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While the default algorithms, along with alg_hints = [:stiff], will suffice in most cases,
there are times when you may need to exert more control. The purpose of this part of the
tutorial is to introduce you to some of the most widely used algorithm choices and when
they should be used. The corresponding page of the documentation is the ODE Solvers page
which goes into more depth.

0.1 Diagnosing Stiffness

One of the key things to know for algorithm choices is whether your problem is stiff. Let’s
take for example the driven Van Der Pol equation:

using DifferentialEquations, ParameterizedFunctions
van! = Qode_def VanDerPol begin

dy = p*x((1-x"2)*y - x)
dx = 1xy
end p

prob = 0DEProblem(van!,[0.0,2.0],(0.0,6.3),1e6)

ODEProblem with uType Array{Float64,1} and tType Float64. In-place: true
timespan: (0.0, 6.3)
u0: [0.0, 2.0]

One indicating factor that should alert you to the fact that this model may be stiff is the
fact that the parameter is 1e6: large parameters generally mean stiff models. If we try to
solve this with the default method:

sol = solve(prob,Tsit5())

retcode: MaxIters

Interpolation: specialized 4th order "free" interpolation
t: 999978-element Array{Float64,1}:

0.0

4.997501249375313e-10

5.4972513743128435e-9

3.28990927256137e-8
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Here it shows that maximum iterations were reached. Another thing that can happen is that
the solution can return that the solver was unstable (exploded to infinity) or that dt became
too small. If these happen, the first thing to do is to check that your model is correct. It
could very well be that you made an error that causes the model to be unstable!

If the model is the problem, then stiffness could be the reason. We can thus hint to the
solver to use an appropriate method:

sol = solve(prob,alg_hints = [:stiff])

retcode: Success

Interpolation: specialized 3rd order "free" stiffness-aware interpolation
t: 695-element Array{Float64,1}:

0.0

4.997501249375313e-10
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1.8954284827811007e-8
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u: 695-element Array{Array{Float64,1},1}:
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Or we can use the default algorithm. By default, DifferentialEquations.jl uses algorithms
like AutoTsit5(Rodas5()) which automatically detect stiffness and switch to an appropriate
method once stiffness is known.

sol = solve(prob)

retcode: Success

Interpolation: Automatic order switching interpolation
t: 1927-element Array{Float64,1}:
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u: 1927-element Array{Array{Float64,1},1}:
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0.0626554, 2.0]
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.37832, 2.0]
.474679, 2.0]
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[1.14817, -1.5261]
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[1.38188, -1.42526]

Another way to understand stiffness is to look at the solution.
using Plots; gr()

sol = solve(prob,alg_hints = [:stiff],reltol=1e-6)
plot(sol,denseplot=false)
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Let’s zoom in on the y-axis to see what’s going on:
plot(sol,ylims (-10.0,10.0))
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Notice how there are some extreme vertical shifts that occur. These vertical shifts are places
where the derivative term is very large, and this is indicative of stiffness. This is an extreme
example to highlight the behavior, but this general idea can be carried over to your problem.
When in doubt, simply try timing using both a stiff solver and a non-stiff solver and see
which is more efficient.

To try this out, let’s use BenchmarkTools, a package that let’s us relatively reliably time
code blocks.

function lorenz!(du,u,p,t)

o,p,8 =P

dul1] = o*x(u[2]-ul1])

dul2] = ul1l*(p-ul3]) - ul2]
dul3] = ul[1]l*u[2] - B*ul3]

end

w0 = [1.0,0.0,0.0]

p = (10,28,8/3)

tspan = (0.0,100.0)

prob = 0DEProblem(lorenz!,u0,tspan,p)

ODEProblem with uType Array{Float64,1} and tType Float64. In-place: true
timespan: (0.0, 100.0)
u0: [1.0, 0.0, 0.0]

And now, let’s use the @btime macro from benchmark tools to compare the use of non-stiff
and stiff solvers on this problem.

using BenchmarkTools
@btime solve(prob);

986.748 pus (12678 allocations: 1.37 MiB)

Obtime solve(prob,alg_hints = [:stiff]);

10.209 ms (38998 allocations: 2.23 MiB)

In this particular case, we can see that non-stiff solvers get us to the solution much more
quickly.

0.2 The Recommended Methods
When picking a method, the general rules are as follows:

o Higher order is more efficient at lower tolerances, lower order is more efficient at higher
tolerances



o Adaptivity is essential in most real-world scenarios
o Runge-Kutta methods do well with non-stiff equations, Rosenbrock methods do well

with small stiff equations, BDF methods do well with large stiff equations

While there are always exceptions to the rule, those are good guiding principles. Based on
those, a simple way to choose methods is:

The default is Tsit5(), a non-stiff Runge-Kutta method of Order 5

If you use low tolerances (1e-8), try Vern7() or Vern9()

o If you use high tolerances, try BS3()

If the problem is stiff, try Rosenbrock23(), Rodas5(), or CVODE_BDF ()

o If you don’t know, use AutoTsit5(Rosenbrock23()) or AutoVern9(Rodas5()).

(This is a simplified version of the default algorithm chooser)

0.3 Comparison to other Software

If you are familiar with MATLAB, SciPy, or R’s DESolve, here’s a quick translation start
to have transfer your knowledge over.

+ 0de23 -> BS3()

» ode45/doprib -> DP5(), though in most cases Tsit5() is more efficient

e 0de23s -> Rosenbrock23(), though in most cases Rodas4 () is more efficient

e 0dell13 -> VCABM(), though in many cases Vern7 () is more efficient

e dop853 -> DP8(), though in most cases Vern7 () is more efficient

« odelbs/vode -> QNDF (), though in many cases CVODE_BDF (), Rodas4() or radau()
are more efficient

e 0de23t -> Trapezoid() for efficiency and GenericTrapezoid() for robustness
e 0de23tb -> TRBDF2
e lsoda -> lsoda() (requires Jadd LSODA; using LSODA)

e odelb5i -> IDA(), though in many cases Rodas4 () can handle the DAE and is signifi-
cantly more efficient



0.4 Appendix

This tutorial is part of the DiffEqTutorials.jl repository, found at: https://github.com/JuliaDiffEq/DiffEq

To locally run this tutorial, do the following commands:

using DiffEqTutorials
DiffEqTutorials.weave_file("introduction","02-choosing algs.jmd")
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