These notes present a representative agent New Keynesian model with Epstein-Zin pref-
erences and disaster shocks and borrow from Fernandez-Villaverde and Levintal (2018) “So-
lution Methods for Models with Rare Disasters”, Kekre and Lenel (2020) “Monetary Policy,
Redistribution, and Risk Premia”, and de Groot et al. (2020) “Valuation Risk Revalued.”

1 Model

1.1 Household

The model admits a representative agent, so I directly write households’ problem as the
representative agent’s. The representative household chooses consumption C, labor supply
Ly, next-period nominal bond holdings B;, and next-period capital holdings K; to maximize,
in the cashless limit, the Epstein-Zin preferences

1-9¢
-

w=(m—meWMaa@WW+QMwmm4mﬂﬁﬂl)“5 0

where 3 is the time preference rate; 1) is the inverse intertemporal elasticity of substitution;
7 is the risk aversion coefficient; and the labor disutility functior[[] £(L) is
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where n;; is a shock to labor disutility, 7 is the disutility of labor, v is the inverse Frisch
elasticity subject to the budget constraint

Cy + % + QK < WiLi + (Rit + Ry Qy) exp(np,e) K1 + Ri1 B]tjtl + B+ T (3)
The quantity P, is the price of the final consumption good, (); the real price of capital, W;
the real wage, Ry, the gross real rental rate on capital, n,; a disaster shockE] R, ; the returns
from capital gains on the capital stock, R; the gross nominal interest rate on bonds, F; real
profits from intermediate firms, and 7; real lump-sum transfers from the government. The
budget constraint indicates that households can choose to consume, save in bonds, or
invest in units of the capital stock from income through labor, capital, bonds, intermediate
firms, and government transfers. Markets are assumed complete, but securities are in zero
net supply. Because there is a representative agent, I may omit the Arrow securities from
the budget constraint.
My notation treats B;_; and K;_; as the stocks of bonds and capital present at time ¢,
while B; and K; are the chosen stocks of bonds and capital for the following period. I adopt

IThis functional form is proposed by Shimer (2010) (see Chapter 1.4). Kekre and Lenel (2020) adapt this
functional form for Epstein-Zin preferences. I have additionally included shocks to the disutility of labor.

21 follow Kekre and Lenel (2020)’s specifications of the disaster shock, but I could also define an interme-
diate variable K; and set K; = K, exp(nk,¢), following Ferndndez-Villaverde and Levintal (2018).



this notation so that all time ¢ choices are dated at time ¢ rather than having to differentiate
between the predetermined time-t variables from the endogenous controls.
Solving the household’s problem is the same as solving the maximization problem
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Define V, = Vf*w, and conjecture that V; is a function of the state variables K, ; and B;_1,

among other states (e.g. the realized shocks). The first-order conditions with respect to
controls are
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The envelope conditions for B; 1 and K, ;| are
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The first two first-order conditions can be combined by isolating A;, which obtains the
intratemporal consumption-labor condition
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The derivative of L(L;) evaluates to
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hence the intratemporal consumption-labor condition becomes
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Re-arrange to acquire

Notice additionally that
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The Euler equation for bonds can be obtained by combining the envelope condition for B;_;
with the first and third first-order conditions. Iterate the envelope condition for B;_; forward
by one period.
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Define
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as households’ certainty equivalent. Substitute this expression and the iterated envelope
condition into the third first-order condition.

1 2 R A\
=y 1 — "/—Iﬁ]E —y t M
0 1-— iﬂv; exp(ns.1) B(1 = ¥)C& t |:V1;+1)‘t+1_Pt+1:| 2}
? 1ib — - R A
=V, exp(np,) BCENVE, {Vtﬂ)\tﬂp_t} - Ft
t+1 t

Observe that, from the first first-order condition,
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Divide the third first-order condition by \;/P; and substitute these quantities. Re-arrange
to acquire
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Define the gross inflation rate and real stochastic discount factors as
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where the two time subscripts in M, indicate that the real stochastic discount factor
includes terms dated at times ¢ and ¢ 4+ 1. Using these definitions, the Euler equation for
bonds becomes

R
1=E, {Mt,m : } . 9)

Households’ asset pricing equation for capital can be obtained using similar steps and will
take the familiar form from consumption-based asset pricing. Iterate the envelope condition
for K;_; forward by one period.
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Substitute this expression and other quantities derived previously into the fourth first-order
condition.
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Finally, because V; is defined recursively, I can express households’ preferences as a forward-

looking difference equation. The value function V; is homogeneous of degree 1 in C; and
Vii1. By Euler’s Theorem,
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The derivatives in this expression are, after simplification,
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It is easy to verify this claim is true by direct calculation. Since Et[‘/ﬁ:ﬂ] is t-measurable,
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Further algebraic manipulation verifies the claim.
To obtain a forward difference equation, define
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Therefore, (L0]) simplifies to
U = Oy + Ey[My 1 11Q¢44], (12)

which is a forward difference equation in €2;. This expression also shows that 2, may be
interpreted as wealth because it is the price of a claim to consumption.

The equations defining the value function V; and certainty equivalent C&; can also be
rewritten using €2;. Observe that
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Plug this version of C&; into the definition of the value function to acquire
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In light of these formulas, it will be convenient to define
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These transformations adjust the definition of the stochastic discount factor to become
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In summary, households’ optimality conditions are
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1.2 Production

Final Producers There is a representative final goods firm which sells consumption goods
in a competitive market. It aggregates intermediate goods using the CES technology

Y, = (/Olmj)*)fl (22)

where € > 1 so that inputs are substitutes. Profit maximization for the final good firm is

max P, ( /0 1 m)eel) T /0 RGO i (23)

Yi(5)
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Re-arranging obtains
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Intermediate Producers Intermediate goods are producing according to the Cobb-Douglas
technology

A
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where K, = exp(n+) K¢—1 and productivity exp(na,t) follows the unit root process
Najt = Ha + TNat—1 + OaCat + Kallk,t- (27)
Intermediate producers minimize cost subject to the constraint of meeting demand. Formally,
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The RHS of the inequality constraint is the demand from final goods producers for interme-
diate j. The Lagrangian is
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so the first-order conditions are
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hence the optimal capital-labor ratio satisfies
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Since the RHS does not vary with j, all firms choose the same capital-labor ratio. Given
this optimal ratio, the marginal cost satisfies
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Therefore, (real) profits for an intermediate producer become
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In addition to the capital-labor choice, firms face Calvo pricing rigidities and have the chance

to reset prices in every period with probability 1 — 6. See Appendix [A] for guidance on how
to implement nominal rigidities using Rotemberg pricing. This problem can be written as
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where I have imposed that intermediate output equals demand. The quantity M, is the
stochastic discount factor between periods ¢t and ¢ + s and is given by
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with the boundary condition M;; = 1. The first-order condition is
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This expression gives the optimal (real) reset price P} = P,(j)/P; (note that the RHS does
not depend on 7). Define
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Using these definitions, I may write the optimal reset price more compactly as
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where S;; and Sy, satisfy the recursions

Sy = MCY, + OEM; 4 1115, (S141, (35)
Sor =Y+ Q]EtMt,tHHZ;SzHL (36)

From this section, we obtain the following five equilibrium conditions:

1 1-a 1 a Wl—aRa
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Sor =Y + eEt[Mt,t-‘,-lH;;%SQ,t-&-l]' (41)

Capital Producers For expositional clarity, I model capital production as its own sec-
tor After intermediate firms finish using the time ¢ stock of capital Kt = exp(Me¢) Ki—1,
households trade their capital holdings to capital producers in exchange for claims to profits
from capital production. Each producer solves the problem

X -
max ¢ (E))Qth — X;. (42)

Xt f

31 could subsume capital production within the household problem by adding as an additional constraint
Kt == q)(Xt/Kt)Kt
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In other words, capital producers maximize the static profits from producing new capital
since it costs them X in investment to produce ®(X,;/K;)QK; in revenue The solution to
this problem yields the Tobin’s QQ equation

/ Xt
b= (exp(nk,t)Kt—1> Qe )

After production, capital producers return the initial investment of capital K, to their owners
and pay profits to households in proportion to the invested capital. A fraction ¢ of the initial
investment then deprecaites. Thus, the return from capital gains on K; for households is

X ) X
exp (M, ) K1 Q1 exp(ne,t) K1 .
From , this expression can be re-written as

Rq7t:1—5+q)(

X X X
By =1-02 (eXp(nk,tt)Kt1> -7 (exp(nk,tt>Kt1> eXp(Uk,tt)Ktq' (49
Further, the evolution of the aggregate capital stock is
K = (1 -0+ (L)> exp(ng,e) K1 (45)
exp(Me,t) Ke—1 ’

1.3 Monetary Policy

I specify the monetary policy rule as the following Taylor rule

% _ (Rgl)% <<%>¢ (Ytyi exp(—uy)>¢y)1_¢r exp(1ps), (46)

where py represents the growth rate of output along the model’s balanced growth path. Any
proceeds from monetary policy are distributed as lump sum to the representative household.

1.4 Aggregation

The price level is currently characterized as the integral

1
= [ pirea
0

To represent the model entirely in terms of aggregates, notice that, without loss of generality,
we may re-order the fraction 6 of firms which cannot reset prices to the top of the interval
so that

1
Pl = (1 0)(Fy)' + / Pr()' dj.
1-0

4The cost of buying the initial stock of capital K, is offset by selling K, at the same price after production.
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The latter term can be further simplified under the law of large numbers assumption that
a positive measure of firms which cannot change their price still comprise a representative
sample of all firms, yielding

1
Rl = (L= )P0 [ Pa(i) ™ d = (1= 0)(F) + 6F .
0
Dividing by P!~ implies
I} = (1—0)(PTL)  +0. (47)

The price dispersion term can similarly be re-written in terms of aggregates by distinguishing
which firms get to change prices.

1-6 . . 1 P, . —€ '
s= [ [ (P22 g
0 1-0 2
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e A d+/ C——) (—J i
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1 P . —€ ‘
—a-owemymng [ (B2
1—0 \ Pi1

By invoking the law of large assumptions applied to any positive measure subset of firms,
we must have
1 . —€ 1 . —€
Pt—1(3)> : / (Pt—l(J)) :
dj =0 dj = AP .
/1—9< P o \ b !

Ay = I((1 = 0)(PTL) ™ + 0A7 ) (48)

Thus, we acquire

1.5 Equilibrium

To close the model, I need to specify the functional form for investment, remaining aggregate
shocks, and market-clearing conditions.

1.5.1 Investment Function

Following Jermann (1998), I assume the investment function takes the concave form
<1/x 1-1/x v
&)@ w R
K/ 1-1/x\K x(x —1)
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where

X 1
o (exp@[m,t]) o 1) (50)

is the steady-state investment rate (per unit of capital). The expectation exp(E[ny.]) is
the unconditional expected value of the disaster shock and is necessary to guarantee the
(stochastic) steady-state investment rate is indeed X. The first derivative of ®(-) w.r.t.

‘it/]Et iS
I/ ( > —)Tl/X ( Xt)—l/x ( )
Kt Kt

This functional form implies the law of motion

~(sommn (@m0 1)+ % (%>/ . ﬁ) i
~\ooEm " ff/(x (%)/ () (s 1))
(w5 s (amEmy - 1)> &

1 Xl/x X, 1-1/x 1 1 )
~ \ep®md) T T 1/ (?> RSV (exp@[nk,t])”‘l))&

- 1 N 71/>< (Xt)ll/x < i
- \epElpg)  1-1/x \K, 1-1/x) "

To verify that X is indeed the steady-state investment rate, suppose K, is some steady-state
capital stock, and suppose ng: = n = E[nge], i.e. mps obtains its value consistent with a
deterministic or stochastic steady state. Then

X =

K I SN o () K
ss — - exp SS
exp(Elnd) | 1-1/x 1—1/x &
exp ()
=1=—"T__1
exp(E[n])

as desired.
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1.5.2 Exogenous Shocks

There are five shocks in the model: 1., Mk, Mg, M, and 7n,,. The first shock has been
specified as an AR(1) with a disaster component. I specify n;: below. Without loss of
generality, I assume the last three shocks follow AR(1) processes with persistence p; and
standard deviation ;. Shocks to the time preference rate should ideally satisfy 8 exp(ns,:) <
1 for all t. To ensure this property is satisfied most of the time, I add the restriction

o= (£ ))2 (1-2) 52)

ng

where ng parameterizes the number of standard deviations above zero that should correspond
to the event Sexp(ns:) > 1. For example, ng = 4 implies a violation of the property
Bexp(ns:) < 1is a4 standard deviation above zero event. I could alternatively assume 73,
follows a Markov chain with all values strictly below —log(53) or specify the shock to ns,
using an auxiliary variable 7z, = 1 — Bexp(ns,) such that

log(7ig,e41) = (1 — pp) log(7is) + pslog(is.s) + opep tt1- (53)

Since this process for 7jg, occurs in logs, fexp(ng:) < 1 for all ¢.

There are multiple ways to model the disaster shock. The simplest approach borrows
from Kekre and Lenel (2020). The shock 7, equals 7, < 0 with probability p;—1 and zero
with probability 1 — pt,lﬂ The probability of a disaster varies according to a two-state
Markov process, which takes values p and p, with p < p. The probability of remaining
in state p (p) is L, (pp). The values and transition probabilities of the Markov chain are
restricted by the requirement that the unconditional mean of the Markov chain must be p,
ie.

(1=p)p+(1—p)p
2—=(p, +7)

In this case, I construct martingale difference sequences for 7;; and p; by defining e, =
Mkt — Et—l[nk,t] and e, = pr — E; 1[p:]. Then

Mk,t+1 = 1, Pt + Ekt+1, (54)
pp+(1—p)p ifp=p,

Dt+1 = Eppt1 + 4 - _* , — (55)
b+ (1—=p,)p ifp =D

The second approach models the time variation in p; as a discrete-time Cox-Ingersoll-Ross
process:

Pe+1 = (1 - pp)p + PpPt + \/Eo-pgp,t-‘rl’ (56)

5A direct translation of Kekre and Lenel (2020) sets 7y, equal to n, with probability p; so that 7 is
represented by a four-state process. This approach is feasible, but, absent an empirical rationale, I do not
see any advantage from assuming randomness in both size and probability for the disaster.
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In this case, €,,+1 ~ N(0,1). The disaster shock 7y, still follows the martingale difference
sequence ;. The disadvantage of this approach is that p,+; can move outside [0, 1], given
a sufficiently large shock. To address this problem, the shock €,y could be a truncated
normal random variable with lower bound —((1—p,)p+p,p:)/(\/Pt0p). The variance of €, ;44
before truncation will be one, but the mean will change over time to guarantee E;[p;1] =
(1 — pp + pppe. The sequence €, remains a martingale difference sequence because the
mean is chosen to satisfy E;[p;1] = 0.

The third approach models the time variation in p; in logs to avoid p; moving below zero:

IOg(thrl) = (1 - Pp) log(p) + Pp log(pt) + 0pEpiti- (57)

This approach still risks p; increasing above 1.

The fourth approach models the disaster shock as an exponentially distributed shock
Mkt ~ Exponential(p;), where p; is now the intensity of the exponential distribution. The
evolution of p, can be modeled in three ways, as before, but p, may now increase above one.

The fifth approach uses time variation in the size of the shock rather than the probability.
The disaster shock 7, ; takes the form

Nkt = ﬁk,tpt, (58)

where 7)., is modeled as a Bernoulli random variable and p; evolves according to a Markov
chain, the Cox-Ingersoll-Ross process, or in logs.

The sixth approach allows time variation in the size and probability of the shock through
a mixture model. The disaster risk 7, is distributed according to a Gamma distribution
with shape j; and scale o; an exponential distribution shifted by —7j; and intensity oy; or
a Normal distribution with mean —j; and variance jo:. The parameter j; is distributed
according to a Bernoulli(p;_;) with low and high values of j and j, HyperPoisson(pt,l,ﬁ)ﬁ
or Exponential(p;_1). The probability varies over time according to a Markov chain, the
Cox-Ingersoll-Ross process, or in logs.

The seventh approach models disaster risk as a “risk-on risk-off” phenomenon. The size
of the disaster shock 7y is still modeled according to one of the ways described above.
However, the probability of a diasster p, now depends on an additional two-state Markov
chain denoted by d;. The Markov chain d; equals either zero or one. When d; equals one,
p; varies according to one of the ways described above, hence d; = 1 represents “risk-on”
periods or “disaster” times. When d; equals zero, p, = 0 so that disasters never realize,
hence d; = 0 represents “risk-oft” periods or “normal” times.

1.5.3 Market Clearing

Markets must clear for capital, labor, bonds, final goods, and intermediate goods. The
first three markets clear as a consequence of optimality conditions and the assumption that
bonds have zero net supply. To clear the market for final goods, we set the sum of aggregate

6See https://www.jstor.org/stable/22839927seq=1#metadata_info_tab_contents.
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consumption demand C; and investment demand X; equal to aggregate supply Y; net of
fixed costs, which satisfies

t

/OI(K?(Lt exp(nee))™ = Xy exp () dj = /01 <Pt]§j))f Vi

g 1—a ! ]Dt(]) - .
K (exp(ae)Le) ™" — Xy exp(a) = Yy P dj =AY
0 t
Re-arranging yields the output market-clearing condition
Ci+ X, =Y, (59)
(exp(nee) Ko—1)* (exp(1a,e) Le) '™ — Xy exXP(1a,t)

Y, =

Y . (60)

It can be shown that A; > 1 by applying Jensen’s inequality. For our purposes, because the
dimensionality of our model is not too large, we add the auxiliary Y; variable, even though
we could substitute it out of the system of equations.

1.5.4 Equilibrium Conditions

All together, the equilibrium conditions are

Vi = (1 — exp(ns,)8)Q) ™7, (61)
o (1= exp(s)8 ¢ )

CE = Q-1 , 62

( eXP(ﬁB,tW ( ) ( )

Q, =1+E, |:Mt,t+1cé+1 Qt+1:| : (63)

~ Y=y
1 —exp(1g,e11)8 CAL (L)' ™ (Vi
Moy = ex ’ ! , 64
tt+1 P(Uﬁ,t)ﬁ 1 — eXp(U@t)B C;’Y‘C(Lt)lffy Cgt ( )
W, = LEPmIPCLE (65)
L)
L%-H/ %
£ = (14 - Do) (60
R
1=E, {Mt,m : } , (67)
Iy
Qt = Ey [My 141 (Ri i1 + Ry+1Q141) exp(ie41)] (68)

11—« «@ Wl—aRa
MCt:( 1 ) (l) 't TRt (69)

1—a a) exp(ne.)t—o’
eXP(Uk,t)Kt—l _ a W,
Lt 11—« Rk,t7
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e Siy
t — c_1 g,t’
S1p = MCY,; + 0 [ My 41115 51 444],
Sor =Y, + eEt[Mt,t+1H§;}52,t+l]a
Xy

- ()
eXP(le,t)Ktq @

X, X, X,
R :1_5+q>(—)_q>'< ) s
o exp (M, ) K1 exp(Me,e) Ki—1 ) exp(ne) Ki—1 (75)

*

Xi
Ki=(1-04+0(— —— K 76
t ( " (GXP(Uk,t)Kt—1>) X} Ko, (76)
I} = (1 — 0)(P;TL,) '~ + 6, (77)
Ay =TL((1 = 0) (P IL) ™ + 0A) ), (78)
1—¢,
Rt Rt—l d)r Ht ¢7r “}/t ¢y
L - — t), 79
7 ( 7 ) o v, exp(=my) exp(1r,t) (79)
Ci+ Xy =Y, (80)
y, — (&P ) K1) (exp(0) L)' — Xy OXP(That) (81)
Ay
the three exogenous processes
NBe+1 = PNt + OBER 4, (82)
Mi+1 = PNt + O1€L 41, (83)
Nrit+1 = Priirg + OrERt+1, (84>
the process for productivity
Nat = Ha + Na,t—1 + Oq€ait + RaMk,t, (85>

and one of the proposed disaster processes in Section [1.5.2]

1.5.5 Stationary Equilibrium Conditions

Because of the unit root in 7,,, the model is non-stationary. To obtain a stationary repre-
sentation, define the transformations

Cy K, K4

C,=— K=—"' K_ ,=—= Ww=—_ 86

" exp(Tas) " exp(May) T exp(May) " exp(ay) (86)

. X - S . S . Y,

Xp=—, Spy=— Syy=—2 Y= (87)
exp(7a,t) exp(7a,t) exp(7a,t) exp(7a,t)

At = eXp(na,t — Najt—1 — Ma) = eXp(Uaga,t + Hank,t)- (88)
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Most of the calculations for the stationary representation are straightforward, so I only show

the work for the more complicated cases.
The stochastic discount factor becomes

~ Y=y
1 — exp(nge1)B CraL(Leg) ™ (Vi
M, = ’ — ,
tt+1 exp(nﬁ,t)ﬁ 1 —eXp<nB,t)6 Ot—vﬁ(Lt)l—y Cgt
_ ~ =y —
= exp(n )51 — exp(ng1) 8 CraL(Lea)™ (Vi (exp(ﬂa,t+1)) !
P —exp(ngs)B G L(Ly) \ CE, exp(7a,)
= ~ =y
1— C.OL(L) [V _
= exp(n67t)ﬁ eXp(nﬂﬂH-l)/B t+1 ( t+1) t+1 (At+1 eXp(Ma)) Y .

L—exp(nge)B  C;7L(L)Y \ CE
The forward difference equation for €, becomes

C, i) ~
Mt,t+1 t—&:l eXp(n ,t+1) Q,

Cy eXp(na,t)

Qt:1+Et

Myt

= 1+ exp(pa)Ey le A

t

The recursions for the optimal price resetting problem become
eXp(na,t)gl,t = MC, eXp(na,t)Y/;t + eEt[Mt,t+1H§+1gl,t+l eXp(na,t+1)]
Sip = MCY; + exp(pia) 0B [ My p1 A 14 S p41]
eXP(%,t)Szt = eXP(na,t)Y;s + 0E,; [Mt,t+1H§I%SQ,t+1 eXP(ﬁa,tﬂ)]
Sor =Y, + exp(q)OE, [Mt,t+1At+1H§;}SQ,t+l]'
Finally, instead of 74, the relevant productivity process is
log(At) = Oqu€ayt + RaTlkt-

In summary, the stationary equilibrium conditions (excluding the exogenous shocks) are

Vi = (1 - exp(s.)B)) 7, (89)
- 1 —exp(ns.4)8 & )1‘1”
CE = | ——BUE G, —1 : 90
= (s @ o
3 C
Q=1+ exp(pa)Ey Mt7t+1%At+1Qt+l 5 (91)
t
1 — exp(ns,i11)8 ét_ﬂﬁ(Ltﬂ)l_v
My = : g
tt+1 eXp(UB,t)ﬁ 1—eXp(77,3,t)5 C't_wﬁ(Lt)l_V (92)

‘7 w—’Y
t+1 —
X - A )7
(Cft) ( t+1 exp(,u ))
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W, — P eXp( t)ﬁC’

L

L%H' T—¢
L(L;) = (1 + (¢ —1) exp(mt)ﬁl " u) ,

Qr = Ey [My i1 (Riir1 + Ryt+1Qt41) exp(Mii+1)]

1 l—« 1 a
e () () o

eXp(nkﬂf)f(t—l_ «Q Wt

Lt _]_—O{Rkﬂg’
S
P
6—1327,5

Sl,t = Mctﬁ + eXp(Ma)eEt[Mt,t+1At+1H§+1§1,t+1],

52,15 =Y, + exp(,ua)eEt[Mt,tﬂAtHHiﬁgz,tH]7

e[ — 2 g,
eXP(Uk,t)thl

Rq’tzl—(s—i‘(b Lﬁ, —(I)/ Xt~
eXP(Uk,t)Kt—l eXP(TIk,t)Kt—l

N X N
Kt = 1 — 6 + (I) —t,., eXp(T]k-vt)Kt,I,
exp(Ne,e) Ke—1

L= (1= 0)(P/TL) " + 0,
Ay = T((1 = 0)(PTL) ™ + 0AF ),

~ by
B (B (Y
I i i 7 P(fta — py ) A

Ci+ X, =Y,
¥, — (exp() Ke-1)* (L)' ™ — xy
Ay '

1.6 Deterministic Steady State

X;
exp(nk,t)f(t_

17¢'r

exp (nr,t) 9

1

Y

(103)

(104)

(105)
(106)

(107)

(108)

(109)

To provide an initial guess for the risk-adjusted linearization and to provide a verification
that the model is coded correctly, I determine some reasonable guesses for the deterministic
steady state.

Within this subsection, I denote the deterministic steady state values by an absence of

19



a time subscript or tilde. By construction, 7z = 7, = 7, = 0 in a deterministic steady
state. Since 7+ may not be continuous, the correct notion of a deterministic steady state
is not obvious. For example, if a deterministic steady state should feature zero aggregate
disaster risk, then the disaster component could be either zero to model the absence of any
disaster or some nonzero constant so that some fraction of capital deterministically rather
than stochastically depreciates every period due to disasters. However, I am not particularly
interested in the model’s properties in a specific deterministic steady state, so I will define
the deterministic steady state for 7y, to be ny = E;_1[nk ], i.e. the mean with aggregate risk,
because it is computationally convenient. For example, in the case where 7 ; ~ Bernoulli(p;)
and p; follows the discrete-time Cox-Ingersoll-Ross process, . = p where p is the steady state
value for p;. This assumption also implies that A = exp(Kkan)-

Focusing now on the equilibrium conditions, from and

V=((1-pQ)Tr, CE= (ﬂ@ _ 1))1%

~ h—y ~ 11—
1% . Q o\ .,
M=38 <§) (Aexp(pa))™ " = ( a1 1) (Aexp(pta))
Q = 1+ exp(pa) M AQ
5\ T
=1 +€Xp(/,ba)ﬁ ( ﬁ) (A eXP(Na)) 7AQ
14 gt (ﬁ%) (Aexp(ua)' 0
1 1—v

—_
I
)
D
o
>
=
=
N
N
2 R
~_—
1

Since A can be determined directly from parameters, this is a closed form formula for €,

which also determines the values of V, CE, and M in the deterministic steady state.
Skipping over the intratemporal consumption-labor condition and the labor disutility

function , the monetary policy rule , the target inflation rate II, and the Euler
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equation (95)) require R to satisfy

R=+ (110)

To pin down the steady state values of the model’s supply block, I begin with the steady
state investment rate. From ((102), the fact that X is the steady-state investment rate, and

the fact that ®'(X) =1,

Q=1.
From ,

1 = M(Ry, + Ry) exp(n)

1
= Mt
From ,
R,=1-6+(X) - ¢ (X)X
1 —
N exp () -

Equation remains as it is but with time subscripts removed. From ({100)),

MC-Y

S1=MC-Y + exp(pq)0MAI'S, = 5) = 1 — exp(pa)0 M AT

From (101)),

Y
1 — exp(ua)0 M AT

Sy =Y + exp(pa)IMAI'S, = S =

Given S; and S,, P* can be calculated. From ((106)),

A =TI (1 — 0)(P*TL) "~ + A)

A Q=P (1—oP)
[I—<—-0 1 — 01II¢

Thus, the marginal cost MC, Si, Sg, optimal real reset price P*, and A can be calculated
once the wage W is known.
To finish, I show that the deterministic steady state’s solution reduces to solving a non-

linear equation in L. From ((108)),

C+X =Y
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From ([109)),

(exp(m) K)* L'~ — xy

Y:
A

As shown previously, the steady-state investment rate is X, hence
X = X exp(np)K.
Using the aggregate supply and capital accumulation equations,

exp(nme) K)* L'~ — x,
A :

C + X exp(n) K = (

The optimal capital-labor ratio implies

« W
1—aRK

s Tt - (1) (L) 1) &t

Let £(L) denote the steady state labor disutility given by . The intratemporal condition
for consumption and labor implies

a yYuCL
N 1—Oé£(L)Rk ’

o= (%) (558) v

Given a guess for L, I can compute C' using these two equations. Given C, I can compute
W. Given the wage W, I can compute K and MC'. Given the marginal cost MC', I can
compute the remaining terms in the supply block.

L

exp(ng) K =

Y

exp(nr) K

2 Risk-Adjusted Linearization

We now proceed to converting the equilibrium conditions into a suitable form for a risk-
adjusted linearization. The system should conform to the representation

0 = logE; [exp (§(2t, ) + T'sze1 + Tovrn)]
241 = M(Zta yt) + A(Ztv yt)(yt—i-l - Etyt-H) + 2('215’ yt)5t+17

where z; are (predetermined) state variables and y; are (nondetermined) jump variables. For
the remainder of this section, lower case variables are generally the logs of previously upper
case variables, whether or not they had tildes. The exceptions are as follows. The price
dispersion A; will remain in levels to avoid confusion with the depreciation rate §. The
lowercase equivalent of the certainty equivalent C&; will be the plain lowercase letters ce;.
The lowercase equivalent of the labor disutility function £(L;) will be /.
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2.1 Exogenous Shocks

I begin by specifying the exogenous shocks in the appropriate form. The autoregressive
processes to remain as they are. The productivity process becomes

Q41 = Og€q t+1 + RaTlk t+1
= 0aCatr1 + Ka(Ee[Mkt41] + Ertt1)
- "iaEt[nk,t—l-l] + Oa€aq,t+1 + Ra€k,t+1-

This productivity process also allows me to determine py for the monetary policy rule. To
ensure that R, = R in the steady state, I need to guarantee

Y,

% exp(ta — py)Ar = 1 = exp(pa — py ) Ay = 1.
t—1

Substitute the productivity process to acquire

exp(ia — fty ) exXP (KBt [1+1] + Oafasr + Kahr) =1
= exp(fta — by + Kalle[Mr41]) = 1.

Thus, the growth rate of output along the balanced growth path is

Py = fta + KaE[g],

where the second term is the unconditional expectation of the disaster shock.

The disaster shock can be modeled in multiple ways, and the conditional cumulant gen-
erating function (ccgf) will be different depending on the specification. I shall derive the
various ccgfs for the proposed models of the disaster shock.

As stated previously, the first approach models the disaster shock as

Mkt+1 = 1, Pt + Ekt+1, (111)
pp+ (1 —p)p ifp =p
Dt+1 = €pt+1 + : (112)
ppp + (1 — pp)g if pr =
Eht = Mt — 1Mt (113)
Ept = Pt — Era[p], (114)

where 7y, takes the value 7, in a disaster with probability p,—1 and zero with probability
1—p;_1, and p; evolves accordlng to a two-state Markov process with unconditional mean p;
states p and p; and persistence probabilities e, and p,. The conditional moment-generating

function for ej441 is

M, ., (s) = Eifexp(s(ne+1 — Ee[ne+1]))] = Ee[exp(s(mp41 — Qkpt))] =

Ey[exp(sm,+1)]
exp(sn, pt)
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Since Mg ++1 | pr has a Bernoulli(p;) distribution and p; belongs to the time-¢ information set,

E¢[exp(sny,e+1)] = exp(sn, )pe +exp(0)(1 — pr) =1 — pi + prexp(sn, ).

Thus, the ccgf for ;441 is

cCq feypii(5) = log(1 — py + prexp(sn, ) — sn, p- (115)

The conditional moment-generating function for €)1, is

M., .. () = Eilexp(s(per1 — Belpesa]))] = %’

where

Byt By —E (116)

pp+(1—p)p ifp
Et[thrl]: e _ .
ppD+ (1 —=p,)p if pi

Since p; is part of the time-t¢ information set, the ccgf of p;1; is also Bernoulli:

- - _ . (117)
log((1 — ) exp(sp) + P, exp(sp)) — E¢[spia] if pr =P

) 1og((1 = p )exp(sp) + p_exp(sp)) — Ei[spri] if pr=p
chfep,t-u (S) - P P —

The second approach models the time variation in p; as a discrete-time Cox-Ingersoll-
Ross process. The disaster shock 7, still follows the martingale difference sequence 7jy ;.
Since p; is still part of the time-¢ information set, the ccgf for €41 remains the same. If
€pt+1 1S @ truncated normal, then the moment-generating function will bel]

Moy n(6) = (st 5 ) (1= 0 (= (HELEELE) (i) ).

where p(p;) computes the mean necessary to ensure E;[,;41] = 0 and ®(-) in this equation
refers to the CDF of the standard normal distribution. Thus, the ccgf is

C@AWK@:MMﬁ+§+bgG—@(—(u_ﬁgi%m)—@+MMO)-(H&

The third approach models the time variation in p; in logs to avoid p; moving below zero:

log(ptﬂ) = (1 - Pp) log(p) + Pp log(pt) + OpEp it (119)

In this case, log(p;) is the state variable instead of p;. If p;;; enters in any of the equilibrium
conditions, e.g. if the probability of n, = n, 1S by rather than p;_q, then p; needs to be
added as a jump variable with the additional equilibrium condition

0 = exp(log(p:)) — p:- (120)

"See http://web.ist.utl.pt/~ist11038/compute/qc/, truncG/lecturedk.pdf.
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To achieve a better approximation, I could also add consistency conditions for forward ex-
pectations. Let p; i1 = E¢[pr+1]. Then Markov rational expectations require

1 =E, |:§9t+1 1 _
Dt t+1

Now let pysys = E¢[pess]. Then Markov rational expectations also require

1=E, |:pt+1,(t+sl)+1:| ‘

~

DPtit+s

The fourth approach models the disaster shock as an exponentially distributed shock
N+ ~ Exponential(p;_1), where p; is now the intensity of the exponential distribution. The
evolution of p; can be modeled in the three ways described previously. The conditional
moment generating function for e ;1 is

E, [eXp(Sﬁk,tH )]

M
exp(spy)

5k,t+1(8) = Ei[exp(s(r,e11 — Ee[mri41]))] =

hence the ccgf for ny 411 is

ccof () =108 () < (121)

Pt — S

The fifth approach uses time variation in the size of the shock rather than the probability.
The disaster shock 7, ; takes the form

Nkt = Tkt Dt (122)

where 1)+ is modeled as a Bernoulli random variable and p; evolves according to a Markov
chain, the Cox-Ingersoll-Ross process, or in logs. Let the probability that 7, equals one be
J. The moment-generating function for 7y, is

My, ,(s) = Eelexp(sns)] = Ee[Ee[exp(smne) | pr]]
= E¢[exp(0)(1 — j) + j exp(spy)]
=1— 7+ jE[exp(sp;)]
=1—j+jMp(s),
where M, (s) is the conditional moment-generating function for p; H
The sixth approach allows time variation in the size and probability of the shock through

a mixture model. As discussed in these notes, if X and Y are random variables, and the
moment-generating function of the conditional random variable X | Y can be written as

My (s) = Ci(s) exp(Ca(s)Y),

8For example, if log(p;) follows an AR(1) process, then p; will be log-normally distributed with a mean
depending on p;_1.
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then the moment-generating function of X is
Mx(s) = Cl(S)My(CQ(S)).
Thus, the primary problem in deriving the ccgf of a mixture model for the disaster risk is
finding C(s) and Cy(s) for the “intensity” of the disaster shock. If —ny; ~ Gamma(j;, o),
then
My 15i(s) = (1 — 0p8) ™" = exp(—ji log(1 — 0x8)) = exp(—log(1 — 03.5) )
= Ci(s) =1, Cs(s) = —log(1 — oys).
If —ny ~ ShiftedExponential(oy, jt),ﬂ then

M_, 1. (s) = ak/ exp(sz) exp(—ox(x — 7)) dx = oy exp(akjt)/ exp(—(og — s)z) dx
Jt Jt
—exp(—(ok — 5)00) . exp(—(ox — )7)
= 0, exp(oxJi) ( p— + p— )
_ orexp(sjy)
O — S
Ci(s) = Ok , Cy(s) = s.
- O — S

If 77k-7t ~ N(—jt,jtai), then

My, 15 (5) = exp(—jes + jiops® [2) = exp((—s + ois”/2) i)
023?
= Cy(s) =1, Cy(s) = —s + ’“2 :

The ccgf is then given by
log (I [exp(s(nk,e+1 — E[mr,e11]))]) = log(Ee[exp(smr,ir1)]) — Ee[smri41]-

If —1y+41 has the conditional Gamma distribution, then

Ei[—snk 1] = —sEi[orjer1] = —sokEi[fiya].

If Nk 41 has the conditional Shifted Exponential distribution, then
Ei[—8Mkit1] = —sEfor — jig1] = —s(ok — Ee[ji41])-

If Nk 41 has the conditional Normal distribution, then

Ee[smk,i11] = sEi[(—Jer1)] = —sEi[jesa]-

The seventh approach models disaster risk as a “risk-on risk-off” phenomenon. This
case requires the disaster shock to take on at least two possible states in the future. Let
d; = 1 denote “risk-on” or “disaster times”, d; = 0 denote “risk-off” or “normal times”, and
pai+ be the persistence of remaining in state ¢ € {0,1}. If d; = 1, then 7, either realizes
a disaster shock with probability ps1: or equals zero with probability 1 — pg1.. Applying
tower property yields the ccgf for 7.

9The pdf is f(x) = op exp(—or(x — j4)).
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2.2 Endogenous Equilibrium Conditions

First, I define the auxiliary variable

B, = log(1 — exp(ns,) ). (123)

This auxiliary variable is necessary if shocks to the time preference rate occur because 1 —
Nt+1 appears in some equilibrium conditions like the stochastic discount factor, but a risk-
adjusted linearization requires forward-looking variables be linear.

Equation becomes

1 _
0= m(ﬁt + wi) — vt

Equation becomes

0= m(ﬁt — (g +10g(B)) + (exp(wy) — 1)) — cey

Equation (91)) will be handled later because it is a forward difference equation. Equation
(92) will be directly substituted rather than used as an equilibrium condition. Using the
transformations for a risk-adjusted linearization, the stochastic discount factor becomes

M1 = 1Nge +1og(B) +1og(1 — exp(ng+1)8) — log(1 — exp(nge)B) — V(i1 — 1)
+ (=)l = b) + (0 = 7)(ver — cer) — Y(aer1 + pa)
=g +log(B) — B +yc — (1 =)l — (b —7)cer — Ypiq
€
_'_\Bt-i-l =1+ (1= Nla + (¥ = Y)veer — Yaeis -

forward

Equation becomes

1—1
(&

0 =log(v) + mut + log(V) + ¢ + vl — b — wy

Equation becomes

Y
1=

Equation becomes

0=

log (1 + (W -1) exp(m,t)PW) — ;.

0=, | re +mMyp1— T
S~~~ N—— N~~~

13 both forward,
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Equation will be handled below because it is a forward difference equation. Equation

becomes

me; = —(1 — a)log(l — a) — alog(a) + (1 — a)w; + arg,
0=(1—a)(w —log(l —a))+ a(ry: — log(a)) — me.

Equation becomes
0 =log(a) —log(l — &) + wy — 1 — (Mt + ki1 — 1t).

Equation will be directly substituted rather than used as an equilibrium condition. Using
the transformations for a risk-adjusted linearization, the real optimal reset price becomes

pi = log(e) —log(e — 1) + 514 — 524

Equations (100) and (101]) will be handled below because they are forward difference equa-
tions. Equation ([102)) becomes

0 = log(®'(exp(zy — My — k1)) + s
Equation (103]) becomes

Tqt = log (1 -0+ (exp(:ct — Nkt — k’t—l)) -9 (eXp(%ﬁ — Nkt — k?t—l)) exp(mt — Mkt — kt—l))
0=1log(l—0+ P (exp(a; — ey — ki—1)) — ' (exp(xy — My — k1)) exp(zy — My — k1)) — T

Equation becomes

k—1)11 = log (1 — 6 + ®(exp(zs — Nre — ki-1))) + Mt + ki1
Equation becomes

0=1log((1—0)exp((1 —e)(m} +m)) +6) — (1 —e)m.
Equation becomes
0 =em +log((1 — 0) exp(—e(p; + 7)) + O exp(log(Ai—1))) — log(A,).
Equation becomes
0=0¢ri 1+ (1 —&)r+ (1 — &) (Pn(me — ) + &y (yr — ye1 + (fta + ar — f1y))) + Nt — 74
Equation becomes
0 = log(exp(ct) + exp(xt)) — vy

Equation becomes

0 = log(exp(a(nrs + k1) + (L — a)l) — xy) — log(As) — -
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2.3 Forward Difference Equations

This system has four forward difference equations (91), (96), (100), and (101). To ensure

accuracy of the risk-adjusted linearization, I derive N-period ahead forward difference equa-
tions for all four.

To start, I begin with because it does not have any terms outside the expectation.
Ignore the disaster risk 7 ;11 term temporarily. Then the equation can be recursively written
as

Qt = Ei[My 111 (Ri 1 + Qe Ry r41)]
= Ei[My 11 R i1 + Ry My 1 Eopr [Me 2 (Ri o + Qero Ry 41)]]
= B[ M1 R 1] + Ry EBeBeir [My 1 M1 4o (R o + QuiraRyr42))-

By the tower property,

Q= E, [Mt,t+1Rk,t+1] + Rq,t+1]Et[Mt,t+1Mt+1,t+2(Rk,t+2 + Qt+2Rq,t+2)]

B 2 s—1 s
= [, H Rq,t+u> <H Mivu—1t4u Rk,t+s> + My i Myt p120Qi 2Ry i1 R 142
L \s=1 u=1 u=1
B 2 s—1 s 2
= [E; Z H Rq,t—l—u) (H M u—1t4 Rk,t+s> + H(Mt+s—1,t+qu,t+s)Et+2[Mt+2,t+3(Rk,t+3 + Q43
L \s=1 u=1 u=1 s=1
B 3 s—1 s 3
= Et Z H Rq,t+u> <H Mt+uf1,t+u Rk,t+s> + H(Mt+sl,t+qu,t+s)Qt+3]
s=1 \u=1 u=1 s=1

and so on, with the abuse of notation that H2=1 Ry i+ = 1. Given this recursive structure,
define D((; ) and Pc(gnt) as
-1
Dgll =K [Rq,t-l-lMt,t—i-lD(Qn,t—&-ﬂ

P, Q(gnt) = [, [Rq,t—HMt,t—i—lP c(;;rll)]

)

with boundary conditions

0) _ B
Qit Rq,t
0

Then I may write the N-period ahead recursive form of equation as
N
n N
0= S meng)
n=1
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To see why this recursion works, it is simpler to first verify that Pg’z is correct:

sz = E¢ [Ry 41 M 11 Q1 11]
)
) =

Péf Ey [Ryt+1 M1 (Besr [RyiroMi 142Q142])]
i 2
=E; [Eiq H(Rq,t+th+s—1,t+s)Qt+2] ]
L s=1
m 2
= IEt H(Rq,t+th+sl,t+s)Qt+2] .
| s=1

where the second equality for Pgi follows from the fact that M, ;1 is measurable with respect
to the information set at time ¢ + 1 and can therefore be moved insided the conditional
expectation E;y4[-]. Continuing for one more recursion, I have

sz =Ky | Rypr1Myi1Eip

M3
= Et H(Rq,t+th+s—1,t+s)Qt+3] .

s=1

2
H(Rq,t+1+th,t+1+s)Qt+3] ]

s=1

Similarly, for Dg,, I have

Dégl)t =E, |:Rq,t+1Mt,t+1 Rk’tﬂ} = B[ My 141 Ry 1]
q,+1
Dg)t =B [Ry i1 M1 Era [Mig1 p12Rpt10]]
= Ey[Rg i1 My 1 Myy1,012 R i42]
DY), = By[Rypar Myyir B [RyrsoMii1ovoMiiapes Risss)]
= Ey[Ryt11RgeoMyi1 Myy1 oMo 3R i3]

Since Pg? and Dg 1 are time-t conditional expectations, they are measurable at time ¢, so

they are not forward-looking variables. Thus, to get this version of in the appropriate
form, add the disaster shock 741 back; define d,,; = log(Dglﬂ)f) and pg ;= log(Pg?g); and
use the following 2N + 1 equations:

N
0=1logE; [exp | ¢ — log <Z exp(dgnt) + exp(pq,N,t)> (124)
n=1
£
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logE; |exp | —dgni+ M1+ M1 + Tgpr1 + dgno1,641 ifn>1
S~ = —~ v
0=/ B 1 both forward-looking (125)
logE; |exp | —dg1i+ M1+ et + Trttt ifn=1,
L | 3 both forward-looking
) -
log By |exp | —Pgnt + M1 + Mer1 + Tgar1 + Pgn—1,41 ifn>1
—— N——o— —~
0= B 3 both forward-looking (126)
logE; |exp | —pg1,¢ + M1+ Mt + Tger1 + Gyt ifn=1
—— N——— — _
\ | 3 both forward-looking

For ([100]), observe that

gu = Mctfft + eXP(/La)QE [Mt t+1At+1H§+1(MCt+1}~/;+1 + eXp(ﬂa>9Et+1[Mt+2At+2H§+251 t+2m

= MCth + exp(pq ) OE [ M, t+1At+1Ht+1MCt+1Y2+1 + exp(ﬂa)eMt t+1At+1Ht+1Mt+2At+2Ht+2SI t+2]
1

Z (eXp (Ma)es H (Mt+u—1,t+uAt+uH§+u) ) MCt—i—s ?t—i-s

s=1 u=1

2
H(eXP(Ma)QMt+s—1,t+sAt+sH§+s)51,t+2] .

s=1

= MCY; +E,

+ E,

Thus, define D(Sq)’t and ng?t as the recursions
Dgi),t = Eq[exp(pa)0 M; t+1At+1H§+1Dg§ t«lk)l]
Pé(q,)t = Et[ ( )eMt t+1At+1Ht+1PglL,t41r)1]7
with boundary conditions

DY), = McY,

Pé'(i,t - Sl,t'

Given these definitions, it follows that

D(Sll)t = E, [eXp(MG)eMt,t+1At+1H§+1Mct+1}~/;f+1]

Ps(‘ll)t =E, [eXP(ﬂa)eMt,tﬂAtHH;Hgl,t+1]

pé21)t = Eyexp(11a)0 M 141 Ar 1 1T By [exp(11a)0 M1 140 AryolTE, 5S) 140]]
[ ~
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Thus, defining dg; ; = log(Dg1,) and ps1 = log(Ps1¢), the N-period ahead recursive form of
(100)) results in the 2N + 1 equations

N-1
0=1logE; |exp | 51 — log <Z exp(dsine) + exp(psLN,t)> (127)
n=0
b
. _
logE; |exp | pta +10g(0) — dsint + My i1+ arir + €mpnn + dsin—1441 ifn>1
~"~ \/_/ ~ ~"~ - -
= < L 13 both forward-looking
logE; |exp | ds1,00 — mey — y if n=20.
\ i e
(128)
. _
logE; |exp | fta +108(8) — st it + M g1 + Qi1 + €M1 + Dsin—1441 ifn>1
N ~~ 4 \'V-/ N ~~
I3 both forward-looking
0= i
logE, |exp Ha + log(0) — psi1t + M1 + Qe+ €T+ S if n=1.
L L 2 both forwarc;-rlooking
(129)

It is straightforward to show that a similar recursive form applies to (101)):

N-1
0=1ogE,; |exp | s2; — log (Z exp(dsant) + exp(psngvt)> (130)
n=0
£
. _
logE; |exp | pta +10g8(8) — dso s + M1 + a1 + (6 — 1)mp1 + dson—1441 ifn>1
A - \\,—/ S -~ 2
I3 both forward-looking
0= s
logE; |exp | ds20t — Yt if n =0.
13
\ L

(131)
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. _
logE; |exp | pta +10g(0) — Psont + Mig1 + a1 + (€ — 1)1 + Pson—1,441 ifn>1
N -— 7 |\ \ -~ 4
13 both forward-looking
0= s
logE; |exp | pta +10g(0) — psa,i + Migi1 + g1 + (€ — 1)Tpq + S2641 ifn=1,
L | I3 both forward-looking
(132)
where terms and boundary conditions are analogously defined.
Similarly, (91)) yields the recursion
N-1
0=logE,; |exp | w; — log (Z exp(dynt) + exp(pw,Mt)) (133)
n=0
£
. _
loglEy |exp | pta — ¢t — duwpt +Mypp1 + G + Qg1 + dup 1441 ifn>1
N~ ~—— -~
0 — | 13 both forward-looking (134)
logE; |exp | duw,04 if n=0.
——
\ | 5
. -
logE; |exp | fta — Ct — Pwnt + Mt 41+ Cop1 + Qrp1 + Dun—1,041 ifn>1
—_— —~— ~—— -~
0— | £ both forward-looking (135)
log By |exp | fta — Ct = Puw,it + Myt + Cop1 + Qpy1 + Wigr ifn=1,
—_— Y—— ~~ -
L | I3 both forward-looking

where terms and boundary conditions are analogously defined.

The jump variables are y;, ¢, Iy, vy, ces, Wy, By, Loy W, Toy Try oy Tty Thots Tqts MCt, St
sot, and log(A;). The state variables are k;_1, log(A_1), ri—1, y—1, and the autoregressive
processes. The equations defining the evolution of the lags log(A;_1), 71, and y,_1 are
obtained by the formula z;_1)41 = 2.
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Appendices

A Rotemberg Pricing

Instead of Calvo pricing, firms solve the Rotemberg pricing problem

Pris Pris - Po()\ "
max EtZMtt-i-s( ;;+ )( ;:Jr( )> Yt+s—MCt+s< ;(3)) Yt+s>

Py s(j) t+s

9 Pt+s( ) ?
—E Z My s | Xy €XP(Nag+s) + 5 2\ TR, () L) Yis |

s=0

(136)

given some initial condition P;_;(j) and inflation target II. Following the literature, the price
adjustment cost is quadratic and proportional to output. This problem yields the first-order
condition

Prs()\ Vi Prs(1)\ M vy,
0= Mi;sqs <(1_€)( s (j)) s +€Mct+s< s <j)) e

Pt+s Pt+s ]Dt—‘rs Pt+s
P(j) ) Yiis
o (Hthrsl(j) P, s-1(7)
Prist1(d) Prioi1(d)
— Bty s My 16410 <m —1 TTPLL())? Yirsn
_ (1 _ e) (Pt+8(j>> - Y;Jrs + EMCH_ (PtJrs(.])) ~letl) Y;‘Jrs
Pt+s ]Dt+s ° ]Dt+s Pt+s
4 < Ps() 1) Yiis
HPt+s 1 (]) HPt+sfl (])

3 Mtt+s 1P s(4) P (7)? S

~ -0 (Pe) e, (Pa)

t+s Pt+s

By < R&—l—s(.]) B 1) Pt+s

P s—1(7) Py s—1(5)
Mt,t+s+19 (Pt+s+1(j) B > Piroi1(§) Pirs Yigon
My iys P (7) Py s(j) Piys(d) Yiss

Recall that the s-period ahead stochastic discount factor is

+ EtJrs

B° 1oy exp(03,1-4u 8W+s/8ct+s H OVitu

M, ., =
bt exp (1) aV,/aC, G

(137)
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hence the ratio of the stochastic discount factors between two consecutive periods is

Mt,t+s+1 o a%+s+1/act+s+l a‘/tJrs - M
- - S s+1-
M tis OVits/0Ciis  OVigsp fretrst

Since every firm’s first-order condition does not depend on the actions of the other firms, all
firms choose the same action. Furthermore, the first-order condition for P, is recursive, so
it suffices to state the condition in period ¢. As before, let II; denote gross inflation. In a
symmetric equilibrium, firms optimally set prices such that

11 I 11 M., Y,
(e—1)=eMCy—0 (—t - 1) =L 4 OE, M, 4y ( AR 1) s iitanl (138)

IT IT IT

The risk-adjusted linearization of this equation is complicated by the fact that [T, /I — 1
is not almost surely positive in equilibrium. To make the required conneciton with entropy,
all forward-looking terms must be strictly positive. To handle this issue, I split into
two equations as follows. First, multiply out the IT,1/IT — 1 term to acquire

Im,\> 1 .1\, .Y,
(e—1)=eMC, — 0 (ﬁ) + eﬁt + OB, My 4y (%1) ;1 OF M, 411 Erl Zl'
Re-arrange this equation to obtain the fraction
2
. —0 (%)2 + 0B My 441 (HtHH) YtTtl
B (E — 1) — EMCt ent -+ Q]EtMt t+1 HH_I Yt+1 )
Define the variables
I\’ L\’ Y
S =0 (ﬁt) + OB M, o1 (%) gl, (139)
1,1 Y,
82,t = (6 — 1) — GMCt 9— + HEtMt RN R (1 t+1, (140)
I v
and re-arrange to yield
mL\> S .1\,
(T) =-S5t +mane (Ter) 2, (141)
IL, Sy e—1 ¢ i1 Yi
— = ——" —-M E; M, ) 142
i 9+9 ect"‘tt,t—i—ll—[}/; (142)

These two equations define forward-difference equations for (II;/IT)* and II;/II and satisfy
the positivity requirement for forward-looking variables. To enforce the first-order condition
(138), I add the “consistency” equation

Sit

1= =4t 143
S (143)
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