An Intro to DifferentialEquations.jl

Chris Rackauckas

June 27, 2019

0.1 Basic Introduction Via Ordinary Differential Equations

This notebook will get you started with DifferentialEquations.jl by introducing you to the
functionality for solving ordinary differential equations (ODEs). The corresponding docu-
mentation page is the ODE tutorial. While some of the syntax may be different for other
types of equations, the same general principles hold in each case. Our goal is to give a
gentle and thorough introduction that highlights these principles in a way that will help you
generalize what you have learned.

0.1.1 Background

If you are new to the study of differential equations, it can be helpful to do a quick background
read on the definition of ordinary differential equations. We define an ordinary differential
equation as an equation which describes the way that a variable u changes, that is

u'= f(u,p,t)

where p are the parameters of the model, ¢ is the time variable, and f is the nonlinear model
of how u changes. The initial value problem also includes the information about the starting
value:

U(t()) = Ug

Together, if you know the starting value and you know how the value will change with time,
then you know what the value will be at any time point in the future. This is the intuitive
definition of a differential equation.

0.1.2 First Model: Exponential Growth

Our first model will be the canonical exponential growth model. This model says that the
rate of change is proportional to the current value, and is this:

u = au

where we have a starting value u(0) = ug. Let’s say we put 1 dollar into Bitcoin which is
increasing at a rate of 98% per year. Then calling now ¢ = 0 and measuring time in years,
our model is:

http://docs.juliadiffeq.org/latest/tutorials/ode_example.html
https://en.wikipedia.org/wiki/Ordinary_differential_equation

v = 0.98u

and u(0) = 1.0. We encode this into Julia by noticing that, in this setup, we match the
general form when

f(u,p,t) = 0.98u

f (generic function with 1 method)

with $ u 0 = 1.0 $. If we want to solve this model on a time span from t=0.0 to t=1.0,
then we define an ODEProblem by specifying this function £, this initial condition u0, and
this time span as follows:

using DifferentialEquations
f(u,p,t) = 0.98u

u0 = 1.0

tspan = (0.0,1.0)

prob = O0DEProblem(f,u0,tspan)

ODEProblem with uType Float64 and tType Float64. In-place: false
timespan: (0.0, 1.0)
uo0: 1.0

To solve our ODEProblem we use the command solve.

sol = solve(prob)

retcode: Success
Interpolation: Automatic order switching interpolation
t: b-element Array{Float64,1}:
.0

.10042494449239292
.3521855598485865
.6934428591625682

.0

u: 5-element Array{Float64,1}:
.0

.1034222047865465
.4121902209793713
.9730369896422575
.664456142481387

= O O O O

N B B e e

and that’s it: we have succesfully solved our first ODE!

Analyzing the Solution Of course, the solution type is not interesting in and of itself.
We want to understand the solution! The documentation page which explains in detail the

functions for analyzing the solution is the Solution Handling page. Here we will describe
some of the basics. You can plot the solution using the plot recipe provided by Plots.jl:

using Plots; gr()
plot(sol)

25 ul(t)

20

15

1.0
0.0 0.2 0.4 0.6 0.8 1.0

From the picture we see that the solution is an exponential curve, which matches our intuition.
As a plot recipe, we can annotate the result using any of the Plots.jl attributes. For example:

plot(sol,linewidth=5,title="Solution to the linear ODE with a thick line",
xaxis="Time (t)",yaxis="u(t) (in um)",label="My Thick Line!") # legend=false

http://docs.juliadiffeq.org/latest/basics/solution.html
http://docs.juliaplots.org/latest/
http://docs.juliaplots.org/latest/attributes/

Solution to the linear ODE with a thick line

mmmms My Thick Line! (

25

N
o

u(t) (in ?m)

=
ul

10 1 1 1 1 J
0.0 0.2 0.4 0.6 0.8 1.0
Time (t)

Using the mutating plot! command we can add other pieces to our plot. For this ODE we
know that the true solution is u(t) = ugpexp(at), so let’s add some of the true solution to our

plot:

plot!(sol.t, t->1.0%*exp(0.98t),1lw=3,1ls=:dash,label="True Solution!")

Solution to the linear ODE with a thick line

251 mmmms My Thick Line!
== True Solution!

n
o

u(t) (in ?m)

=
ul

10 1 1 1 1 J
0.0 0.2 0.4 0.6 0.8 1.0

Time (t)

In the previous command I demonstrated sol.t, which grabs the array of time points that
the solution was saved at:

sol.t

5-element Array{Float64,1}:
0.0

0.10042494449239292
0.3521855598485865
0.6934428591625682

1.0

We can get the array of solution values using sol.u:

sol.u

5-element Array{Float64,1}:
1.0
1.1034222047865465
1.4121902209793713
1.9730369896422575
2.664456142481387

sol.uli] is the value of the solution at time sol.t[i]. We can compute arrays of functions
of the solution values using standard comprehensions, like:

[t+u for (u,t) in tuples(sol)]

5-element Array{Float64,1}:
1.0
1.2038471492789395
1.7643757808279579
2.666479848804826
3.664456142481387

However, one interesting feature is that, by default, the solution is a continuous function. If
we check the print out again:

sol

retcode: Success
Interpolation: Automatic order switching interpolation
t: b-element Array{Float64,1}:
.0

.10042494449239292
.3521855598485865
.6934428591625682

.0

u: 5-element Array{Float64,1}:
.0

.1034222047865465
.4121902209793713
.9730369896422575
.664456142481387

= O O O O

N B =

you see that it says that the solution has a order changing interpolation. The default
algorithm automatically switches between methods in order to handle all types of problems.
For non-stiff equations (like the one we are solving), it is a continuous function of 4th order
accuracy. We can call the solution as a function of time sol(t). For example, to get the
value at t=0.45, we can use the command:

s01(0.45)

1.5542610480525971

Controlling the Solver DifferentialEquations.jl has a common set of solver controls
among its algorithms which can be found at the Common Solver Options page. We will
detail some of the most widely used options.

The most useful options are the tolerances abstol and reltol. These tell the internal
adaptive time stepping engine how precise of a solution you want. Generally, reltol is the
relative accuracy while abstol is the accuracy when u is near zero. These tolerances are local
tolerances and thus are not global guarantees. However, a good rule of thumb is that the
total solution accuracy is 1-2 digits less than the relative tolerances. Thus for the defaults

http://docs.juliadiffeq.org/latest/basics/common_solver_opts.html

abstol=1e-6 and reltol=1e-3, you can expect a global accuracy of about 1-2 digits. If we
want to get around 6 digits of accuracy, we can use the commands:

sol = solve(prob,abstol=1le-8,reltol=1e-8)

retcode: Success
Interpolation: Automatic order switching interpolation
t: 9-element Array{Float64,1}:
.0

.04127492324135852
.14679466086219672
.2863090396112191
.438184089090746
.6118802875301362
.7985514876572974
.9993352795953876

.0

u: 9-element Array{Float64,1}:
.0

.0412786454705882
.1547210130399164
.32390123501071
.5363667984773475
.8214678404507973
.187108732054802
.66272111108696
.6644562419335163

P O O O O OO O Oo

NN B PR

Now we can see no visible difference against the true solution:

plot(sol)
plot!(sol.t, t->1.0%exp(0.98t),1lw=3,1s=:dash,label="True Solution!")

25 ul(t) .
== True Solution!
20
15+
1'0 1 1 1 1 J
0.0 0.2 0.4 0.6 0.8 1.0

Notice that by decreasing the tolerance, the number of steps the solver had to take was 9
instead of the previous 5. There is a trade off between accuracy and speed, and it is up to
you to determine what is the right balance for your problem.

Another common option is to use saveat to make the solver save at specific time points. For
example, if we want the solution at an even grid of t=0. 1k for integers k, we would use the
command:

sol = solve(prob,saveat=0.1)

retcode: Success

Interpolation: 1st order linear
t: 1ll-element Array{Float64,1}:
.0

R O O OO OO O OO Oo
O W 00N O WN -

u: 1l-element Array{Float64,1}:
.0

.1029627851292922
.2165269512231858
.3417838212289122

[e S

.479937951060823
.63231620704857
.8003833265032916
.9857565541611835
.1902158127993507
.41572574207719
.664456142481387

N NN P e

Notice that when saveat is used the continuous output variables are no longer saved and
thus sol(t), the interpolation, is only first order. We can save at an uneven grid of points
by passing a collection of values to saveat. For example:

sol = solve(prob,saveat=[0.2,0.7,0.9])

retcode: Success

Interpolation: 1st order linear
t: 3-element Array{Float64,1}:
.2

O O O

.7

.9

u: 3-element Array{Float64,1}:
1.2165269512231858
1.9857565541611835
2.41572574207719

If we need to reduce the amount of saving, we can also turn off the continuous output directly
via dense=false:

sol = solve(prob,dense=false)

retcode: Success
Interpolation: 1st order linear
t: b-element Array{Float64,1}:
.0

.10042494449239292
.3521855598485865
.6934428591625682

.0

u: 5-element Array{Float64,1}:
.0

.1034222047865465
.4121902209793713
.9730369896422575
.664456142481387

= O O O O

N B ==

and to turn off all intermediate saving we can use save_everystep=false:

sol = solve(prob,save_everystep=false)

retcode: Success

Interpolation: 1st order linear
t: 2-element Array{Float64,1}:
0.0
1

u: 2-element Array{Float64,1}:

.0
2
1.0
2.664456142481387

If we want to solve and only save the final value, we can even set save_start=false.

sol = solve(prob,save_everystep=false,save_start = false)

retcode: Success

Interpolation: 1st order linear

t: 1-element Array{Float64,1}:
1.0

u: l-element Array{Float64,1}:
2.664456142481387

Note that similarly on the other side there is save_end=false.

More advanced saving behaviors, such as saving functionals of the solution, are handled via
the SavingCallback in the Callback Library which will be addressed later in the tutorial.

Choosing Solver Algorithms There is no best algorithm for numerically solving a dif-
ferential equation. When you call solve (prob), DifferentialEquations.jl makes a guess at a
good algorithm for your problem, given the properties that you ask for (the tolerances, the
saving information, etc.). However, in many cases you may want more direct control. A
later notebook will help introduce the various algorithms in DifferentialEquations.jl, but for
now let’s introduce the syntaz.

The most crucial determining factor in choosing a numerical method is the stiffness of the
model. Stiffness is roughly characterized by a Jacobian f with large eigenvalues. That’s
quite mathematical, and we can think of it more intuitively: if you have big numbers in f
(like parameters of order 1e5), then it’s probably stiff. Or, as the creator of the MATLAB
ODE Suite, Lawrence Shampine, likes to define it, if the standard algorithms are slow, then
it’s stiff. We will go into more depth about diagnosing stiffness in a later tutorial, but for
now note that if you believe your model may be stiff, you can hint this to the algorithm
chooser via alg_hints = [:stiff].

sol = solve(prob,alg_hints=[:stiff])

retcode: Success

Interpolation: specialized 3rd order "free" stiffness-aware interpolation
t: 8-element Array{Float64,1}:

0.0

0.05653299582822294

0.17270897997721946

0.3164619936069947

10

http://docs.juliadiffeq.org/latest/features/callback_library.html#SavingCallback-1

.5057530766813646
.7292290122455201
.9913056881982787
.0

u: 8-element Array{Float64,1}:
.0
.05669657840332976
.184421874952142
.3636060527266576
.6415448917417383
.0434588086024563
.641846814956192
.664452642975646

= O O O

NN PP

Stiff algorithms have to solve implicit equations and linear systems at each step so they
should only be used when required.

If we want to choose an algorithm directly, you can pass the algorithm type after the problem
as solve(prob,alg). For example, let’s solve this problem using the Tsit5() algorithm,
and just for show let’s change the relative tolerance to 1e-6 at the same time:

sol = solve(prob,Tsit5(),reltol=1e-6)

retcode: Success

Interpolation: specialized 4th order "free" interpolation
t: 10-element Array{Float64,1}:
.0

.028970819746309166
.10049166978837214
.19458902376186224
.3071721467343173
.43945340580499864
.5883428480879211
.7524861839187198
.9293007851261506

.0

u: 10-element Array{Float64,1}:
.0

.0287982807225062
.103494360777622
.2100930328474355
.3512481270061714
.5382791211530558
.7799334774107156
.0905693823853637
.486098887385528
.6644562434913315

H O O OO OO O OoOOo

NNNR R R R

0.1.3 Systems of ODEs: The Lorenz Equation

Now let’s move to a system of ODEs. The Lorenz equation is the famous "butterfly attractor”
that spawned chaos theory. It is defined by the system of ODEs:

11

https://en.wikipedia.org/wiki/Lorenz_system

G =oly—a) (1)
dy

o =alp=2)—y (2)
T)

To define a system of differential equations in DifferentialEquations.jl, we define our f as a
vector function with a vector initial condition. Thus, for the vector u = [x,y,z]’, we have
the derivative function:

function lorenz!(du,u,p,t)

o,p,8 =p

dul1] = o*x(u[2]-ul1])

dul2] = ul1]*(p-ul3]) - ul2]

dul3] = ul1]l*u[2] - B*ul3]
end

lorenz! (generic function with 1 method)

Notice here we used the in-place format which writes the output to the preallocated vector
du. For systems of equations the in-place format is faster. We use the initial condition
uy = [1.0,0.0,0.0] as follows:

w0 = [1.0,0.0,0.0]

3-element Array{Float64,1}:
1.0

0.0

0.0

Lastly, for this model we made use of the parameters p. We need to set this value in the
ODEProblem as well. For our model we want to solve using the parameters o = 10, p = 28,
and = 8/3, and thus we build the parameter collection:

p = (10,28,8/3)

(10, 28, 2.6666666666666665)

Now we generate the ODEProblem type. In this case, since we have parameters, we add the
parameter values to the end of the constructor call. Let’s solve this on a time span of t=0
to t=100:

tspan = (0.0,100.0)
prob = 0DEProblem(lorenz!,u0,tspan,p)

12

ODEP
time
u0:

roblem with uType Array{Float64,1} and tType Float64.

span: (0.0, 100.0)
[1.0, 0.0, 0.0]

Now, just as before, we solve the problem:

sol

retc
Inte
t: 1

O O O O OO OO WwWOo

99.
99.
99.
99.
99.
99.
99.
99.

100
u: 1
[1.
(0.
(0.
(0.
(0.
(0.
(0.
(0.
[o.
[1.

(8.
(4.
(2.
[o.
(o
(o
(o.
[o.
(1.

= solve(prob)

ode: Success

rpolation: Automatic order switching interpolation
250-element Array{Float64,1}:
.0

.5678604836301404e-5
.0003924646531993154
.0032623883208835647
.00905805935549092
.016956466266909925
.027689961278342563
.041856290192165115
.06024018681535046
.0836851555247397

50064429327207

56497345673458

62788705014984

6991013016854

75654880247485

81017638953824

87131062092273

93558797583201

.0

250-element Array{Array{Float64,1},1}:
0, 0.0, 0.0]

999643, 0.000998805, 1.78143e-8]
996105, 0.0109654, 2.14696e-6]
969359, 0.0897701, 0.0001438]
924204, 0.242289, 0.00104616]
880046, 0.438736, 0.00342426]
848331, 0.691563, 0.00848763]
849504, 1.01454, 0.018212]
913906, 1.44255, 0.0366935]
08886, 2.05232, 0.0740252]

B =, OO OO OO

87662, 1.1596, 35.1377]
55579, -0.800246, 29.5784]
06483, -0.641055, 24.865]
835596, -0.129419, 20.5289]

.493369, 0.189755, 17.614]
.425759, 0.448441, 15.274]

520676, 0.802846, 12.9926]
797852, 1.39909, 10.9881]
34105, 2.47931, 9.37471]

13

In-place: true

The same solution handling features apply to this case. Thus sol.t stores the time points
and sol.u is an array storing the solution at the corresponding time points.

However, there are a few extra features which are good to know when dealing with systems
of equations. First of all, sol also acts like an array. sol[i] returns the solution at the ith
time point.

sol.t[10],s01[10]

(0.0836851555247397, [1.08886, 2.05232, 0.0740252])

Additionally, the solution acts like a matrix where sol[j,i] is the value of the jth variable
at time 1i:

sol[2,10]

2.0523193075036916

We can get a real matrix by performing a conversion:

A = Array(sol)

3x1250 Array{Float64,2}:

1.0 0.999643 0.996105 0.969359 .. 0.520676 0.797852 1.34105
0.0 0.000998805 0.0109654 0.0897701 0.802846 1.39909 2.47931
0.0 1.78143e-8 2.14696e-6 0.0001438 12.9926 10.9881 9.37471

This is the same as sol, i.e. sol[i,j] = A[i,j], but now it’s a true matrix. Plotting will
by default show the time series for each variable:

plot(sol)

14

40

YR s

-20

o

0 20 40 60 80 100
t

If we instead want to plot values against each other, we can use the vars command. Let’s
plot variable 1 against variable 2 against variable 3:

plot(sol,vars=(1,2,3))

(ul,u2,uld)

601
401
201

Oa

20

20 0

- -1

15

This is the classic Lorenz attractor plot, where the x axis is u[1], the y axis is u[2], and
the z axis is u[3]. Note that the plot recipe by default uses the interpolation, but we can
turn this off:

plot(sol,vars=(1,2,3),denseplot=false)

(ul,u2,u3l)

601
401
201

O‘

20
) 0

—20 1o

0 10 55 %

Yikes! This shows how calculating the continuous solution has saved a lot of computational
effort by computing only a sparse solution and filling in the values! Note that in vars, O=time,
and thus we can plot the time series of a single component like:

plot(sol,vars=(0,2))

16

m— 2(1)

20 |-

10 §-

-10

-20

0 20 40 60 80 100

0.1.4 A DSL for Parameterized Functions

In many cases you may be defining a lot of functions with parameters. There exists the
domain-specific language (DSL) defined by the @ode_def macro for helping with this common
problem. For example, we can define the Lotka-Volterra equation:

d
d—f = ax — bxy (4)
d
d—? = —cy +dxy (5)

as follows:

function lotka_volterra!(du,u,p,t)

dul1] = plil*ul1l] - p[2]*ul1]*u[2]
dul2] = -p[31*ul2] + pl[4]*uli]l*ul2]
end

lotka_volterra! (generic function with 1 method)

However, that can be hard to follow since there’s a lot of "programming" getting in the way:.
Instead, you can use the @ode_def macro from Parameterized Functions.jl:

using ParameterizedFunctions

17

lv! = Q@ode_def LotkaVolterra begin
dx = a*x - b¥x*y
dy = -c*xy + d*x*y

end abcd

(::Main.WeaveSandBox3.LotkaVolterra{getfield(Main.WeaveSandBox3, Symbol ("##
T#11")) ,getfield(Main.WeaveSandBox3, Symbol ("##8#12")) ,getfield(Main.WeaveS
andBox3, Symbol ("##9#13")) ,Nothing,Nothing,getfield(Main.WeaveSandBox3, Sym
bol ("##10#14")) ,Expr,Expr}) (generic function with 2 methods)

We can then use the result just like an ODE function from before:

u0 = [1.0,1.0]
p=(1.5,1.0,3.0,1.0)

tspan = (0.0,10.0)

prob = O0DEProblem(lv!,u0,tspan,p)
sol = solve(prob)

plot(sol)

X(t)
= y()

Not only is the DSL convenient syntax, but it does some magic behind the scenes. For
example, further parts of the tutorial will describe how solvers for stiff differential equations
have to make use of the Jacobian in calculations. Here, the DSL uses symbolic differentiation
to automatically derive that function:

1v!.Jex

18

quote
internal_var___J[1, 1]
ternal_var___ul2]

internal _var___J[1, 2]

internal_var___p[1] - internal_var___p[2] * in

-(internal_var___p[2]) * internal_var___u[1]
internal _var___J[2, 1] internal _var___p[4] * internal_var___u[2]
internal_var___J[2, 2] -(internal_var___p[3]) + internal_var___p[4] =*

internal_var___ul[1]
nothing

end

The DSL can derive many other functions; this ability is used to speed up the solvers. An
extension to DifferentialEquations.jl, Latexify.jl, allows you to extract these pieces as LaTeX
expressions.

0.2 Internal Types

The last basic user-interface feature to explore is the choice of types. DifferentialEquations.jl
respects your input types to determine the internal types that are used. Thus since in the
previous cases, when we used Float64 values for the initial condition, this meant that the
internal values would be solved using Float64. We made sure that time was specified via
Float64 values, meaning that time steps would utilize 64-bit floats as well. But, by simply
changing these types we can change what is used internally.

As a quick example, let’s say we want to solve an ODE defined by a matrix. To do this, we
can simply use a matrix as input.

A =1[1.0 0-5
4 -2 4 -3
-4 0 0 1
5 -2 2 3]

u0 = rand(4,2)

tspan = (0.0,1.0)

f(u,p,t) = A*xu

prob = 0DEProblem(f,u0,tspan)
sol = solve(prob)

retcode: Success
Interpolation: Automatic order switching interpolation
t: 10-element Array{Float64,1}:
.0
.03989150365432706
.1079402017503659
.18862948589652
.289222793678448
.4073910918561731
.5463256399056908
.6927614983641228
.8447141108289911
.0
u: 10-element Array{Array{Float64,2},1}:
[0.178194 0.406862; 0.14896 0.378906; 0.672525 0.693541; 0.854499 0.782008
]
[-0.00614142 0.244484; 0.147071 0.40342; 0.695823 0.676078; 1.02732 0.9758

P O O OO OO O OoOOo

19

https://korsbo.github.io/Latexify.jl/latest/tutorials/parameterizedfunctions.html

75]

[-0.414518 -0.134847; 0.0458479 0.328806; 0.829405 0.735042; 1.28377 1.271
62]

[-1.0381 -0.740336; -0.196347 0.0856786; 1.17326 0.986254; 1.50436 1.54379

]
[-1.98095 -1.69059; -0.58401 -0.355309; 1.9341 1.63502; 1.61078 1.72056]

[-3.20297 -2.97186; -0.94702 -0.854858; 3.34097 2.93446; 1.42882 1.62637]

[-4.51559 -4.43477; -0.833326 -0.992808; 5.65534 5.1925; 0.694496 0.993786
]

[-5.26056 -5.43915; 0.488645 -0.00892092; 8.56883 8.18028; -0.767419 -0.37
9175]

[-4.64175 -5.19058; 3.73798 2.87842; 11.3907 11.2819; -3.01694 -2.58399]

[-1.74338 -2.73799; 9.33947 8.2071; 12.8266 13.2605; -5.87889 -5.48991]

There is no real difference from what we did before, but now in this case u0 is a 4x2 matrix.
Because of that, the solution at each time point is matrix:

sol[3]

4x2 Array{Float64,2}:
-0.414518 -0.134847
0.0458479 0.328806
0.829405 0.735042
1.28377 1.27162

In DifferentialEquations.jl, you can use any type that defines +, -, *, /, and has an appropri-
ate norm. For example, if we want arbitrary precision floating point numbers, we can change
the input to be a matrix of BigFloat:

big_u0 = big. (u0)

4x2 Array{BigFloat,2}:
0.178194 0.406862
0.14896 0.378906
0.672525 0.693541
0.854499 0.782008

and we can solve the ODEProblem with arbitrary precision numbers by using that initial

condition:

prob = ODEProblem(f,big_u0l,tspan)
sol = solve(prob)

retcode: Success
Interpolation: Automatic order switching interpolation
t: 6-element Array{Float64,1}:

20

.0
.10731817470216595
.3365981527623273
.6251277514463337
.9234294872023252
.0
u: 6-element Array{Array{BigFloat,2},1}:
[0.178194 0.406862; 0.14896 0.378906; 0.672525 0.693541; 0.854499 0.782008
]
[-0.410272 -0.130814; 0.0472642 0.33009; 0.827581 0.733921; 1.28169 1.2691
6]
[-2.46543 -2.19178; -0.756718 -0.573382; 2.43099 2.08435; 1.58178 1.72637]

= O O O O O

[-5.03676 -5.08268; -0.3128 -0.648213; 7.19561 6.75215; -0.00220957 0.3487
09]
[-3.50741 -4.27772; 6.28983 5.27134; 12.3987 12.531; -4.41991 -3.99508]

[-1.74337 -2.73798; 9.33951 8.20713; 12.8266 13.2605; -5.87891 -5.48993]

soll[1,3]

-2.465427911106575798098319212867551998749785401012923393551322579303863094
62573

To really make use of this, we would want to change abstol and reltol to be small! Notice
that the type for "time" is different than the type for the dependent variables, and this can
be used to optimize the algorithm via keeping multiple precisions. We can convert time to
be arbitrary precision as well by defining our time span with BigFloat variables:

prob = ODEProblem(f,big_uO,big. (tspan))
sol = solve(prob)

retcode: Success

Interpolation: Automatic order switching interpolation
t: 6-element Array{BigFloat,1}:

0.0

0.107318174702165944431525627092954210085520217269736140050506684085267021
331094

0.336598152762327259248659370480370143411495532450237518330011380943934864
4464363

0.625127751446333638172019423093086629429473091440284652117804570674762718
1156867

0.923429487202325168710959532175106097540023976576833509448227962731747764
3726113

1.0

u: 6-element Array{Array{BigFloat,2},1}:

[0.178194 0.406862; 0.14896 0.378906; 0.672525 0.693541; 0.854499 0.782008
]

[-0.410272 -0.130814; 0.0472642 0.33009; 0.827581 0.733921; 1.28169 1.2691
6]

[-2.46543 -2.19178; -0.756718 -0.573382; 2.43099 2.08435; 1.58178 1.72637]

21

[-5.03676 -5.08268; -0.3128 -0.648213; 7.19561 6.75215; -0.00220957 0.3487
091]
[-3.50741 -4.27772; 6.28983 5.27134; 12.3987 12.531; -4.41991 -3.99508]

[-1.74337 -2.73798; 9.33951 8.20713; 12.8266 13.2605; -5.87891 -5.48993]

Let’s end by showing a more complicated use of types. For small arrays, it’s usually faster
to do operations on static arrays via the package StaticArrays.jl. The syntax is similar to
that of normal arrays, but for these special arrays we utilize the @SMatrix macro to indicate
we want to create a static array.

using StaticArrays

A = @SMatrix [1.0 0.0 0.0 -5.0
4.0 -2.0 4.0 -3.0
-4.0 0.0 0.0 1.0
5.0 -2.0 2.0 3.0]

u0 = @SMatrix rand(4,2)

tspan = (0.0,1.0)

f(u,p,t) = A*u

prob = ODEProblem(f,u0,tspan)
sol = solve(prob)

retcode: Success

Interpolation: Automatic order switching interpolation

t: 10-element Array{Float64,1}:

.0

.04026052329048027

.10826961898156863

.18591276307559085

.27980215906882416

.3930643282942557

.56316177891781961

.6881992551666889

.8529365942335383

.0

u: 10-element Array{StaticArrays.SArray{Tuple{4,2},Float64,2,8},1}:
[0.621366 0.829066; 0.597722 0.164563; 0.412962 0.484459; 0.861303 0.35447

4]
[0.448501 0.766366; 0.58205 0.286972; 0.365072 0.374323; 1.06973 0.588701]

R O O O O OO O OoOOo

[0.046858 0.545901; 0.428678 0.346463; 0.37847 0.24572; 1.388 0.971539]
[-0.570725 0.116729; 0.0927044 0.204559; 0.575303 0.229183; 1.6794 1.36916
][—1.51212 -0.644463; -0.4584 -0.211708; 1.12953 0.468029; 1.89189 1.75577]
[-2.84084 -1.86443; -1.14539 -0.925911; 2.32683 1.24165; 1.87994 2.01628]
[-4.50855 -3.63271; -1.6052 -1.75633; 4.60073 3.03498; 1.35794 1.9041]
[-5.91244 -5.56289; -0.903813 -1.94019; 8.02483 6.17558; -0.035254 1.0277]

[-5.9488 -6.71529; 2.1041 -0.291547; 11.8493 10.3225; -2.47769 -0.913595]

[-3.8446 -6.09293; 7.26453 3.53242; 14.2786 13.871; -5.37551 -3.53919]

22

https://github.com/JuliaArrays/StaticArrays.jl

sol[3]

4x2 StaticArrays.SArray{Tuple{4,2},Float64,2,8%}:
0.046858 0.545901

0.428678 0.346463

0.37847 0.24572

1.388 0.971539

0.3 Conclusion

These are the basic controls in DifferentialEquations.jl. All equations are defined via a
problem type, and the solve command is used with an algorithm choice (or the default)
to get a solution. Every solution acts the same, like an array sol[i] with sol.t[i], and
also like a continuous function sol(t) with a nice plot command plot(sol). The Common
Solver Options can be used to control the solver for any equation type. Lastly, the types
used in the numerical solving are determined by the input types, and this can be used to
solve with arbitrary precision and add additional optimizations (this can be used to solve via
GPUs for example!). While this was shown on ODEs, these techniques generalize to other
types of equations as well.

0.4 Appendix

This tutorial is part of the DiffEqTutorials.jl repository, found at: https://github.com/JuliaDiffEq/DiffEq

To locally run this tutorial, do the following commands:

using DiffEqTutorials
DiffEqTutorials.weave_file("introduction","Ol-ode_introduction.jmd")

Computer Information:

Julia Version 1.1.1
Commit 55e36cc308 (2019-05-16 04:10 UTC)
Platform Info:
0S: Linux (x86_64-pc-linux-gnu)
CPU: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: 1ibLLVM-6.0.1 (ORCJIT, ivybridge)

Package Information:

Status ~~/.julia/environments/vl.1/Project.toml”
[7e558dbc-694d-5a72-987c-6f4ebed21442] ArbNumerics 0.5.4

23

https://github.com/JuliaDiffEq/DiffEqTutorials.jl

[6e4b80f9-dd63-53aa-95a3-0cdb28fa8barf]
[be33ccc6-a3ff-5ff2-ab2e-74243cff1el7]
[3a865a2d-5b23-5a0f-bcd6-62713ec82fae]
[65939f99-70c6-5e9b-8bb0-5071ed7d61fd]
[abce61dc-4473-55a0-ba07-351d65e31d42]
[ebbdde9d-£333-5424-9be2-dbf1elacfbbe]
[eb300fae-53e8-50a0-950c-e21f52¢c2b7e0]
[459566f4-90b8-5000-8ac3-15dfb0a30def]
[f3b72e0c-5b89-59e1-b016-84e28bfd966d]
[1130ab10-4a5a-5621-a13d-e4788d82bd4c]
[055956¢cb-9e8b-5191-98cc-73ae4a59e68a]
[6d1b261a-3be8-11e9-3f2f-0b112a9a8436]
[0c46a032-eb83-5123-abaf-570d42b7fbaa]
[31c24e€10-a181-5473-b8eb-7969acd0382f]
[497a8b3b-efae-58df-a0af-a86822472b78]
[£6369f11-7733-5829-9624-2563aa707210]
[c91e804a-d5a3-530f-b6f0-dfbca275c004]
[7073ff75-c697-5162-941a-fcdaad2a7d2a]
[4138dd39-2aa7-5051-a626-17a0bb65d9c8]
[23fbelc1-3f47-55db-b15f-69d7ec21a316]
[eff96d63-e80a-5855-80a2-b1b0885c5ab7]
[961ee093-0014-501f-94e3-6117800e7a78]
[76087f3c-5699-56af-9a33-bf431cd00edd]
[2774e3e8-f4cf-5e23-947b-6d7e65073b56]
[429524aa-4258-5aef-a3af-852621145aeb]
[1dea7af3-3e70-54e6-95¢c3-0bf5283fabed]
[65888b18-ceab-5e60-b2b9-181511a3b968]
[91a5bcdd-55d7-5caf-9e0b-520d859cae80]
[d330b81b-6aea-500a-939%a-2ce795aecalee]
[731186ca-8d62-57ce-b412-fbd966d074cd]
[90137ffa-7385-5640-81b9-e52037218182]
[£3b207a7-027a-5e70-b257-86293d7955fd]
[c3572dad-4567-51f8-b174-8c6c989267f4]
[1986¢cc42-f94f-5a68-af5¢c-568840ba703d]
[44d3d7a6-8a23-5bf8-98c5-b353f8df5ec9]
[b77e0ad4c-d291-57a0-90e8-8db25a27a240]
[37e2e46d-£89d-539d-bdee-838fccccIc8e]
[44cfe9ba-1eb2-52ea-b672-e2afdf69b78f]

24

BenchmarkTools 0.4.2
CUDAnative 2.2.0
CuArrays 1.0.2

DecFP 0.4.8

Decimals 0.4.0
DiffEqBayes 1.1.0
DiffEqBiological 3.8.2
DiffEqCallbacks 2.5.2
DiffEqDevTools 2.9.0
DiffEqParamEstim 1.6.0
DiffEqPhysics 3.1.0
DiffEqTutorials 0.1.0
DifferentialEquations 6.4.0
Distributions 0.20.0
DoubleFloats 0.9.1
ForwardDiff 0.10.3
Gadfly 1.0.1

IJulia 1.18.1

JLD 0.9.1

Latexify 0.8.2
Measurements 2.0.0
ModelingToolkit 0.2.0
NLopt 0.5.1

NLsolve 4.0.0

Optim 0.18.1
OrdinaryDiffEq 5.8.1
ParameterizedFunctions 4.1.1
Plots 0.25.1

PyPlot 2.8.1
RecursiveArrayTools 0.20.0
StaticArrays 0.11.0
StatsPlots 0.11.0
Sundials 3.6.1

Unitful 0.15.0

Weave 0.9.0
InteractiveUtils
LinearAlgebra

Pkg

	Basic Introduction Via Ordinary Differential Equations
	Background
	First Model: Exponential Growth
	Systems of ODEs: The Lorenz Equation
	A DSL for Parameterized Functions

	Internal Types
	Conclusion
	Appendix

