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The DiffEqBiological API provides a collection of functions for easily accessing network
properties, and for incrementally building and extending a network. In this tutorial we’ll go
through the API, and then illustrate how to programmatically construct a network.

We'll illustrate the API using a toggle-switch like network that contains a variety of different
reaction types:

using DifferentialEquations, DiffEqBiological, Latexify, Plots
fmt = :svg

pyplot (fmt=fmt)

rn = Oreaction_network begin

hillr(D_2,o,K,n), @ -> m_1

hillr(@_1,a,K,n), & -> m_2

@,7), m_1 + &

0,7), m 2 + &

B, m_1 ->m1+ P_1

B, m 2 ->m2 + P_2

u, P.1 > o

w, P2 > &

(k_+,k_—), 2P_1 <+ D_1
(k_+,k_—), 2P_2 > D_2
(k_+,k_—), P_L1+4P_2 < T
end a Knd v f uk + k_—;

This corresponds to the chemical reaction network given by

latexify(rn; env=:chemical)
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0.1 Network Properties

Basic properties of the generated network include the speciesmap and paramsmap functions
we examined in the last tutorial, along with the corresponding species and params func-
tions:

species(rn)

7-element Array{Symbol,1}:
:m_1

params (rn)

9-element Array{Symbol,1}:
e

I+


http://docs.juliadiffeq.org/latest/apis/diffeqbio.html#Basic-properties-1

The numbers of species, parameters and reactions can be accessed using numspecies(rn),
numparams (rn) and numreactions(rn).

A number of functions are available to access properties of reactions within the generated
network, including substrates, products, dependents, ismassaction, substratestoich,
substratesymstoich, productstoich, productsymstoich, and netstoich. Each of these
functions takes two arguments, the reaction network rn and the index of the reaction to
query information about. For example, to find the substrate symbols and their corresponding
stoichiometries for the 11th reaction, 2P_1 -> D_1, we would use

substratesymstoich(rn, 11)

1-element Array{DiffEgBiological.ReactantStruct,1}:
DiffEqBiological.ReactantStruct(:P_1, 2)

Broadcasting works on all these functions, allowing the construction of a vector holding the
queried information across all reactions, i.e.

substratesymstoich. (rn, 1:numreactions(rn))

16-element Array{Array{DiffEqBiological.ReactantStruct,1},1}:

(]

[]

[ReactantStruct(:m_1, 1)]
[]

[ReactantStruct(:m_2, 1)]
(]

[ReactantStruct(:m_1, 1)]
[ReactantStruct(:m_2, 1)]
[ReactantStruct(:P_1, 1)]
[ReactantStruct (:P_2, 1)]
[ReactantStruct(:P_1, 2)]
[ReactantStruct(:D_1, 1)]
[ReactantStruct(:P_2, 2)]
[ReactantStruct(:D_2, 1)]
[ReactantStruct(:P_1, 1), ReactantStruct(:P_2, 1)]

[ReactantStruct(:T, 1)]

To see the net stoichiometries for all reactions we would use

netstoich. (rn, 1:numreactions(rn))

16-element Array{Array{Pair{Int64,Int64},1},1}:
[1=>1]
[2=>1]
[1=>-1]
[1=>1]
[2=>-1]
[2=>1]
[3=>1]
[4=>1]
[3=>-1]
[4=>-1]
[3=>-2, 5=>1]
[3=>2, 5=>-1]
[4=>-2, 6=>1]
[4=>2, 6=>-1]
[3=>-1, 4=>-1, 7=>1]
[3=>1, 4=>1, 7=>-1]


http://docs.juliadiffeq.org/latest/apis/diffeqbio.html#Reaction-Properties-1

Here the first integer in each pair corresponds to the index of the species (with symbol
species(rn) [index]). The second integer corresponds to the net stoichiometric coefficient
of the species within the reaction. substratestoich and productstoich are defined simi-
larly.

Several functions are also provided that calculate different types of dependency graphs.
These include rxtospecies_depgraph, which provides a mapping from reaction index to
the indices of species whose population changes when the reaction occurs:

rxtospecies_depgraph (rn)

16-element Array{Array{Int64,1},1}:

[1]

[2]

[1]

[1]

[2]

[2]

[3]

[4]

[3]

[4]

[3, 5]
[3, 5]
[4, 6]
[4, 6]
[3, 4, 7]
(3, 4, 7]

Here the last row indicates that the species with indices [3,4,7] will change values when
the reaction T -> P_1 + P_2 occurs. To confirm these are the correct species we can look
at

species(rn) [[3,4,7]]

3-element Array{Symbol,1}:
:P_1
:P_2
:T

The speciestorx_depgraph similarly provides a mapping from species to reactions for which
their rate laws depend on that species. These correspond to all reactions for which the given
species is in the dependent set of the reaction. We can verify this for the first species, m_1:

speciestorx_depgraph(rn) [1]
2-element Array{Int64,1}:

3
7

findall(depset -> in(:m_1, depset), dependents.(rn, 1:numreactions(rn)))

2-element Array{Int64,1}:
3
7

Finally, rxtorx_depgraph provides a mapping that shows when a given reaction occurs,
which other reactions have rate laws that involve species whose value would have changed:

rxtorx_depgraph (rn)
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16-element Array{Array{Int64,1},1}:
[1, 3, 71
[2, 5, 8]
[3, 7]
[3, 4, 7]
[5, 8]
[5, 6, 8]
[7, 9, 11, 15]
[8, 10, 13, 15]
[9, 11, 15]
[10, 13, 15]
[2, 9, 11, 12, 15]
[2, 9, 11, 12, 15]
[1, 10, 13, 14, 15]
[1, 10, 13, 14, 15]
[9, 10, 11, 13, 15, 16]
[9, 10, 11, 13, 15, 16]

Note on Using Network Property API Functions Many basic network query and
reaction property functions are simply accessors, returning information that is already stored
within the generated reaction_network. For these functions, modifying the returned data
structures may lead to inconsistent internal state within the network. As such, they should be
used for accessing, but not modifying, network properties. The API documentation indicates
which functions return newly allocated data structures and which return data stored within
the reaction_network.

0.2 Incremental Construction of Networks

The @reaction_network macro is monolithic, in that it not only constructs and stores
basic network properties such as the reaction stoichiometries, but also generates everything
needed to immediately solve ODE, SDE and jump models using the network. This includes
Jacobian functions, noise functions, and jump functions for each reaction. While this allows
for a compact interface to the DifferentialEquations.jl solvers, it can also be computationally
expensive for large networks, where a user may only wish to solve one type of problem
and/or have fine-grained control over what is generated. In addition, some types of reaction
network structures are more amenable to being constructed programmatically, as opposed
to writing out all reactions by hand within one macro. For these reasons DiffEqBiological
provides two additional macros that only initially setup basic reaction network properties,
and which can be extended through a programmatic interface: @min_reaction_network
and Qempty_reaction_network. We now give an introduction to constructing these more
minimal network representations, and how they can be programmatically extended. See also
the relevant API section.

The @min_reaction_network macro works identically to the @reaction_network macro,
but the generated network will only be complete with respect to its representation of chemical
network properties (i.e. species, parameters and reactions). No ODE, SDE or jump models
are generated during the macro call. It can subsequently be extended with the addition of
new species, parameters or reactions. The @empty_reaction_network allocates an empty
network structure that can also be extended using the programmatic interface. For example,
consider a partial version of the toggle-switch like network we defined above:


http://docs.juliadiffeq.org/latest/apis/diffeqbio.html
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rnmin = @min_reaction_network begin
6,7), m_1 < @&
6,7, m 2 < O
B, m_1->m1+ P_1
B, m_2 ->m2 + P_2

w, P_.1 > &
u, P2 > @
end 0 v B u;

Here we have left out the first two, and last three, reactions from the original reaction_network.
To expand the network until it is functionally equivalent to the original model we add back

in the missing species, parameters, and finally the missing reactions. Note, it is required that
species and parameters be defined before any reactions using them are added. The necessary
network extension functions are given by addspecies!, addparam! and addreaction!, and
described in the API. To complete rnmin we first add the relevant species:

addspecies! (rnmin, :D_1)

addspecies! (rnmin, :D_2)

addspecies! (rnmin, :T)

Next we add the needed parameters

addparam! (rnmin, :q)
addparam! (rnmin, :K)
addparam! (rnmin, :n)
addparam! (rnmin, :k_+)
addparam! (rnmin, :k_—)

Note, both addspecies! and addparam! also accept strings encoding the variable names
(which are then converted to Symbols internally).

We are now ready to add the missing reactions. The API provides two forms of the
addreaction! function, one takes expressions analogous to what one would write in the
macro:

addreaction! (rnmin, :(hillr(D_1,a,K,n)), : (& -> m_2))
addreaction! (rnmin, :((k_+,k_—)), :(2P_2 <+ D_2))
addreaction! (rnmin, :k_+, :(2P_1 -> D_1))
addreaction! (rnmin, :k_—, :(D_1 -> 2P_1))

The rate can be an expression or symbol as above, but can also just be a numeric value.
The second form of addreaction! takes tuples of Pair{Symbol,Int} that encode the
stoichiometric coefficients of substrates and reactants:

# signature is addreaction! (rnmin, paramezpr, substratestoich, productstotich)
addreaction! (rnmin, :(hillr(D_2,«,K,n)), O, Cm_1 => 1,))

addreaction! (rnmin, :k_+, (:P_1=>1, :P_2=>1), (:T=>1,))

addreaction! (rnmin, :k_—, (:T=>1,), (:P_1=>1, :P_2=>1))

Let’s check that rn and rnmin have the same set of species:

setdiff (species(rn), species(rnmin))

O-element Array{Symbol,1}

the same set of params:

setdiff (params(rn), params(rnmin))

O-element Array{Symbol,1}
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and the final reaction has the same substrates, reactions, and rate expression:

rxidx = numreactions(rn)
setdiff (substrates(rn, rxidx), substrates(rnmin, rxidx))

O-element Array{Symbol,1}

setdiff (products(rn, rxidx), products(rnmin, rxidx))
O-element Array{Symbol,1}

rateexpr(rn, rxidx) == rateexpr(rmnmin, rxidx)

true

0.3 Extending Incrementally Generated Networks to Include ODEs,
SDEs or Jumps

Once a network generated from @min_reaction_network or @empty_reaction_network has
had all the associated species, parameters and reactions filled in, corresponding ODE, SDE
or jump models can be constructed. The relevant API functions are addodes!, addsdes!
and addjumps!. One benefit to contructing models with these functions is that they offer
more fine-grained control over what actually gets constructed. For example, addodes! has
the optional keyword argument, build_jac, which if set to false will disable construction of
symbolic Jacobians and functions for evaluating Jacobians. For large networks this can give
a significant speed-up in the time required for constructing an ODE model. Each function
and its associated keyword arguments are described in the API section, Functions to add
ODEs, SDEs or Jumps to a Network.

Let’s extend romin to include the needed functions for use in ODE solvers:

addodes! (rnmin)

The Generated Functions for Models section of the API shows what functions have been
generated. For ODEs these include oderhsfun(rnmin), which returns a function of the
form £ (du,u,p,t) which evaluates the ODEs (i.e. the time derivatives of u) within du. For
each generated function, the corresponding expressions from which it was generated can be
retrieved using accessors from the Generated Expressions section of the API. The equations
within du can be retrieved using the odeexprs(rnmin) function. For example:

odeexprs (rnmin)

7-element Array{Union{Float64, Int64, Expr, Symboll},1}:
(-0 *m_ 1) +9) + (a*K " n)/ (K " n+D2" n))

(-0 *m.2) +9) + (a*K " n) / (K~ n+D_1" n))

(B *m1-p*xP 1) +-2x%(k +/2)*xP1~2) +2*k —*xD1) -k + *P_1
* P2) +k — *xT)

(B *m2-pu*xP2)+-2x%x (k +/2) *P2"2)+2%k — *xD2) -k + *P_1
* P 2) + k_— xT)

:((k_+/2) *P_ 1~ 2-k — *D_1)

:((k_+/2) xP_ 2~ 2 -k _— % D_2)

:(k_+ *P_1 *xP 2 -k — *T)
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Using Latexify we can see the ODEs themselves to compare with these expressions:

latexify(rnmin)
dm1 . n
. 0
dms 5 o a- K™
_— = — -m _—
dt 2T Ke s Dy
dP k
d—tl:ﬁ-ml—u-Pl—Z-f-PerZk,-Dl—k+-P1-P2+k,-T
dP k
d—;:ﬁ~m2—uoP2—2~7+~P22+2-k,-D2—k+~P1~P2+k,-T
dDy ki
LM pr_k .D
@ o kD
dDy ki
o o kD
dT
%:k_i_'Pl'PQ—k_'T

For ODEs two other functions are generated by addodes!. jacfun(rnmin) will return the
generated Jacobian evaluation function, fjac(dJ,u,p,t), which given the current solution
u evaluates the Jacobian within dJ. jacobianexprs(rnmin) gives the corresponding matrix
of expressions, which can be used with Latexify to see the Jacobian:

latexify(jacobianexprs(rnmin))

addodes! also generates a function that evaluates the Jacobian of the ODE derivative
functions with respect to the parameters. paramjacfun(rnmin) then returns the generated
function. It has the form fpjac(dPJ,u,p,t), which given the current solution u evaluates the
Jacobian matrix with respect to parameters p within dPJ. For use in DifferentialEquations.jl
solvers, an ODEFunction representation of the ODEs is available from odefun (rnmin).

addsdes! and addjumps! work similarly to complete the network for use in StochasticDiftEq
and DiffEqJump solvers.

Note on Using Generated Function and Expression API Functions The generated
functions and expressions accessible through the API require first calling the appropriate

i —K"n-a-Dy "
0 —b 0 0 Kt maDy T 0
(s+7)
B0 —p—2-k -P—ky P k.- P, 2.k 0
0 ﬁ —k+'p2 —u—2-k+-P2—k+-P1 0 2-k_
0 0 k- Py 0 k. 0
0 0 0 k. - P 0 —k_
L0 0 ki - Py ) 0 0
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addodes!, addsdes or add jumps function. These are responsible for actually constructing the
underlying functions and expressions. The API accessors simply return already constructed
functions and expressions that are stored within the reaction_network structure.

0.4 Example of Generating a Network Programmatically

For a user directly typing in a reaction network, it is generally easier to use the @min_reaction network
or @reaction_network macros to fully specify reactions. However, for large, structured net-

works it can be much easier to generate the network programmatically. For very large
networks, with tens of thousands of reactions, the form of addreaction! that uses stoichio-

metric coefficients should be preferred as it offers substantially better performance. To put

together everything we've seen, let’s generate the network corresponding to a 1D continuous

time random walk, approximating the diffusion of molecules within an interval.

The basic "reaction" network we wish to study is

U Sus Sug-- S uy

for N lattice sites on [0, 1]. For h = 1/N the lattice spacing, we’ll assume the rate molecules
hop from their current site to any particular neighbor is just h=2. We can interpret this
hopping process as a collection of 2N — 2 "reactions', with the form u; — u; for j =i 41 or
7 =1 —1. We construct the corresponding reaction network as follows. First we set values
for the basic parameters:

N = 64
h=1/N
0.015625

then we create an empty network, and add each species
rn = Qempty_reaction_network
for i = 1:N

addspecies! (rn, Symbol(:u, i))
end

We next add one parameter 3, which we will set equal to the hopping rate of molecules, h=2:

addparam! (rn, :[()

Finally, we add in the 2N — 2 possible hopping reactions:

for i = 1:N
(i < N) && addreaction!(rn, :3, (Symbol(:u,i)=>1,), (Symbol(:u,i+1)=>1,))
(i > 1) && addreaction!(rn, :3, (Symbol(:u,i)=>1,), (Symbol(:u,i-1)=>1,))
end

Let’s first construct an ODE model for the network
addodes! (rn)

We now need to specify the initial condition, parameter vector and time interval to solve on.
We start with 10000 molecules placed at the center of the domain, and setup an ODEProblem
to solve:



u_0 = zeros(N)

u_0[div(N,2)] = 10000

p = [1/(h*h)]

tspan = (0.,.01)

oprob = 0DEProblem(rn, u_0, tspan, p)

ODEProblem with uType Array{Float64,1} and tType Float64. In-place: true
timespan: (0.0, 0.01)

uo: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ... 0.0, 0.0, 0.0, O.
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

We are now ready to solve the problem and plot the solution. Since we have essentially
generated a method of lines discretization of the diffusion equation with a discontinuous
initial condition, we’ll use an A-L stable implicit ODE solver, Rodas5, and plot the solution
at a few times:

sol = solve(oprob, Rodas5())
times = [0., .0001, .001, .01]

plt = plot(O)
for time in times
plot!(plt, 1:N, sol(time), fmt=fmt, xlabel="i", ylabel="u_:", label=string("t =

" time), 1lw=3)
end
plot(plt, ylims=(0.,10000.))

10000
= £ = 0.0001
= t = 0.001
8000 |- mems £ = 0.01
6000 |
5
4000 |
2000 |
ok . L
0 10 20 30 40 50 60

i
Here we see the characteristic diffusion of molecules from the center of the domain, resulting

in a shortening and widening of the solution as ¢ increases.

Let’s now look at a stochastic chemical kinetics jump process version of the model, where
[ gives the probability per time each molecule can hop from its current lattice site to an
individual neighboring site. We first add in the jumps, disabling regular_jumps since they
are not needed, and using the minimal_jumps flag to construct a minimal representation of

10



the needed jumps. We then construct a JumpProblem, and use the Composition-Rejection
Direct method, DirectCR, to simulate the process of the molecules hopping about on the
lattice:

addjumps! (rn, build_regular_jumps=false, minimal_jumps=true)

# make the initial condition integer valued
u_0 = zeros(Int, N)
u_0[div(N,2)] = 10000

# setup and solve the problem

dprob = DiscreteProblem(rn, u_0, tspan, p)

jprob = JumpProblem(dprob, DirectCR(), rn, save_positions=(false, false))
jsol = solve(jprob, SSAStepper(), saveat=times)

retcode: Default
Interpolation: Piecewise constant interpolation
t: 4-element Array{Float64,1}:
0.0
0.0001
0.001
0.01
u: 4-element Array{Array{Int64,1},1}:

to, o, o, 0o, 0o, 0, 0, 0, 0, 0 ... 0, 0,0, 0, 0, O, O, O, O, O]
(o, o, o, o, o, o, 0, 0, 0, 0 ... 0, 0, O, O, O, O, O, O, O, O]
to, o, o, o, o, o, 0, 0, 0, 0 ... 0, O, O, O, O, O, O, O, O, O]
(2, 3, 1, 5, 7, 13, 7, 14, 18, 21 ... 17, 11, 12, 6, 3, 2, 4, 4, 1, 1]

We can now plot bar graphs showing the locations of the molecules at the same set of times we
examined the ODE solution. For comparison, we also plot the corresponding ODE solutions
(red lines) that we found:

times = [0., .0001, .001, .01]

plts = []
for i = 1:4
b = bar(1:N, jsol[i], legend=false, fmt=fmt, xlabel="i", ylabel="u_i",

title=string("t =
" times[i]))
plot!(b,sol(times[i]))
push! (plts,b)

end

plot(plts...)
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Similar to the ODE solutions, we see that the molecules spread out and become more and
more well-mixed throughout the domain as ¢ increases. The simulation results are noisy due
to the finite numbers of molecules present in the stochsatic simulation, but since the number
of molecules is large they agree well with the ODE solution at each time.

0.5 Getting Help

Have a question related to DiffEqBiological or this tutorial? Feel free to ask in the Differ-
entialEquations.jl Gitter. If you think you've found a bug in DiffEqBiological, or would like
to request/discuss new functionality, feel free to open an issue on Github (but please check
there is no related issue already open). If you've found a bug in this tutorial, or have a
suggestion, feel free to open an issue on the DiffEqTutorials Github site. Or, submit a pull
request to DiffEqTutorials updating the tutorial!

0.6 Appendix

This tutorial is part of the DiffEqTutorials.jl repository, found at: https://github.com/JuliaDiffEq/DiffEq

To locally run this tutorial, do the following commands:

using DiffEqTutorials
DiffEqTutorials.weave_file("models","04-diffeqbio_II_networkproperties.jmd")

Computer Information:
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[7073f£75-c697-5162-941a-fcdaad2a7d2a]
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AMD 0.3.0

ApproxFun 0.11.3

Atom 0.8.5
BandedMatrices 0.9.4
BenchmarkTools 0.4.2
Blink 0.10.1

CSV 0.5.11

CSVFiles 0.15.0

Cairo 0.5.6

ColorTypes 0.8.0
DataFrames 0.19.2
DataStructures 0.17.0
DiffEqgBase 5.20.0
DiffEgBiological 3.9.0
DiffEqDevTools 2.14.0
DiffEqJump 6.2.0
DiffEqMonteCarlo 0.15.1
DiffEqOperators 4.1.0
DiffEqPDEBase 0.4.0
DiffEqProblemLibrary 4.5.1
DiffEqTutorials 0.1.0
DifferentialEquations 6.6.0
DistributedArrays 0.6.3
Distributions 0.21.1
Documenter 0.23.2
FileIO 1.0.7
ForwardDiff 0.10.3
FunctionWrappers 1.0.0
GR 0.41.0
GenericLinearAlgebra 0.1.0
Gtk 0.17.0

HCubature 1.4.0

HDF5 0.12.0

HTTP 0.7.1
HypothesisTests 0.8.0
IJulia 1.19.0



[42fd0dbc-a981-5370-80f2-aaf504508153]
[30d91d44-8115-11e8-1d28-c19abac16de8]
[£80590ac-b429-510a-8a99-e7c46989f22d]
[aalae85d-cabe-5617-a682-6adf51b2el16al
[e5e0dc1b-0480-54bc-9374-aad01¢23163d]
[0b1a1467-8014-51b9-945f-bf0ae24f4b77]
[b964fa9f-0449-5b57-a5c2-d3ea65f4040f]
[2b0eObcb-e4fd-59b4-8912-456d1b03d8d7]
[23fbelc1-3f47-55db-b15f-69d7ec21a316]
[6078a376-72f3-5289-bfd5-ec5146d43c02]
[093fc24a-ae57-5d10-9952-331d41423f4d]
[7a12625a-238d-50fd-b39a-03d52299707¢]
[23992714-dd62-5051-b70f-ba57cb901cac]
[1914dd2f-81c6-5fcd-8719-6d5¢c9610f£09]
[961ee093-0014-501f-94e3-6117800e7a78]
[46d2c3al1-f734-5fdb-9937-b9blaebas221]
[47beTbcc-f1a6-5447-8b36-Teeeff7534fd]
[5610215fc-4207-5dde-b226-833fc4488ee?2]
[56fb14364-9ced-5910-84b2-373655¢c76a03]
[bac558e1-5e72-5ebc-8fee-abe8ad69f55d]
[1dea7af3-3e70-54e6-95¢c3-0bf5283fabed]
[3b7a836e-365b-5785-a47d-02c71176b4daal
[9b87118b-4619-50d2-8el1e-99f35a4d4d9d]
[65888b18-ceab-5e60-b2b9-181511a3b968]
[d96e819e-fc66-5662-9728-84c9c7592b0a]
[995b91a9-d308-5afd-9ec6-746e21dbc043]
[568dd65bb-95f3-509e-9936-c39a10fdeae7]
[f0f68f2c-4968-5e81-91da-67840de0976al
[91a5bcdd-55d7-5caf-9e0b-520d859cae80]
[£f27b6e38-b328-58d1-80ce-0feddd5e7a45]
[27ebfcd6-29c5-5fa9-bf4b-fb8fc14df3ae]
[c46f51b8-102a-5¢cf2-8d2¢c-8597cb0e0da7]
[438e738f-606a-5dbb-bf0a-cddfbfd45ab0]
[d330b81b-6aea-500a-939%a-2ce795aecalee]
[1fd47b50-473d-5c70-9696-f719f8f3bcdc]
[e6¢f234a-135¢c-5ec9-84dd-332b85af5143]
[b4db0fb7-de2a-5028-82bf-5021f5cfa881]
[295af30f-e4ad-537b-8983-00126c2a3abel
[c4c386cf-5103-5370-bed5-f3alllcca3bs]
[276daf66-3868-5448-9aa4-cd146d93841Db]
[90137ffa-7385-5640-81b9-e52037218182]
[2913bbd2-ae8a-5f71-8¢c99-4fb6c76f3a91]
[£3b207a7-027a-5e70-b257-86293d7955fd]
[9672cTb4d-1e72-59bd-8al11-6ac3964bc41f]
[789caeaf-c7a9-5a7d-9973-96adeb23e2a0]
[c3572dad-4567-51f8-b174-8c6c989267f4]
[123dc426-2d89-5057-bbad-38513e3affd8]
[e0df1984-e451-5¢cb5-8b61-797a481e67e3]
[a759f4b9-e2f1-59dc-863e—4aeb61blea8f]

14

IterativeSolvers 0.8.1
JuAFEM 0.2.0

JuliaFEM 0.5.0
Julialnterpreter 0.5.2
Juno 0.7.2

KrylovKit 0.3.4
LaTeXStrings 1.0.3
LanguageServer 0.6.0
Latexify 0.8.2
LazyArrays 0.9.1
LightGraphs 1.2.0
LinearMaps 2.5.0

MAT 0.5.0

MacroTools 0.5.1
ModelingToolkit 0.6.4
MuladdMacro 0.2.1

ORCA 0.2.1

Observables 0.2.3
OhMyREPL 0.5.1
OrderedCollections 1.1.0
OrdinaryDiffEq 5.14.0
PGFPlots 3.1.3
PackageCompiler 0.6.4
ParameterizedFunctions 4.2.1
Parameters 0.11.0
PlotUtils 0.5.8

Plotly 0.2.0

PlotlyJS 0.12.5

Plots 0.26.1
Polynomials 0.5.2
Primes 0.4.0
ProfileView 0.4.1
PyCall 1.91.2

PyPlot 2.8.1

QuadGK 2.0.3
RandomNumbers 1.3.0
ReactionNetworkImporters 0.1.5
Revise 2.1.6

Rsvg 0.2.3
SpecialFunctions 0.7.2
StaticArrays 0.11.0
StatsBase 0.32.0
StatsPlots 0.10.2
SteadyStateDiffEq 1.5.0
StochasticDiffEq 6.8.0
Sundials 3.6.1
SymEngine 0.7.0
TextParse 0.9.1
TimerQOutputs 0.5.0



[37b6cedf-1£77-55f8-9503-c64b63398394] Traceur 0.3.0
[28d57a85-8fef-5791-bfe6-a80928e7¢c999] Transducers 0.3.1
[39424ebd-4cf3-5550-a685-96706a953f40] TreeView 0.3.1
[b8865327-cd53-5732-bb35-84acbb429228] UnicodePlots 1.1.0
[1986cc42-f94f-5a68-af5¢c-568840ba703d] Unitful 0.16.0
[2a06ce6d-1589-592b-9¢33-f37faeaed826] UnitfulPlots 0.0.0
[44d3d7a6-8a23-5bf8-98¢c5-b353f8df5ec9] Weave 0.9.1
[0f1e0344-ec1d-5b48-a673-e5cf874b6c29] WebIO 0.8.9
[9abbd945-dff8-562f-b5e8-elebf5ef1b79] Profile
[2f01184e-e22b-5df5-ae63-d93ebab69eaf] SparseArrays
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