.jl

[6d1b261a-3be8-11e9-3f2f-0b112a9a8436] DiffEqTutorials 0.1.0
[0c46a032-eb83-5123-abaf-570d42b7fbaa] DifferentialEquations 6.4.0
[31c24e10-a181-5473-b8eb-7969acd0382f] Distributions 0.20.0
[497a8b3b-efae-58df-a0af-a86822472b78] DoubleFloats 0.9.1
[f6369f11-7733-5829-9624-2563aa707210] ForwardDiff 0.10.3
[c91e804a-d5a3-530f-b6f0-dfbca275c004] Gadfly 1.0.1
[7073ff75-c697-5162-941a-fcdaad2a7d2a] IJulia 1.18.1
[4138dd39-2aa7-5051-a626-17a0bb65d9c8] JLD 0.9.1
[23fbe1c1-3f47-55db-b15f-69d7ec21a316] Latexify 0.8.2
[eff96d63-e80a-5855-80a2-b1b0885c5ab7] Measurements 2.0.0
[961ee093-0014-501f-94e3-6117800e7a78] ModelingToolkit 0.2.0
[76087f3c-5699-56af-9a33-bf431cd00edd] NLopt 0.5.1
[2774e3e8-f4cf-5e23-947b-6d7e65073b56] NLsolve 4.0.0
[429524aa-4258-5aef-a3af-852621145aeb] Optim 0.18.1
[1dea7af3-3e70-54e6-95c3-0bf5283fa5ed] OrdinaryDiffEq 5.8.1
[65888b18-ceab-5e60-b2b9-181511a3b968] ParameterizedFunctions 4.1.1
[91a5bcdd-55d7-5caf-9e0b-520d859cae80] Plots 0.25.1
[d330b81b-6aea-500a-939a-2ce795aea3ee] PyPlot 2.8.1
[731186ca-8d62-57ce-b412-fbd966d074cd] RecursiveArrayTools 0.20.0
[90137ffa-7385-5640-81b9-e52037218182] StaticArrays 0.11.0
[f3b207a7-027a-5e70-b257-86293d7955fd] StatsPlots 0.11.0
[c3572dad-4567-51f8-b174-8c6c989267f4] Sundials 3.6.1
[1986cc42-f94f-5a68-af5c-568840ba703d] Unitful 0.15.0
[44d3d7a6-8a23-5bf8-98c5-b353f8df5ec9] Weave 0.9.0
[b77e0a4c-d291-57a0-90e8-8db25a27a240] InteractiveUtils
[37e2e46d-f89d-539d-b4ee-838fcccc9c8e] LinearAlgebra
[44cfe95a-1eb2-52ea-b672-e2afdf69b78f] Pkg

18

	Background
	The Beeler-Reuter Model

	CPU-Only Beeler-Reuter Solver
	The State Structure
	Laplacian
	The Rush-Larsen Method
	Implicit Solver
	Results

	CPU/GPU Beeler-Reuter Solver
	GPUs and CUDA
	The CUDA Code
	CUDA Kernels
	Implicit Solver

	Summary
	Appendix

