These notes for the New Keynesian model follow Eric Sims’s notes. Section 1 solves the
equilibrium conditions of the New Keynesian model, and Section 2 transforms the equilibrium
conditions into the desired form for a risk-adjusted linearization.

1 Model

1.1 Household

Households solve the problem
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subject to the budget constraint
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In this model, households have demand for money M;, which is also the numeraire. The price
of goods in terms of money is P;. The stock of nominal bonds a households has is B;. Note
that B; will be pre-determined at period ¢ while M; will not be (M;_; is pre-determined).
The Lagrangian for the household is
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which implies first-order conditions
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The first two equations can be combined by isolating ;. Using A\, = C; ?/P;, we can obtain
the Euler equation for households and an equation relating money balances to consumption.
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1.2 Production

Final Producers There is a representative final goods firm which sells consumption goods
in a competitive market. It aggregates intermediate goods using the CES technology
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where € > 1 so that inputs are substitutes. Profit maximization for the final good firm is
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The FOC for Y;(j) is

Plugging this quantity into the identity
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and simplifying yields the price index
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Intermediate Producers Intermediate goods are producing according to the linear tech-

nology
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Intermediate producers minimize cost subject to the constraint of meeting demand and Calvo
price rigidities. Formally,
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The Lagrangian is
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so the first-order condition is
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The multiplier ¢; can be interpreted as the nominal marginal cost. Let mc; be the real
marginal cost. Then profits for an intermediate producer is
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In addition to the labor choice, firms also have the chance to reset prices in every period
with probability 1 — ¢. This problem can be written as
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where I have imposed that output equals demand. The first-order condition is
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Divide by P,(j)~¢/u/(C;) and re-arrange to obtain
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This expression gives the optimal reset price P/, which we can write more compactly as
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1.3 Equilibrium and Aggregation
To close the model, I assume that the log of technology A; follows the AR(1)

log Ay = palog Ay, + €a,
and the growth rate in the log money supply follows the AR(1)
Alog My = (1 — pp)m + pAlog My_1 + €y,

where 7 is the steady-state rate of inflation. Note that this specification ensures that money
balances grow at the same rate as the price level, which ensures real balances are stationary.
To re-write the money growth equation in real terms, note that

log(my) = log(My) — log(P) = Alog(m,) = log(my) — log(m;_1) = Alog(M,) — log(1 + ),
hence
Alog(me) = (1 = pp)7T + pmAlog(mi—1) + ppmlog(l + m—1) —log(1 + m) + €.

In equilibrium, bond-holding must be zero, hence
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Real dividends II; satisfy the accounting identity
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where w, = W,/ P,. Aggregate labor supply N, equals aggregate labor demand in equilibrium,
and market-clearing for consumption requires
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since fol P(j)cdj = P}
The quantity Y; is aggregate output, so we must have

/01 AN(j) dj = /01 (%”)Endj




Thus, aggregate output is

Y, = AtNt.
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It can be shown that v; > 1 by applying Jensen’s inequality.
Finally, recall that
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In each period, a fraction ¢ cannot change their price. Without loss of generality, we may
re-order these firms to the top of the interval so that
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The latter term can be further simplified under the law of large numbers assumption that
a positive measure of firms which cannot change their price still comprise a representative
sample of all firms, yielding
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The price dispersion term can similarly be re-written in terms of aggregates by distinguishing
which firms get to change prices.
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By invoking the law of large assumptions applied to any positive measure subset of firms,

we must have
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To finish, we need to derive an expression characterizing m;. Define
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All together, the full set of equilibrium conditions are
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which comprise 14 equations in 14 aggregate variables
(Ct, i, Ty Niywy, me, meg, Agy Yy, v, T, @14, To g, Alog my).
Alternatively, the money growth equation can be replaced by the Taylor rule
log(1+4¢) = (1 — p;)log(1 +4) + p;log(1 + 1) + (1 — pi)dr(log(1 + 7)) — log(l + 7)) + €4z,

and the third equation relating money demand to consumption could also be ignored. To
reduce the number of equations, we utilize this specification. Furthermore, we can also
substitute 1 + 7} to remove 7 from the aggregate variables.

2 Risk-Adjusted Linearization

We now proceed to converting the equilibrium conditions into a suitable form for a risk-
adjusted linearization. The system should conform to the representation
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where z; are (predetermined) state variables and v, are (nondetermined) jump variables.
For the remainder of this section, lower case variables are the logs of previously upper case
variables, and variables with a tilde are the logs of previously lower case variables (e.g. the
real wage w;)

The first equation becomes
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13 Forward-Looking

where ¢, = log(Cy), 1y = log(1 + i), and 7; = log(1 4 m441).
The second equation becomes
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where n; = log(N;) and w; = log(wy,).

The third equation becomes
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The fourth and fifth equation become
0 =logE; [exp (¢; — ay — ny + 04)] .
The sixth equation becomes
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where 0;_; will be treated as an additional state variable, i.e. if a; = ¥; is a jump variable
and b; = 0;_1 is a state variable, then
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The seventh equation becomes
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The eighth equation becomes
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By plugging this expression for 7} into the previous two equations, we can also remove one
more variable from the system.

The ninth and tenth equation become
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where the fact that x;; and x5, must both be positive implies 21 ;—C} “mc;Y; and 29, —C; 7Y,
are both positive, as the expectations on the RHS are also both positive.

For the monetary policy rule, we use gt—l = log(1 +4;—1) and ¢;; as states and treat i; as a
jump variable, hence
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This formulation allows us to treat the policy rule as an expectational equation.
The above nine equations comprise the expectational equations. The following four equations
comprise the states:
A1 = Palt + Eqt+1
Vt—1)+1 = Ut
i(t—l)—i—l =1
Eit+1 = Eit+l

To conclude, note that we have three forward difference equations. The first is the Euler
equation, which can be expressed as



