
These notes loosely follow Fernández-Villaverde and Levintal (2018) “Solution Methods for
Models with Rare Disasters” but omits several features, such as recursive preferences and
disaster risk.

1 Model

1.1 Household

The model admits a representative agent, so I directly write households’ problem as the
representative agent’s. The representative household solves, in the cashless limit,

max
Ct,Lt,Bt,Xt,Kt

E0

∞∑
t=0

βt exp(ηβ,t)

(
C1−γ
t

1− γ
− ϕ exp(ηL,t)

L1+ν
t

1 + ν

)
(1)

subject to the budget constraint

Ct +
Bt

Pt
+Xt ≤ WtLt +RK,tKt−1 +Rt−1

Bt−1

Pt
+ Ft + Tt, (2)

where Ct is consumption, Bt−1 nominal bonds, Xt investment, WN,t the real wage, Lt labor,
RKN,t the gross real rental rate on capital, Kt−1 capital, Rt the gross nominal interest rate on
bonds, Ft real profits from firms, and Tt real lump-sum transfers from the government. The
price of the final consumption good is Pt. Markets are assumed complete, but securities are
in zero net supply. Because there is a representative agent, I may omit the Arrow securities
from the budget constraint. My notation treats Bt−1 and Kt−1 as the stocks of bonds and
capital present at time t, while Bt and Kt are the chosen stocks of bonds and capital for the
following period. I adopt this notation so that all time t choices are dated at time t rather
than having to differentiate between the predetermined time-t variables from the endogenous
controls.
Investment for capital follows the law of motion

Kt = (1− δ)Kt−1 + Φ

(
Xt

Kt−1

)
Kt−1. (3)

The Lagrangian for the household is

L = E0

∞∑
t=0

βt exp(ηβ,t)

[
C1−γ
t

1− γ
− ϕ exp(ηL,t)

L1+ν
t

1 + ν

]
+ E0

∞∑
t=0

βt exp(ηβ,t)λt

[
WtLt +RK,tKt−1 +Rt−1

Bt−1

Pt
+ Ft + Tt − Ct −

Bt

Pt
−Xt

]
+ E0

∞∑
t=0

βt exp(ηβ,t)λtQt

[
(1− δ)Kt−1 + Φ

(
Xt

Kt−1

)
Kt−1 −Kt

]
,

1



which implies first-order conditions

0 = C−γt − λt
0 = −ϕ exp(ηL,t)L

ν
t + λtWt

0 = − exp(ηβ,t)λt + βEt[exp(ηβ,t+1)λt+1Rt]

0 = − exp(ηβ,t)λt + exp(ηβ,t)λtQtΦ
′
(

Xt

Kt−1

)
Kt−1

1

Kt−1

0 = − exp(ηβ,t)λtQt + βEt [exp(ηβ,t+1)λt+1RK,t+1]

βEt
[
exp(ηβ,t+1)λt+1Qt+1

(
1− δ + Φ′

(
Xt+1

Kt

)
Kt

(
−Xt+1

K2
t

)
+ Φ

(
Xt+1

Kt

))]
The first two equations can be combined by isolating λt, which obtains the intratemporal
consumption-labor condition

C−γt Wt = ϕ exp(ηL,t)L
ν
t ,

Using λt = C−γt and defining the gross inflation rate Πt ≡ Pt/Pt−1, I can obtain the Euler
equation for households

exp(ηβ,t)
C−γt
Pt

= βEt
[
exp(ηβ,t+1)

C−γt+1

Pt+1

Rt

]
1 = βEt

[
exp(ηβ,t+1)

exp(ηβ,t)

C−γt+1

C−γt

Rt

Πt+1

]
.

I can further simplify the Euler equation by defining the (real) stochastic discount factor

Mt+1 = β
exp(ηβ,t+1)

exp(ηβ,t)

C−γt+1

C−γt

After dividing through by exp(ηβ,t)λt and re-arranging, the investment condition becomes

1 = QtΦ
′
(

Xt

Kt−1

)
.

Finally, after dividing through by exp(ηβ,t)λt, the first-order condition for next-period capital
is

Qt = Et
[
Mt+1

(
RK,t+1 +Qt+1

(
1− δ + Φ

(
Xt+1

Kt

)
− Φ′

(
Xt+1

Kt

)
Xt+1

Kt

))]
.
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In summary, households’ optimality conditions are

C−γt Wt = ϕ exp(ηL,t)L
ν
t , (4)

Mt+1 = β
exp(ηβ,t+1)

exp(ηβ,t)

C−γt+1

C−γt
, (5)

1 = βEt
[
Mt+1

Rt

Πt+1

]
, (6)

1 = QtΦ
′
(

Xt

Kt−1

)
, (7)

Qt = Et
[
Mt+1

(
RK,t+1 +Qt+1

(
1− δ + Φ

(
Xt+1

Kt

)
− Φ′

(
Xt+1

Kt

)
Xt+1

Kt

))]
. (8)

1.2 Production

Final Producers There is a representative final goods firm which sells consumption goods
in a competitive market. It aggregates intermediate goods using the CES technology

Yt =

(∫ 1

0

Yt(j)
ε−1
ε

) ε
ε−1

where ε > 1 so that inputs are substitutes. Profit maximization for the final good firm is

max
Yt(j)

Pt

(∫ 1

0

Yt(j)
ε−1
ε

) ε
ε−1

−
∫ 1

0

Pt(j)Yt(j) dj.

The FOC for Yt(j) is

0 = Pt
ε

ε− 1

(∫ 1

0

Yt(j)
ε
ε−1

) 1
ε−1 ε− 1

ε
Yt(j)

− 1
ε − Pt(j)

0 =

(∫ 1

0

Yt(j)
ε
ε−1

) 1
ε−1

Yt(j)
− 1
ε − Pt(j)

Pt

0 =

(∫ 1

0

Yt(j)
ε
ε−1

)− ε
ε−1

Yt(j)−
(
Pt(j)

Pt

)−ε
Yt(j) =

(
Pt(j)

Pt

)−ε
Yt.

Plugging this quantity into the identity

PtYt =

∫ 1

0

Pt(j)Yt(j) dj

and simplifying yields the price index

Pt =

(∫ 1

0

Pt(j)
1−ε dj

) 1
1−ε

.
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Intermediate Producers Intermediate goods are producing according to the Cobb-Douglas
technology

Yt(j) = exp(ηA,t)K
α
t−1(j)L

1−α
t (j).

Intermediate producers minimize cost subject to the constraint of meeting demand and Calvo
price rigidities. Formally,

min
Kt−1(j),Lt(j)

RK,tKt−1(j) +WtLt(j) s.t. exp(ηA,t)K
α
t−1(j)L

1−α
t (j) ≥

(
Pt(j)

Pt

)−ε
Yt.

The RHS of the inequality constraint is the demand from final goods producers for interme-
diate j. The Lagrangian is

L = RK,tKt−1(j) +WtLt(j) +MCt(j)

((
Pt(j)

Pt

)−ε
Yt − exp(ηA,t)K

α
t−1(j)L

1−α
t (j)

)
,

so the first-order conditions are

0 = RK,t −MCt(j)α exp(ηA,t)

(
Lt(j)

Kt−1(j)

)1−α

0 = Wt −MCt(j)(1− α) exp(ηA,t)

(
Kt−1(j)

Lt(j)

)α
,

hence the optimal capital-labor ratio satisfies

RK,t

α exp(ηA,t)(Kt−1(j)/Lt(j))α−1
=

Wt

(1− α) exp(ηA,t)(Kt−1(j)/Lt(j))α

Kt−1(j)

Lt(j)
=

α

1− α
Wt

RK,t

.

Since the RHS does not vary with j, all firms choose the same capital-labor ratio. Given
this optimal ratio, the marginal cost satisfies

MCt =
RK,t

α exp(ηA,t)

(
Kt−1

Lt

)1−α

=
RK,t

α exp(ηA,t)

(
α

1− α
Wt

RK,t

)1−α

=

(
1

1− α

)1−α(
1

α

)α W 1−α
t Rα

K,t

exp(ηA,t)
.

It follows that

RK,tKt−1 +WtLt =

(
RK,t

exp(ηA,t)

(
Kt−1

Lt

)1−α

+
Wt

exp(ηA,t)

(
Lt
Kt−1

)α)
(exp(ηA,t)K

α
t−1L

1−α
t )

= (αMCt + (1− α)MCt)Yt(j) = MCtYt(j).
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Therefore, (real) profits for an intermediate producer become

Ft(j) =
Pt(j)

Pt
Yt(j)−MCtYt(j).

In addition to the capital-labor choice, firms also have the chance to reset prices in every
period with probability 1− θ. This problem can be written as

max
Pt(j)

Et
∞∑
s=0

(βθ)s
exp(ηβ,t+s)

exp(ηβ,t)

u′(Ct+s)

u′(Ct)

(
Pt(j)

Pt+s

(
Pt(j)

Pt+s

)−ε
Yt+s −mct+s

(
Pt(j)

Pt+s

)−ε
Yt+s

)
,

where I have imposed that intermediate output equals demand. The first-order condition is

0 = (1− ε)Pt(j)−εEt
∞∑
s=0

(βθ)s
exp(ηβ,t+s)

exp(ηβ,t)

u′(Ct+s)

u′(Ct)
(Pt+s)

−(1−ε)Yt+s

+ εPt(j)
−ε−1Et

∞∑
s=0

(βθ)s
exp(ηβ,t+s)

exp(ηβ,t)

u′(Ct+s)

u′(Ct)
mct+sP

ε
t+sYt+s

Divide by Pt(j)
−ε/(exp(ηβ,t)u

′(Ct)), apply the abuse of notation that
∏0

u=1 Πt+u = 1, and
re-arrange to obtain

Pt(j) =
ε

ε− 1

Et
∑∞

s=0(βθ)
s exp(ηβ,t+s)u

′(Ct+s)mct+sP
ε
t+sYt+s

Et
∑∞

s=0(βθ)
s exp(ηβ,t+s)u′(Ct+s)P

ε−1
t+s Yt+s

=
ε

ε− 1

Et
∑∞

s=0(βθ)
s exp(ηβ,t+s)u

′(Ct+s)mct+sP
ε
t (
∏s

u=1 Πt+u)
ε
Yt+s

Et
∑∞

s=0(βθ)
s exp(ηβ,t+s)u′(Ct+s)P

ε−1
t (

∏s
u=1 Πt+u)

ε−1
Yt+s

Pt(j)

Pt
=

ε

ε− 1

Et
∑∞

s=0(βθ)
s exp(ηβ,t+s)u

′(Ct+s)mct+s (
∏s

u=1 Πt+u)
ε
Yt+s

Et
∑∞

s=0(βθ)
s exp(ηβ,t+s)u′(Ct+s) (

∏s
u=1 Πt+u)

ε−1
Yt+s

.

This expression gives the optimal (real) reset price P ∗t ≡ Pt(j)/Pt (note that the RHS does
not depend on j). Define

S1,t = Et
∞∑
s=0

(βθ)s exp(ηβ,t+s)u
′(Ct+s)mct+sYt+s

(
s∏

u=1

Πt+s

)ε

,

S2,t = Et
∞∑
s=0

(βθ)s exp(ηβ,t+s)u
′(Ct+s)Yt+s

(
s∏

u=1

Πt+s

)ε−1

.

Using these definitions, I may write the optimal reset price more compactly as

P ∗t =
ε

ε− 1

S1,t

S2,t

where S1,t and S2,t satisfy the recursions

S1,t = exp(ηβ,t)u
′(Ct)MCtYt + θβEtΠε

t+sS1,t+1

S2,t = exp(ηβ,t)u
′(Ct)Yt + θβEtΠε−1

t+sS2,t+1.
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These recursions can be further rewritten as

S1,t

exp(ηβ,t)u′(Ct)
= MCtYt + θβEt

[
exp(ηβ,t+1)u

′(Ct+1)

exp(ηβ,t)u′(Ct)
Πε
t+s

S1,t+1

exp(ηβ,t+1)u′(Ct+1)

]
S2,t

exp(ηβ,t)u′(Ct)
= Yt + θβEt

[
exp(ηβ,t+1)u

′(Ct+1)

exp(ηβ,t)u′(Ct)
Πε−1
t+s

S2,t+1

exp(ηβ,t+1)u′(Ct+1)

]
,

By defining S̃1,t ≡ S1,t/(exp(ηβ,t)u
′(Ct)) and S̃2,t ≡ S2,t/(exp(ηβ,t)u

′(Ct)), I can simplify
these recursions into the form I use for the numerical solution.

From this section, we obtain the following five equilibrium conditions:

MCt =

(
1

1− α

)1−α(
1

α

)α W 1−α
t Rα

K,t

exp(ηA,t)
, (9)

Kt−1

Lt
=

α

1− α
Wt

RK,t

, (10)

P ∗t =
ε

ε− 1

S̃1,t

S̃2,t

, (11)

S̃1,t = MCtYt + θEt[Mt+1Π
ε
t+1S̃1,t+1], (12)

S̃2,t = Yt + θEt[Mt+1Π
ε−1
t+1S̃2,t+1]. (13)

1.3 Monetary Policy

I specify the monetary policy rule as the following Taylor rule

Rt

R
=

(
Rt−1

R

)φR ((Πt

Π

)φπ ( Yt
Yt−1

)φy)1−φR

exp(ηR,t) (14)

Any proceeds from monetary policy are distributed as lump sum to the representative house-
hold.

1.4 Aggregation

The price level is currently characterized as the integral

P 1−ε
t =

∫ 1

0

Pt(j)
1−ε dj.

To represent the model entirely in terms of aggregates, notice that, without loss of generality,
we may re-order the fraction θ of firms which cannot reset prices to the top of the interval
so that

P 1−ε
t = (1− θ)(P ∗t )1−ε +

∫ 1

1−θ
Pt−1(j)

1−ε dj.
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The latter term can be further simplified under the law of large numbers assumption that
a positive measure of firms which cannot change their price still comprise a representative
sample of all firms, yielding

P 1−ε
t = (1− θ)(P ∗t )1−ε + θ

∫ 1

0

Pt−1(j)
1−ε dj = (1− θ)(P ∗t )1−ε + θP 1−ε

t−1 .

Dividing by P 1−ε
t−1 implies

Π1−ε
t = (1− θ)(P ∗t Πt)

1−ε + θ. (15)

The price dispersion term can similarly be re-written in terms of aggregates by distinguishing
which firms get to change prices.

V p
t =

∫ 1−θ

0

(P ∗t )−ε dj +

∫ 1

1−θ

(
Pt−1(j)

Pt

)−ε
dj

=

∫ 1−θ

0

(P ∗t Πt)
−ε
(

1

Πt

)−ε
dj +

∫ 1

1−θ

(
Pt−1(j)

Pt−1

)−ε(
Pt−1
Pt

)−ε
dj

= (1− θ)(P ∗t Πt)
−εΠε

t + Πε
t

∫ 1

1−θ

(
Pt−1(j)

Pt−1

)−ε
dj.

By invoking the law of large assumptions applied to any positive measure subset of firms,
we must have ∫ 1

1−θ

(
Pt−1(j)

Pt−1

)−ε
dj = θ

∫ 1

0

(
Pt−1(j)

Pt−1

)−ε
dj = θV p

t−1.

Thus, we acquire

V p
t = Πε

t((1− θ)(P ∗t Πt)
−ε + θV p

t−1) (16)

1.5 Equilibrium

To close the model, I need to specify the functional form for investment, aggregate shocks,
and market-clearing conditions.

Following Jermann (1998), I assume the investment function takes the concave form

Φ

(
Xt

Kt−1

)
=

X
1/χ

1− 1/χ

(
Xt

Kt−1

)1−1/χ

− X

χ(χ− 1)
(17)

where X = δχ/(χ + 1) is the steady-state investment rate (per unit of capital). The first
derivative of Φ(·) w.r.t. Xt/Kt−1 is

Φ′
(

Xt

Kt−1

)
= X

1/χ
(

Xt

Kt−1

)−1/χ
. (18)
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This functional form implies the law of motion

Kt =

(
1− δ +

X
1/χ

1− 1/χ

(
Xt

Kt−1

)1−1/χ

− X

χ(χ− 1)

)
Kt−1

=

(
1 +

X
1/χ

1− 1/χ

(
Xt

Kt−1

)1−1/χ

− δ
(

1 +
1

(χ− 1)(χ+ 1)

))
Kt−1

=

(
1 +

X
1/χ

1− 1/χ

(
Xt

Kt−1

)1−1/χ

− δ
(

χ2

(χ− 1)(χ+ 1)

))
Kt−1

=

(
1 +

X
1/χ

1− 1/χ

(
Xt

Kt−1

)1−1/χ

− δχ2

χ2(1− 1/χ)(1 + 1/χ)

)
Kt−1

=

(
1 +

X
1/χ

1− 1/χ

(
Xt

Kt−1

)1−1/χ

− X

1− 1/χ

)
Kt−1.

If Kt = Kt−1 = Kss and Xss/Kss = X, then

1 +
X

1/χ

1− 1/χ
X

1−1/χ − X

1− 1/χ
= 1 +

X

1− 1/χ
− X

1− 1/χ
= 1,

thus verifying the original conjecture that X represents the steady-state investment rate.
There are four shocks in the model: ηA,t, ηβ,t, ηL,t, and ηR,t. Without loss of generality, I
assume all shocks follow AR(1) processes with persistence ρi and standard deviation σi.

Markets must clear for capital, labor, bonds, final goods, and intermediate goods, . The
first three markets clear as a consequence of optimality conditions and the assumption that
bonds have zero net supply. To clear the market for final goods, we set the sum of aggregate
consumption demand Ct and investment demand Xt equal to aggregate supply Yt, which
satisfies ∫ 1

0

exp(ηA,t)K
α
t−1L

1−α
t dj =

∫ 1

0

(
Pt(j)

Pt

)−ε
Yt dj

exp(ηA,t)K
α
t−1L

1−α
t = Yt

∫ 1

0

(
Pt(j)

Pt

)−ε
dj = V p

t Yt.

Re-arranging yields the output market-clearing condition

Ct +Xt = Yt, (19)

Yt =
exp(ηA,t)K

α
t−1L

1−α
t

V p
t

. (20)

It can be shown that V p
t ≥ 1 by applying Jensen’s inequality. For our purposes, because the

dimensionality of our model is not too large, we add the auxiliary Yt variable, even though
we could substitute it out of the system of equations.
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All together, the full set of endogenous equilibrium conditions are

C−γt Wt = ϕ exp(ηL,t)L
ν
t , (21)

Mt+1 = β
exp(ηβ,t+1)

exp(ηβ,t)

C−γt+1

C−γt
, (22)

1 = Et
[
Mt+1

Rt

Πt+1

]
, (23)

1 = QtΦ
′
(

Xt

Kt−1

)
, (24)

Qt = Et
[
Mt+1

(
RK,t+1 +Qt+1

(
1− δ + Φ

(
Xt+1

Kt

)
− Φ′

(
Xt+1

Kt

)
Xt+1

Kt

))]
, (25)

MCt =

(
1

1− α

)1−α(
1

α

)α W 1−α
t Rα

K,t

exp(ηA,t)
, (26)

Kt−1

Lt
=

α

1− α
Wt

RK,t

, (27)

P ∗t =
ε

ε− 1

S̃1,t

S̃2,t

, (28)

S̃1,t = MCtYt + θEt[Mt+1Π
ε
t+1S̃1,t+1], (29)

S̃2,t = Yt + θEt[Mt+1Π
ε−1
t+1S̃2,t+1], (30)

Π1−ε
t = (1− θ)(P ∗t Πt)

1−ε + θ, (31)

V p
t = Πε

t((1− θ)(P ∗t Πt)
−ε + θV p

t−1), (32)

Rt

R
=

(
Rt−1

R

)φR ((Πt

Π

)φπ ( Yt
Yt−1

)φy)1−φR

exp(ηR,t), (33)

Ct +Xt = Yt, (34)

Yt =
exp(ηA,t)K

α
t−1L

1−α
t

V p
t

, (35)

as well as the law of motion for capital

Kt =

(
1 +

X
1/χ

1− 1/χ

(
Xt

Kt−1

)1−1/χ

− X

1− 1/χ

)
Kt−1 (36)

and the four exogenous processes

ηβ,t+1 = ρβηβ,t + σβεβ,t+1, (37)

ηL,t+1 = ρLηL,t + σLεL,t+1, (38)

ηA,t+1 = ρAηA,t + σAεA,t+1, (39)

ηR,t+1 = ρRηR,t + σRεR,t+1. (40)
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1.6 Deterministic Steady State

To provide an initial guess for the risk-adjusted linearization and to provide a verification
that the model is coded correctly, I determine some reasonable guesses for the deterministic
steady state.
Within this subsection, I denote the deterministic steady state values by an absence of
a time subscript. The exogenous processes, by construction, have steady states of 0, i.e.
ηβ = ηL = ηA = ηR = 0. Further, A = 1.
Focusing now on the endogenous equilibrium conditions, from (21),

W =
ϕLν

C−γ
.

From (22),

M = β.

From (24), the fact that X is the steady-state investment rate, and the fact that Φ′(X) = 1,

Q = 1.

From (25), first observing that,

Φ(X) =
Xχ

χ− 1
− X

χ(χ− 1)
= X

χ2 − 1

χ(χ− 1)
= X

(χ− 1)(χ+ 1)

χ(χ− 1)
=

δχ

χ+ 1

χ+ 1

χ
= δ,

which ensures that K does indeed remain at steady state, it must be the cast that

1 = β(RK + (1− δ + Φ(X)−X)

RK =
1

β
+X − 1.

Equation (26) remains as it is but with time subscripts removed. From (29),

S̃1 = MC · Y + θβΠεS̃1 ⇒ S̃1 =
MC · Y
1− θβΠε

.

From (30),

S̃2 = Y + θβΠε−1S̃2 ⇒ S̃1 =
Y

1− θβΠε−1 .

Thus,

P ∗ =
ε

ε− 1
MC

1− θΠε−1

1− θΠε
.
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From (31),

Π1−ε = (1− θ) (P ∗Π)1−ε + θ

Note that P ∗ depends on MC and fundamental parameters, hence the above equation pins
down MC, which then pins down the ratio of K to L. From (32),

V p = Πε
(
(1− θ)(P ∗Π)−ε + θV p

)
V p =

(1− θ)(P ∗Π)−ε

Π−ε − θ
=

(1− θ)(P ∗)−ε

1− θΠε
.

From the Taylor rule (33), the steady state interest and inflation rates are R and Π, respec-
tively, and from the Euler equation (23), R must satisfy

R =
Π

β
.

From (34),

C +X = Y.

From (35),

Y =
KαL1−α

V p
.

As shown previously, the steady-state investment rate is X, hence

X = XK

Finally, I claim that the deterministic steady state reduces to a nonlinear equation in L.
Using the aggregate supply and capital accumulation equations,

C +XK =
KαL1−α

V p
.

The optimal capital-labor ratio implies

K =
α

1− α
W

RK

L,

C +XK =

(
α

1− α

)α(
W

RK

)α
L

V p
.

The intratemporal condition for consumption and labor implies

K =
α

1− α
ϕLν

C−γRK

L,

C + δK =

(
α

1− α

)α(
ϕLν

C−γRK

)α
L

V p
.

Given a guess for L, I can compute C using these two equations. Given C, I can compute
W . Given the wage W , I can compute K and MC. Given the marginal cost MC, I can
compute the inflation-related terms.
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2 Risk-Adjusted Linearization

We now proceed to converting the equilibrium conditions into a suitable form for a risk-
adjusted linearization. The system should conform to the representation

0 = logEt [exp (ξ(zt, yt) + Γ5zt+1 + Γ6yt+1)]

zt+1 = µ(zt, yt) + Λ(zt, yt)(yt+1 − Etyt+1) + Σ(zt, yt)εt+1,

where zt are (predetermined) state variables and yt are (nondetermined) jump variables.
For the remainder of this section, lower case variables are the logs of previously upper
case variables, and with a small abuse of notation, let s1,t = log(S̃1,t) and s2,t = log(S̃2,t).
Additionally, let rk,t = log(RK,t) and vt = log(V p

t ).

Equation (21) becomes

1 = ϕ exp(ηL,t)
Lνt

C−γt Wt

0 = logEt

exp

log(ϕ) + ηL,t + νlt − (−γct + wt)︸ ︷︷ ︸
ξ


 .

Equation (22) will not be used in the system of equations for the risk-adjusted linearization,
but it simplifies the other equations. Taking logs and re-arranging yields

0 = log(β) + ηβ,t+1 + (−γct+1)− ηβ,t − (−γct)−mt+1

mt+1 = log(β)− ηβ,t + γct︸ ︷︷ ︸
ξ

+ ηβ,t+1 − γct+1︸ ︷︷ ︸
forward-looking

.

Equation (23) becomes

0 = logEt

exp

 rt︸︷︷︸
ξ

+mt+1︸︷︷︸
both

− πt+1︸︷︷︸
forward-looking

 .
Equation (24) becomes

0 = logEt [exp (qt + log (Φ′ (exp(xt − kt−1))))] .

For equation (25), observe that the RHS is not log-linear in the forward-looking variables.
To handle this case, I define the new variable

Ωt = RK,t +Qt

(
1− δ + Φ

(
Xt

Kt−1

)
− Φ′

(
Xt

Kt−1

)
Xt

Kt−1

)
. (41)
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Then (25) can be written as

1 = Et
[
Mt+1Ωt+1

Qt

]
0 = logEt [exp(mt+1 + ωt+1 − qt)] .

Equation (26) becomes

0 = logEt

exp

(1− α)wt + αrk,t − at − (1− α) log(1− α)− α log(α)−mct︸ ︷︷ ︸
ξ


 .

Equation (27) becomes

0 = logEt

exp

kt−1 − lt − log

(
α

1− α

)
− (wt − rk,t)︸ ︷︷ ︸

ξ


 .

Like the stochastic discount factor, equation (28) will not be used in the system of equations,
but it will be useful to simplify other equations. Taking logs yields

p∗t = log

(
ε

ε− 1

)
+ s1,t − s2,t.

Equation (29) becomes

S̃1,t −MCtYt

= Et [exp (log(θ) +mt+1 + επt+1 + s1,t+1)]

0 = logEt

exp

log(θ)− log(exp(s1,t)− exp(mct) exp(yt))︸ ︷︷ ︸
ξ

+mt+1︸︷︷︸
both

+ επt+1 + s1,t+1︸ ︷︷ ︸
forward-looking




and equation (30) becomes

0 = logEt

exp

log(θ)− log(exp(s2,t)− exp(yt))︸ ︷︷ ︸
ξ

+mt+1︸︷︷︸
both

+ (ε− 1)πt+1 + s2,t+1︸ ︷︷ ︸
forward-looking


 .

Equation (31) becomes

1 =
Π1−ε
t

(1− θ)(P ∗t Πt)1−ε + θ

0 = logEt [exp ((1− ε)πt − log((1− θ) exp((1− ε)(p∗t + πt)) + θ))] .

13



Equation (32) becomes

1 =
V p
t

Πε
t((1− θ)(P ∗t Πt)−ε + θV p

t−1)

0 = logEt [exp (vt − επt − log((1− θ) exp(−ε(p∗t + πt)) + θ exp(vt−1)))] .

Equation (33) becomes

0 = logEt [exp (φRrt−1 + (1− φR)r + (1− φR)(φπ(πt − π) + φy(yt − yt−1)) + ηR,t − rt)] .

Equation (34) becomes

0 = logEt [exp(yt − log(exp(ct) + exp(xt)))] .

Equation (35) becomes

0 = logEt [exp(at + αkt−1 + (1− α)lt − vt − yt)] .

Equation (36) becomes

kt = log

(
1 +

X
1/χ

1− 1/χ
(exp(xt − kt−1))1−1/χ −

X

1− 1/χ

)
+ kt−1.

The autoregressive processes (37) to (40) remain as they are.

The jump variables are yt, ct, lt, wt, rt, πt, qt, xt, rk,t, ωt, mct, s1,t, s2,t, and vt. The state
variables are kt−1, vt−1, rt−1, yt−1, and the autoregressive processes. The equations defining
the evolution of the lags vt−1, rt−1, and yt−1 are obtained by the formula z(t−1)+1 = zt.
This system has three forward difference equations (25), (29), and (30). To ensure accuracy
of the risk-adjusted linearization, I derive N -period ahead forward difference equations for
all three.

First, redefine Ωt as

Ωt = 1− δ + Φ

(
Xt

Kt−1

)
− Φ′

(
Xt

Kt−1

)
Xt

Kt−1
.

Then we can write (25) recursively as

Qt = Et[Mt+1(RK,t+1 +Qt+1Ωt+1)]

= Et[Mt+1RK,t+1 + Ωt+1Mt+1Et+1[Mt+2(RK,t+2 +Qt+2Ωt+1)]]

= Et[Mt+1RK,t+1] + Ωt+1EtEt+1[Mt+1Mt+2(RK,t+2 +Qt+2Ωt+2)].

14



By the tower property,

Qt = Et[Mt+1RK,t+1] + Ωt+1Et[Mt+1Mt+2(RK,t+2 +Qt+2Ωt+2)]

= Et

[(
2∑
s=1

(
s−1∏
u=1

Ωt+u

)(
s∏

u=1

Mt+u

)
RK,t+s

)
+Mt+1Mt+2Qt+2Ωt+1Ωt+2

]

= Et

[(
2∑
s=1

(
s−1∏
u=1

Ωt+u

)(
s∏

u=1

Mt+u

)
RK,t+s

)
+

2∏
s=1

(Mt+sΩt+s)Et+2[Mt+3(RK,t+3 +Qt+3Ωt+3)]

]

= Et

[(
3∑
s=1

(
s−1∏
u=1

Ωt+u

)(
s∏

u=1

Mt+u

)
RK,t+s

)
+

3∏
s=1

(Mt+sΩt+s)Qt+3

]

and so on, with the abuse of notation that
∏0

u=1 Ωt+u = 1. Given this recursive structure,

define D
(n)
Q,t and P

(n)
Q,t as

D
(n)
Q,t = Et

[
Ωt+1Mt+1D

(n−1)
Q,t+1

]
P

(n)
Q,t = Et

[
Ωt+1Mt+1P

(n−1)
Q,t+1

]
with boundary conditions

D
(0)
Q,t =

RK,t

Ωt

P
(0)
Q,t = Q.

Then I may write the N -period ahead recursive form of equation (25) as

Qt =
N∑
n=1

D
(n)
Q,t + P

(N)
Q,t .

To see why this recursion works, it is simpler to first verify that P
(3)
Q,t is correct:

P
(1)
Q,t = Et [Ωt+1Mt+1Qt+1]

P
(2)
Q,t = Et [Ωt+1Mt+1(Et+1[Ωt+2Mt+2Qt+2])]

= Et

[
Et+1

[
2∏
s=1

(Ωt+sMt+s)Qt+2

]]

= Et

[
2∏
s=1

(Ωt+sMt+s)Qt+2

]
.

where the second equality for P
(2)
Q,t follows from the fact that Mt+1 is measurable with respect

to the information set at time t + 1 and can therefore be moved insided the conditional
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expectation Et+1[·]. Continuing for one more recursion, I have

P
(3)
Q,t = Et

[
Ωt+1Mt+1Et+1

[
2∏
s=1

(Ωt+1+sMt+1+s)Qt+3

]]

= Et

[
3∏
s=1

(Ωt+sMt+s)Qt+3

]
.

Similarly, for DQ,t, I have

D
(1)
Q,t = Et

[
Ωt+1Mt+1

RK,t+1

Ωt+1

]
= Et[Mt+1RK,t+1]

D
(2)
Q,t = Et[Ωt+1Mt+1Et+1[Mt+2RK,t+2]]

= Et[Ωt+1Mt+1Mt+2RK,t+2]

D
(3)
Q,t = Et[Ωt+1Mt+1Et+1[Ωt+2Mt+2Mt+3RK,t+3]]

= Et[Ωt+1Ωt+2Mt+1Mt+2Mt+3RK,t+3].

Since P
(n)
Q,t and D

(n)
Q,t are time-t conditional expectations, they are measurable at time t, so

they are not forward-looking variables. Thus, to get this version of (25) in the appropriate

form, define dq,n,t = log(D
(n)
Q,t) and pq,n,t = log(P

(n)
Q,t ), and use the following 2N + 1 equations:

0 = logEt

exp

qt − log

(
N∑
n=1

exp(dq,n,t) + exp(pq,N,t)

)
︸ ︷︷ ︸

ξ


 (42)

0 =



logEt

exp

−dq,n,t︸ ︷︷ ︸
ξ

+mt+1︸︷︷︸
both

+ωt+1 + dq,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n > 1

logEt

exp

−dq,1,t︸ ︷︷ ︸
ξ

+mt+1︸︷︷︸
both

+ rk,t+1︸ ︷︷ ︸
forward-looking


 if n = 1,

(43)

0 =



logEt

exp

−pq,n,t︸ ︷︷ ︸
ξ

+mt+1︸︷︷︸
both

+ωt+1 + pq,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n > 1

logEt

exp

−pq,1,t︸ ︷︷ ︸
ξ

+mt+1︸︷︷︸
both

+ ωt+1 + qt+1︸ ︷︷ ︸
forward-looking


 if n = 1.

(44)
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For (29), observe that

S̃1,t = MCtYt + θEt[Mt+1Π
ε
t+1(MCt+1Yt+1 + θEt+1[Mt+2Π

ε
t+2S̃1,t+2])]

= MCtYt + θEt[Mt+1Π
ε
t+1MCt+1Yt+1 + θMt+1Π

ε
t+1Mt+2Π

ε
t+2S̃1,t+2]

= MCtYt + Et

[
1∑
s=1

(θs
s∏

u=1

(Mt+uΠ
ε
t+u))MCt+sYt+s

]
+ Et

[
2∏
s=1

(θMt+sΠ
ε
t+s)S̃1,t+2

]
.

Thus, define D
(n)
S1,t and P

(n)
S1,t as the recursions

D
(n)
S1,t = Et[θMt+1Π

ε
t+1D

(n−1)
S1,t+1],

P
(n)
S1,t = Et[θMt+1Π

ε
t+1P

(n−1)
S1,t+1],

with boundary conditions

D
(0)
S1,t = MCtYt

P
(0)
S1,t = S̃1,t.

Given these definitions, it follows that

D
(1)
S1,t = Et[θMt+1Π

ε
t+1MCt+1Yt+1]

P
(1)
S1,t = Et[θMt+1Π

ε
t+1S̃1,t+1]

P
(2)
S1,t = Et[θMt+1Π

ε
t+1Et+1[θMt+2Π

ε
t+2S̃1,t+2]]

= Et[θ2Mt+1Π
ε
t+1Mt+2Π

ε
t+2S̃1,t+2].

Thus, defining ds1,t = log(DS1,t) and ps1,t = log(PS1,t), the N -period ahead recursive form of
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(29) results in the 2N + 1 equations

0 = logEt

exp

s1,t − log

(
N−1∑
n=0

exp(ds1,n,t) + exp(ps1,N,t)

)
︸ ︷︷ ︸

ξ


 (45)

0 =



logEt

exp

log(θ)− ds1,n,t︸ ︷︷ ︸
ξ

+mt+1︸︷︷︸
both

+ επt+1 + ds1,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n ≥ 1

logEt

exp

ds1,0,t −mct − yt︸ ︷︷ ︸
ξ


 if n = 0.

(46)

0 =



logEt

exp

log(θ)− ps1,n,t︸ ︷︷ ︸
ξ

+mt+1︸︷︷︸
both

+ επt+1 + ps1,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n > 1

logEt

exp

log(θ)− ps1,1,t︸ ︷︷ ︸
ξ

+mt+1︸︷︷︸
both

+ επt+1 + s1,t+1︸ ︷︷ ︸
forward-looking


 if n = 1.

(47)
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It is straightforward to show that a similar recursive form applies to (30):

0 = logEt

exp

s2,t − log

(
N−1∑
n=0

exp(ds2,n,t) + exp(ps2,N,t)

)
︸ ︷︷ ︸

ξ


 (48)

0 =



logEt

exp

log(θ)− ds2,n,t︸ ︷︷ ︸
ξ

+mt+1︸︷︷︸
both

+ (ε− 1)πt+1 + ds2,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n ≥ 1

logEt

exp

ds2,0,t − yt︸ ︷︷ ︸
ξ


 if n = 0.

(49)

0 =



logEt

exp

log(θ)− ps2,n,t︸ ︷︷ ︸
ξ

+mt+1︸︷︷︸
both

+ (ε− 1)πt+1 + ps2,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n > 1

logEt

exp

log(θ)− ps2,1,t︸ ︷︷ ︸
ξ

+mt+1︸︷︷︸
both

+ (ε− 1)πt+1 + s2,t+1︸ ︷︷ ︸
forward-looking


 if n = 1,

(50)

where terms and boundary conditions are analogously defined.
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