
DiffEqBiological Tutorial I: Introduction

Samuel Isaacson

October 18, 2019

DiffEqBiological.jl is a domain specific language (DSL) for writing chemical reaction net-
works in Julia. The generated chemical reaction network model can then be translated into
a variety of mathematical models which can be solved using components of the broader
DifferentialEquations.jl ecosystem.
In this tutorial we’ll provide an introduction to using DiffEqBiological to specify chemical
reaction networks, and then to solve ODE, jump, tau-leaping and SDE models generated
from them. Let’s start by using the DiffEqBiological reaction_network macro to specify a
simply chemical reaction network; the well-known Repressilator.
We first import the basic packages we’ll need, and use Plots.jl for making figures:
If not already installed, first hit "]" within a Julia REPL. Then type:
add DifferentialEquations DiffEqBiological PyPlot Plots Latexify

using DifferentialEquations, DiffEqBiological, Plots, Latexify
pyplot(fmt=:svg);

We now construct the reaction network. The basic types of arrows and predefined rate laws
one can use are discussed in detail within the DiffEqBiological Chemical Reaction Models
documentation. Here we use a mix of first order, zero order and repressive Hill function rate
laws. Note, ∅ corresponds to the empty state, and is used for zeroth order production and
first order degradation reactions:
repressilator = @reaction_network begin

hillr(P_3,α,K,n), ∅ --> m_1
hillr(P_1,α,K,n), ∅ --> m_2
hillr(P_2,α,K,n), ∅ --> m_3
(δ,γ), m_1 ↔ ∅
(δ,γ), m_2 ↔ ∅
(δ,γ), m_3 ↔ ∅
β, m_1 --> m_1 + P_1
β, m_2 --> m_2 + P_2
β, m_3 --> m_3 + P_3
µ, P_1 --> ∅
µ, P_2 --> ∅
µ, P_3 --> ∅

end α K n δ γ β µ;

We can use Latexify to look at the corresponding reactions and understand the generated
rate laws for each reaction
latexify(repressilator; env=:chemical)

1

http://juliadiffeq.org/
http://docs.juliadiffeq.org/latest/models/biological.html
http://docs.juliadiffeq.org/latest/models/biological.html

∅
α·Kn

Kn+P3n

−−−−−→ m1

∅
α·Kn

Kn+P1n

−−−−−→ m2

∅
α·Kn

Kn+P2n

−−−−−→ m3

m1
δ−−⇀↽−−γ

∅

m2
δ−−⇀↽−−γ

∅

m3
δ−−⇀↽−−γ

∅

m1
β−−→ m1 + P1

m2
β−−→ m2 + P2

m3
β−−→ m3 + P3

P1
µ−−→ ∅

P2
µ−−→ ∅

P3
µ−−→ ∅

We can also use Latexify to look at the corresponding ODE model for the chemical system
latexify(repressilator, cdot=false)

dm(t)
dt

= αKn

Kn + P n
3

− δm1 + γ

dm(t)
dt

= αKn

Kn + P n
1

− δm2 + γ

dm(t)
dt

= αKn

Kn + P n
2

− δm3 + γ

dP (t)
dt

=βm1 − µP1

dP (t)
dt

=βm2 − µP2

dP (t)
dt

=βm3 − µP3

To solve the ODEs we need to specify the values of the parameters in the model, the initial
condition, and the time interval to solve the model on. To do this it helps to know the
orderings of the parameters and the species. Parameters are ordered in the same order they
appear after the end statement in the @reaction_network macro. Species are ordered in the
order they first appear within the @reaction_network macro. We can see these orderings
using the speciesmap and paramsmap functions:
speciesmap(repressilator)

OrderedCollections.OrderedDict{Symbol,Int64} with 6 entries:

2

:m_1 => 1
:m_2 => 2
:m_3 => 3
:P_1 => 4
:P_2 => 5
:P_3 => 6

paramsmap(repressilator)

OrderedCollections.OrderedDict{Symbol,Int64} with 7 entries:
:α => 1
:K => 2
:n => 3
:δ => 4
:γ => 5
:β => 6
:µ => 7

0.1 Solving the ODEs:

Knowing these orderings, we can create parameter and initial condition vectors, and setup
the ODEProblem we want to solve:
parameters [α,K,n,δ,γ,β,µ]
p = (.5, 40, 2, log(2)/120, 5e-3, 20*log(2)/120, log(2)/60)

initial condition [m_1,m_2,m_3,P_1,P_2,P_3]
u_0 = [0.,0.,0.,20.,0.,0.]

time interval to solve on
tspan = (0., 10000.)

create the ODEProblem we want to solve
oprob = ODEProblem(repressilator, u_0, tspan, p)

ODEProblem with uType Array{Float64,1} and tType Float64. In-place: true
timespan: (0.0, 10000.0)
u0: [0.0, 0.0, 0.0, 20.0, 0.0, 0.0]

At this point we are all set to solve the ODEs. We can now use any ODE solver from within
the DiffEq package. We’ll just use the default DifferentialEquations solver for now, and then
plot the solutions:
sol = solve(oprob, saveat=10.)
plot(sol, fmt=:svg)

3

0 2000 4000 6000 8000 10000
t

0

100

200

300

400 m (t)
m (t)
m (t)
P (t)
P (t)
P (t)

We see the well-known oscillatory behavior of the repressilator! For more on choices of ODE
solvers, see the JuliaDiffEq documentation.

0.2 Stochastic Simulation Algorithms (SSAs) for Stochastic Chem-
ical Kinetics

Let’s now look at a stochastic chemical kinetics model of the repressilator, modeling it with
jump processes. Here we will construct a DiffEqJump JumpProblem that uses Gillespie’s
Direct method, and then solve it to generate one realization of the jump process:
first we redefine the initial condition to be integer valued
u_0 = [0,0,0,20,0,0]

next we create a discrete problem to encode that our species are integer valued:
dprob = DiscreteProblem(repressilator, u_0, tspan, p)

now we create a JumpProblem, and specify Gillespie's Direct Method as the solver:
jprob = JumpProblem(dprob, Direct(), repressilator, save_positions=(false,false))

now let's solve and plot the jump process:
sol = solve(jprob, SSAStepper(), saveat=10.)
plot(sol, fmt=:svg)

4

http://docs.juliadiffeq.org/latest/solvers/ode_solve.html

0 2000 4000 6000 8000 10000
t

0

200

400

600

800 m (t)
m (t)
m (t)
P (t)
P (t)
P (t)

Here we see that oscillations remain, but become much noiser. Note, in constructing the
JumpProblem we could have used any of the SSAs that are part of DiffEqJump instead
of the Direct method, see the list of SSAs (i.e. constant rate jump aggregators) in the
documentation.

0.3 τ-leaping Methods:

While SSAs generate exact realizations for stochastic chemical kinetics jump process mod-
els, τ -leaping methods offer a performant alternative by discretizing in time the underlying
time-change representation of the stochastic process. The DiffEqJump package has limited
support for τ -leaping methods in the form of the basic Euler’s method type approximation
proposed by Gillespie. We can simulate a τ -leap approximation to the repressilator by using
the RegularJump representation of the network to construct a JumpProblem:
rjs = regularjumps(repressilator)
lprob = JumpProblem(dprob, Direct(), rjs)
lsol = solve(lprob, SimpleTauLeaping(), dt=.1)
plot(lsol, plotdensity=1000, fmt=:svg)

5

http://docs.juliadiffeq.org/latest/types/jump_types.html#Constant-Rate-Jump-Aggregators-1
https://en.wikipedia.org/wiki/Tau-leaping

0 2000 4000 6000 8000 10000
t

0

200

400

600

800 m (t)
m (t)
m (t)
P (t)
P (t)
P (t)

0.4 Chemical Langevin Equation (CLE) Stochastic Differential
Equation (SDE) Models:

At an intermediary physical scale between macroscopic ODE models and microscopic stochas-
tic chemical kinetic models lies the CLE, a SDE version of the model. The SDEs add to each
ODE above a noise term. As the repressilator has species that get very close to zero in size,
it is not a good candidate to model with the CLE (where solutions can then go negative and
become unphysical). Let’s create a simpler reaction network for a birth-death process that
will stay non-negative:
bdp = @reaction_network begin

c_1, X --> 2X
c_2, X --> 0
c_3, 0 --> X

end c_1 c_2 c_3
p = (1.0,2.0,50.)
u_0 = [5.]
tspan = (0.,4.);

The corresponding Chemical Langevin Equation SDE is then
latexify(bdp, noise=true, cdot=false)

dX (t) = (c1X − c2X + c3) dt +
√

∥c1X∥dW1 (t) −
√

∥c2X∥dW2 (t) +
√

∥c3∥dW3 (t)

6

where each Wi(t) denotes an independent Brownian Motion. We can solve the CLE SDE
model by creating an SDEProblem and solving it similar to what we did for ODEs above:
SDEProblem for CLE
sprob = SDEProblem(bdp, u_0, tspan, p)

solve and plot, tstops is used to specify enough points
that the plot looks well-resolved
sol = solve(sprob, tstops=range(0., step=4e-3, length=1001))
plot(sol, fmt=:svg)

0 1 2 3 4
t

10

20

30

40

50

X(t)

We again have complete freedom to select any of the StochasticDifferentialEquations.jl SDE
solvers, see the documentation.

0.5 What information can be queried from the reaction_network:

The generated reaction_network contains a lot of basic information. For example

• f=oderhsfun(repressilator) is a function f(du,u,p,t) that given the current state
vector u and time t fills du with the time derivatives of u (i.e. the right hand side of
the ODEs).

• jac=jacfun(repressilator) is a function jac(J,u,p,t) that evaluates and returns
the Jacobian of the ODEs in J. A corresponding Jacobian matrix of expressions can
be accessed using the jacobianexprs function:

latexify(jacobianexprs(repressilator), cdot=false)

7

http://docs.juliadiffeq.org/latest/solvers/sde_solve.html



−δ 0 0 0 0 −KnnαP −1+n
3

(Kn+P n
3)2

0 −δ 0 −KnnαP −1+n
1

(Kn+P n
1)2 0 0

0 0 −δ 0 −KnnαP −1+n
2

(Kn+P n
2)2 0

β 0 0 −µ 0 0
0 β 0 0 −µ 0
0 0 β 0 0 −µ



• pjac = paramjacfun(repressilator) is a function pjac(pJ,u,p,t) that evaluates
and returns the Jacobian, pJ, of the ODEs with respect to the parameters. This allows
reaction_networks to be used in the DifferentialEquations.jl local sensitivity analysis
package DiffEqSensitivity.

By default, generated ODEProblems will be passed the corresponding Jacobian function,
which will then be used within implicit ODE/SDE methods.
The DiffEqBiological API documentation provides a thorough description of the many query
functions that are provided to access network properties and generated functions. In DiffE-
qBiological Tutorial II we’ll explore the API.

0.6 Getting Help

Have a question related to DiffEqBiological or this tutorial? Feel free to ask in the Differ-
entialEquations.jl Gitter. If you think you’ve found a bug in DiffEqBiological, or would like
to request/discuss new functionality, feel free to open an issue on Github (but please check
there is no related issue already open). If you’ve found a bug in this tutorial, or have a
suggestion, feel free to open an issue on the DiffEqTutorials Github site. Or, submit a pull
request to DiffEqTutorials updating the tutorial!

0.7 Appendix

This tutorial is part of the DiffEqTutorials.jl repository, found at: https://github.com/JuliaDiffEq/DiffEqTutorials.jl
To locally run this tutorial, do the following commands:

using DiffEqTutorials
DiffEqTutorials.weave_file("models","03-diffeqbio_I_introduction.jmd")

Computer Information:

Julia Version 1.2.0
Commit c6da87ff4b (2019-08-20 00:03 UTC)
Platform Info:

8

http://docs.juliadiffeq.org/latest/analysis/sensitivity.html
http://docs.juliadiffeq.org/latest/apis/diffeqbio.html
https://gitter.im/JuliaDiffEq/Lobby
https://github.com/JuliaDiffEq/DiffEqBiological.jl
https://github.com/JuliaDiffEq/DiffEqTutorials.jl
https://github.com/JuliaDiffEq/DiffEqTutorials.jl

OS: macOS (x86_64-apple-darwin18.6.0)
CPU: Intel(R) Core(TM) i7-6920HQ CPU @ 2.90GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-6.0.1 (ORCJIT, skylake)

Package Information:

Status `~/.julia/environments/v1.2/Project.toml`
[6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf] BenchmarkTools 0.4.3
[a93c6f00-e57d-5684-b7b6-d8193f3e46c0] DataFrames 0.19.4
[2b5f629d-d688-5b77-993f-72d75c75574e] DiffEqBase 6.3.4
[eb300fae-53e8-50a0-950c-e21f52c2b7e0] DiffEqBiological 4.0.1
[c894b116-72e5-5b58-be3c-e6d8d4ac2b12] DiffEqJump 6.2.2
[a077e3f3-b75c-5d7f-a0c6-6bc4c8ec64a9] DiffEqProblemLibrary 4.5.1
[6d1b261a-3be8-11e9-3f2f-0b112a9a8436] DiffEqTutorials 0.1.0
[0c46a032-eb83-5123-abaf-570d42b7fbaa] DifferentialEquations 6.8.0
[7073ff75-c697-5162-941a-fcdaad2a7d2a] IJulia 1.20.0
[42fd0dbc-a981-5370-80f2-aaf504508153] IterativeSolvers 0.8.1
[23fbe1c1-3f47-55db-b15f-69d7ec21a316] Latexify 0.11.0
[54ca160b-1b9f-5127-a996-1867f4bc2a2c] ODEInterface 0.4.6
[47be7bcc-f1a6-5447-8b36-7eeeff7534fd] ORCA 0.3.0
[1dea7af3-3e70-54e6-95c3-0bf5283fa5ed] OrdinaryDiffEq 5.17.2
[f0f68f2c-4968-5e81-91da-67840de0976a] PlotlyJS 0.13.0
[91a5bcdd-55d7-5caf-9e0b-520d859cae80] Plots 0.27.0
[438e738f-606a-5dbb-bf0a-cddfbfd45ab0] PyCall 1.91.2
[d330b81b-6aea-500a-939a-2ce795aea3ee] PyPlot 2.8.2
[b4db0fb7-de2a-5028-82bf-5021f5cfa881] ReactionNetworkImporters 0.1.5
[295af30f-e4ad-537b-8983-00126c2a3abe] Revise 2.2.0
[789caeaf-c7a9-5a7d-9973-96adeb23e2a0] StochasticDiffEq 6.11.2
[c3572dad-4567-51f8-b174-8c6c989267f4] Sundials 3.7.0
[44d3d7a6-8a23-5bf8-98c5-b353f8df5ec9] Weave 0.9.1
[b77e0a4c-d291-57a0-90e8-8db25a27a240] InteractiveUtils
[d6f4376e-aef5-505a-96c1-9c027394607a] Markdown

9

	Solving the ODEs:
	Stochastic Simulation Algorithms (SSAs) for Stochastic Chemical Kinetics
	-leaping Methods:
	Chemical Langevin Equation (CLE) Stochastic Differential Equation (SDE) Models:
	What information can be queried from the reaction_network:
	Getting Help
	Appendix

