These notes loosely follow Fernandez-Villaverde and Levintal (2018) “Solution Methods for
Models with Rare Disasters” but omits several features, such as recursive preferences and
disaster risk.

1 Model

1.1 Household

The model admits a representative agent, so I directly write households’ problem as the
representative agent’s. The representative household solves, in the cashless limit,
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where C; is consumption, B, ; nominal bonds, X, investment, Wy, the real wage, L; labor,
Ry the gross real rental rate on capital, K;_; capital, R; the gross nominal interest rate on
bonds, F; real profits from firms, and 7} real lump-sum transfers from the government. The
price of the final consumption good is P,. Markets are assumed complete, but securities are
in zero net supply. Because there is a representative agent, I may omit the Arrow securities
from the budget constraint. My notation treats B;_; and K, ; as the stocks of bonds and
capital present at time ¢, while B; and K, are the chosen stocks of bonds and capital for the
following period. 1 adopt this notation so that all time ¢ choices are dated at time ¢ rather
than having to differentiate between the predetermined time-t variables from the endogenous
controls.

Investment for capital follows the law of motion
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The Lagrangian for the household is
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which implies first-order conditions
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The first two equations can be combined by isolating A;, which obtains the intratemporal
consumption-labor condition
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Using A\; = C; 7 and defining the gross inflation rate I, = P;/P;_1, I can obtain the Euler
equation for households
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I can further simplify the Euler equation by defining the (real) stochastic discount factor

eXp(ﬁB,tH) Ct:/l

M.y =8 4
T exp(ngs) O

After dividing through by exp(ns )\ and re-arranging, the investment condition becomes
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Finally, after dividing through by exp(ns.+) A, the first-order condition for next-period capital

is
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In summary, households’ optimality conditions are
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1.2 Production
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Final Producers There is a representative final goods firm which sells consumption goods

in a competitive market. It aggregates intermediate goods using the CES technology
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where € > 1 so that inputs are substitutes. Profit maximization for the final good firm is
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The FOC for Y;(j) is

Plugging this quantity into the identity

and simplifying yields the price index
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Intermediate Producers Intermediate goods are producing according to the Cobb-Douglas
technology

Yi(j) = exp(na) Kity ()L~ (j).

Intermediate producers minimize cost subject to the constraint of meeting demand and Calvo
price rigidities. Formally,
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The RHS of the inequality constraint is the demand from final goods producers for interme-
diate j. The Lagrangian is
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so the first-order conditions are
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hence the optimal capital-labor ratio satisfies

RK,t Wt

avexp(nae) (Ki-1(4)/Le(5))> N (1 — ) exp(nas) (Ki-1(4)/Le(5))"
K 1(j) _ o« W,
Lt(j) 1—04RK¢‘

Since the RHS does not vary with j, all firms choose the same capital-labor ratio. Given
this optimal ratio, the marginal cost satisfies
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Therefore, (real) profits for an intermediate producer become
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In addition to the capital-labor choice, firms also have the chance to reset prices in every
period with probability 1 — #. This problem can be written as
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where I have imposed that intermediate output equals demand. The first-order condition is
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Divide by P,(j)¢/(exp(ns.)u'(Cy)), apply the abuse of notation that [[._, IT;4, = 1, and
re-arrange to obtain
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This expression gives the optimal (real) reset price P = P,(j)/P; (note that the RHS does
not depend on j). Define
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Using these definitions, I may write the optimal reset price more compactly as
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where S;; and Sy, satisfy the recursions
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These recursions can be further rewritten as
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By defining Sy, = Si./(exp(nz)u’(Cy)) and Say = Soy/(exp(ng)u/(Cy)), T can simplify
these recursions into the form I use for the numerical solution.

From this section, we obtain the following five equilibrium conditions:
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1.3 Monetary Policy

I specify the monetary policy rule as the following Taylor rule
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Any proceeds from monetary policy are distributed as lump sum to the representative house-
hold.

1.4 Aggregation

The price level is currently characterized as the integral
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To represent the model entirely in terms of aggregates, notice that, without loss of generality,
we may re-order the fraction @ of firms which cannot reset prices to the top of the interval
so that
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The latter term can be further simplified under the law of large numbers assumption that
a positive measure of firms which cannot change their price still comprise a representative
sample of all firms, yielding
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The price dispersion term can similarly be re-written in terms of aggregates by distinguishing
which firms get to change prices.
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By invoking the law of large assumptions applied to any positive measure subset of firms,
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Thus, we acquire

1.5 Equilibrium

To close the model, I need to specify the functional form for investment, aggregate shocks,
and market-clearing conditions.

Following Jermann (1998), I assume the investment function takes the concave form

q)( X, )_ X ( X, )H/X_L (17)
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where X = dx/(x + 1) is the steady-state investment rate (per unit of capital). The first
derivative of ®(-) w.r.t. X;/K;_; is
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This functional form implies the law of motion
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If K, = K,y = K, and X,,/K,, = X, then

—1 — — —
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—— =1 — =1
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thus verifying the original conjecture that X represents the steady-state investment rate.

There are four shocks in the model: 1+, 1g+, Nrt, and nr;. Without loss of generality, I
assume all shocks follow AR(1) processes with persistence p; and standard deviation o;.
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Markets must clear for capital, labor, bonds, final goods, and intermediate goods, . The
first three markets clear as a consequence of optimality conditions and the assumption that
bonds have zero net supply. To clear the market for final goods, we set the sum of aggregate
consumption demand C; and investment demand X; equal to aggregate supply Y;, which

satisfies
! ' Ui~ |
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Re-arranging yields the output market-clearing condition
Ct + Xt - Yta (19)

eXp(”?A,t)KfilL%ia
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It can be shown that V}” > 1 by applying Jensen’s inequality. For our purposes, because the

dimensionality of our model is not too large, we add the auxiliary Y; variable, even though
we could substitute it out of the system of equations.
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All together, the full set of endogenous equilibrium conditions are
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as well as the law of motion for capital
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and the four exogenous processes
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1.6 Deterministic Steady State

To provide an initial guess for the risk-adjusted linearization and to provide a verification
that the model is coded correctly, I determine some reasonable guesses for the deterministic
steady state.

Within this subsection, I denote the deterministic steady state values by an absence of
a time subscript. The exogenous processes, by construction, have steady states of 0, i.e.
N =N =Na = Nr = 0. Further, A = 1.

Focusing now on the endogenous equilibrium conditions, from (21),

_ e
W = o=
From (22),
M =p.

From (24), the fact that X is the steady-state investment rate, and the fact that ®'(X) =1,

Q p—
From (25), first observing that,
X X =1 (y—1 1 1
B(X) = X _x.X _ =D+ 0x x _s
x—1 x(x—1) x(x —1) x(x —1) x+1 x

which ensures that K does indeed remain at steady state, it must be the cast that

1= B(Rx + (1 -6+ d(X) — X)

Ry = % +X -1

Equation (26) remains as it is but with time subscripts removed. From (29),

S =MC-Y +0pII°S, = S = 1M—CT5§
From (30),
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From (31),
M= (1-0)(PI) “+6

Note that P* depends on M C and fundamental parameters, hence the above equation pins
down MC, which then pins down the ratio of K to L. From (32),

VP =TI ((1 — )(P*II)"“ + 0V?)

e (L=O(PT)= (1= 0)(P)

<-4 1 — 01I¢

From the Taylor rule (33), the steady state interest and inflation rates are R and II, respec-
tively, and from the Euler equation (23), R must satisfy

IT
R=—.
B
From (34),
C+X=Y
From (35),
KaLl—a
As shown previously, the steady-state investment rate is X, hence
X =XK

Finally, I claim that the deterministic steady state reduces to a nonlinear equation in L.
Using the aggregate supply and capital accumulation equations,

o KaLl—a
The optimal capital-labor ratio implies
a W
K = —L
11—« RK ’

— a \“/( W\ L
crxi= (1) (3) v

The intratemporal condition for consumption and labor implies
o L
¥ L
l1—« C_’YRK

a \“ oL \“ L
K= il
Cto <1—a> <C—vRK> Vv

Given a guess for L, I can compute C' using these two equations. Given C, I can compute
W. Given the wage W, I can compute K and MC'. Given the marginal cost MC', I can
compute the inflation-related terms.

K —
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2 Risk-Adjusted Linearization

We now proceed to converting the equilibrium conditions into a suitable form for a risk-
adjusted linearization. The system should conform to the representation

0 = log IE; [exp (§(2, y¢) + s ze1 + Deyes)]
Zee1 = P2 Ye) + Az ye) (Y1 — Beyerr) + 2(21, ye) et

where z; are (predetermined) state variables and y; are (nondetermined) jump variables.
For the remainder of this section, lower case variables are the logs of previously upper
case variables, and with a small abuse of notation, let s, = log(S’Lt) and sg; = 10g<§27t).
Additionally, let 7+ = log(Rg+) and v; = log(V}").

Equation (21) becomes

) (n1.1) Ly
= pex —_—
P ExXPUTLt oW,

0=1logE; [exp | log(p) + nrs + vl — (—yee + wy)

J

-~

3

Equation (22) will not be used in the system of equations for the risk-adjusted linearization,
but it simplifies the other equations. Taking logs and re-arranging yields

0 =log(B) + np,t+1 + (=7Cs1) — Mgt — (=) — My
My = 1og(B) —ngs + 76+ Npa41 — Vet -

13 forward-looking
Equation (23) becomes
0=logE; [exp | 7 +myqr — T4l
~~ SN~
3 both forward-looking

Equation (24) becomes

0 =logE; [exp (¢ + log (¥’ (exp(x: — ki-1))))] -

For equation (25), observe that the RHS is not log-linear in the forward-looking variables.
To handle this case, I define the new variable

X, X X
O = Ry, + 1—0+@ —<I>’( ) ) 41
=i+ () v (oh) o (41)
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Then (25) can be written as

0 = log E; [exp(m11 + w1 — q1)] -

Equation (26) becomes

0=1logE; |exp | (1 — a)wy + arps —ar — (1 — ) log(1 — a) — alog(a) — me;

3

Equation (27) becomes

0 =logE; |exp ktl—lt—log<la >—(wt—?”k,t)
—

[\ J/
-~

3

Like the stochastic discount factor, equation (28) will not be used in the system of equations,
but it will be useful to simplify other equations. Taking logs yields

. €
p; = log 1 + S1t — Sat.

€ —

Equation (29) becomes

Sip— MCY,
= EE; [exp (log(8) + mys1 + €mpsn1 + S1441)]

0 =1logE; |exp | log(#) — log(exp(s1) — exp(mc;) exp(y;)) + myy1 + €Myt + S1441
N ~~ -~ Y——

£ both forward-looking

and equation (30) becomes

0 =logE; |exp | log(f) — log(exp(sa;t) — exp(yﬂ)/—% My + (€ — D)y + S2,41

I3 both forward-looking
Equation (31) becomes

-
A= )P +0
0 = log E, fexp (1 — ), — log((1 — 0) exp((L — €)(p} + ) + 6)] .

1=
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Equation (32) becomes
1= v
(1 — 0)(PIL)—< + 0V )
0 = logE; [exp (v; — emy — log((1 — 0) exp(—e(p; + 1)) + O exp(vi_1)))] -

Equation (33) becomes
0 =logE; [exp (¢rri—1 + (1 — ¢r)r + (1 — ¢r) (n(me — ) + &y (Y — ye—1)) + nre — 11)] .-
Equation (34) becomes
0 = log By [exp(y; — log(exp(c:) + exp(x)))] -
Equation (35) becomes
0 = logE; [exp(a; + aki—1 + (1 — a)ly — vy — y)] -

Equation (36) becomes

< 1/x ~

X X
k,=log | 1 — k)X = ey
’ og< + X(exp(a;t i—1)) T— 1/X> + ki1

The autoregressive processes (37) to (40) remain as they are.

The jump variables are v, ¢, ly, wy, T, T, G, Ty, Thy, W, MCy S14, S24, and v,. The state
variables are k;_1, v;_1, 7_1, ¥y+_1, and the autoregressive processes. The equations defining
the evolution of the lags v;_1, r;_1, and y;_; are obtained by the formula z;_1)11 = 2.

This system has three forward difference equations (25), (29), and (30). To ensure accuracy
of the risk-adjusted linearization, I derive N-period ahead forward difference equations for
all three.

First, redefine €); as

X X X,
O =1—06+® - ( ) i
! (KH) K1) Ky

Then we can write (25) recursively as

Q1 = E[Mii1 (R g1 + Qe141))
= Ey[Myp1 R g1 + Qi My By [Mygo(Ric g2 + Qra241)]]
= Ey[My1 Ricpr] + Qe BBy 1 [My oy My o (Ric g2 + QuiaSig0)).
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By the tower property,

Q= E, [MtﬂRK,tH} + Q0 Ky [Mt+1Mt+2<RK,t+2 + Qr2Q42)]

B 2 s—1 s
- ]Et H Qt-l—’u H Mt-l—u RK,t+s + Mt+1Mt+2Qt+QQt+IQt+2
L \s=1 \u=1 u=1
B 2 s—1 s 2
=K, Z H Qg H Mty | Brpvs | + H(Mt+th+s)Et+2 (M1 3(Rp 43 + Qt+39t+3)]]
L \s=1 u=1 u=1 s=1
B 3 s—1 s 3
=L, Z H Qi H Mo | Ripys | + H(Mt+th+s)Qt+3]
s=1 \u=1 u=1 s=1

and so on, with the abuse of notation that H2:1 Q. = 1. Given this recursive structure,
define Dg % and Pc(ang as

DY) =By [Qu M DY
PY) =By [ Qi My Y |

with boundary conditions

0 PRy
Py = Q.

Then I may write the N-period ahead recursive form of equation (25) as

N
n N
Q=Y DS+ Py
n=1

To see why this recursion works, it is simpler to first verify that Pg’g is correct:

P((gl = E; [Qp1 M1 Q141
= Ey [ Q1 My (By 1 [Qo My 9Qrh2])]

i 2
H (Qt+8 Mt+s ) Qt+2] ]
s=1

= [, Et+1
M2
=E, H(Qt+th+s)Qt+2] .

s=1

where the second equality for Pgi follows from the fact that M, is measurable with respect
to the information set at time ¢ + 1 and can therefore be moved insided the conditional
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expectation E;y4[-]. Continuing for one more recursion, I have

B 2
chgl)t =E; | Q1 M1 Ei H(Qt+1+th+1+s)Qt+3”
L s=1
m 3
= Et H(Qt+th+S>Qt+3] .
| s=1
Similarly, for Dg,, I have
DO B, [ My, Lm0 R
o = ¢ |34 1 M Ot = E;[M;44 K,t+1]
D), = E[Qua1 My Boir[My 2 Ric o]
= Et [Qt+1Mt+lMt+2RK,t+2]
Dg))t = Ee[Qp 1 My B 1 [Qui o My o My 3 R 4]
= Et [Qt+1Qt+2Mt+lMt+2Mt+3RK,t+3] :

Since Pé"t) and Dgﬁ % are time-t conditional expectations, they are measurable at time ¢, so

they are not forward-looking variables. Thus, to get this version of (25) in the appropriate
form, define d,,; = log(Dgf 1) and pg ¢ = log(PC(;}t) ), and use the following 2N + 1 equations:

N
0=logE; |exp | ¢: — log (Z exp(dgn,t) + eXp<pq,N,t>> (42)
n=1
b
. _
loglE; [exp | —dgnt+ M1 + Wit + dgp-1,41 ifn>1
—— =~ ™ —~ »
0— i I3 both forward-looking ( 43)
logE; |exp | —dg1i+ M1+ Tres ifn=1,
—— =~ ~——
i £ both forward-looking
) -
log By |exp | —pgnt +Mit1 + Wit + Pgn—1,041 ifn>1
—— ~~ 4
0— i I3 both forward-looking ( 4 4)
log By |exp | —pg,1,¢ + Mgt + Wit + @i if n = 1.
—_—— N N——
L L I3 both forward-looking
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For (29), observe that

Sie = MCY; + OB [ My (T, (M Cyiy Yey + OB [My 011, 05 140])]
= MCyY; + OB [My 1 115\ M Cy1 Y + OMy i 115 My ol15 S0 440]

1 s 2
= MCY; +Ep |y (0° [ [(MilTf, ) MCr Vi H(eMHsH;s)SI,tH] .
s=1

s=1 u=1

+ E,

Thus, define Dg{)’t and ng?t as the recursions
n n—1
D.(S'l)t = E [eMt+1Ht+lD.(S'1,t+)1]7
n n—1
PSY, = Bil0My Tl PS ),
with boundary conditions
Dg‘l)t MCY,
Slt - Slt
Given these definitions, it follows that
Dgft = E[0 M1, MCri1 Vi
9Mt+1Ht+151,t+1]

[
- Et [eMt-i-lH:—‘rlEt-i-l [QMt-‘rQH;-f—le t+2]]
= B0 My T, My g2 115, 5 S 410].

Slt
Slt

Thus, defining dg; 4 = log(Dg1) and ps1 ¢ = log(Ps1¢), the N-period ahead recursive form of
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(29) results in the 2N + 1 equations

N-1
0 =logE; |exp | s1¢ — log (Z exp(dsint) + exp(psl,N,t)>

n=0
€
. _
logE; |exp | log(0) — ds1nt + Mg + €M1 + i n—1,441 ifn>1
N—— N \ ~ v
0= 3 both forward-looking
logE; |exp | ds1,00 — mcy — Yy ifn=0.
\ L 3
. -
logE; |exp | log(0) — psine + Mes1 + €M1 + Pt n—1,441 ifn>1
g v N vV
0= 3 both forward-looking
logE; |exp [ log(€) — psi,1e +mpss + €mepn + S1041 ifn=1
\ L 3 both forward-looking
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It is straightforward to show that a similar recursive form applies to (30):

N-1
0=1ogE; [exp | s24 — log (Z exp(dsant) + exp(pslN,t)) (48)
n=0
€
) _
logE; |exp | log(0) — dsant +mus1 + (€ — 1)1 + dson—1441 ifn>1
N———’ N N ~ - 4
0— i I3 both forward-looking ( 49)
logE; |exp | ds2,0t — Yt if n=0.
—_—
L L 13
) -
logE; |exp | log(€) — psont + mus1 + (€ — 1)1 + Ps2n—1,441 ifn>1
e dh
0 — L 13 ot forward-looking ( 5 0)
logE; |exp | log(€) — pso.1t +miy1 + (€ — 1)mppq + So441 ifn=1,
—_——— T~~~ -
L L 13 both forward-looking

where terms and boundary conditions are analogously defined.

19



