
These notes for the New Keynesian model follow Eric Sims’s notes. Section 1 solves the
equilibrium conditions of the New Keynesian model, and Section 2 transforms the equilibrium
conditions into the desired form for a risk-adjusted linearization.

1 Model

1.1 Household

Households solve the problem

max
Ct,Nt,Bt+1,Mt

E0

∞∑
t=0

βt
(
C1−σ
t

1− σ
− ψN

1+η
t

1 + η
+ θ log

(
Mt

Pt

))
subject to the budget constraint

PtCt +Bt+1 +Mt −Mt−1 ≤ WtNt + Πt + (1 + it−1)Bt.

In this model, households have demand for money Mt, which is also the numeraire. The price
of goods in terms of money is Pt. The stock of nominal bonds a households has is Bt. Note
that Bt will be pre-determined at period t while Mt will not be (Mt−1 is pre-determined).
The Lagrangian for the household is

L = E0

∞∑
t=0

βt
[
C1−σ
t

1− σ
− ψN

1+η
t

1 + η
+ θ log

(
Mt

Pt

)]
+ E0

∞∑
t=0

βt [λt(WtNt + Πt + (1 + it−1)Bt − PtCt −Bt+1 − (Mt −Mt−1))] ,

which implies first-order conditions

0 = C−σt − λtPt
0 = −ψNη

t + λtWt

0 = −λt + βEtλt+1(1 + it)

0 = θ
1

Mt

− λt + βEtλt+1.

The first two equations can be combined by isolating λt. Using λt = C−σt /Pt, we can obtain
the Euler equation for households and an equation relating money balances to consumption.

C−σt
Wt

Pt
= ψNη

t ,

C−σt = βEtC−σt+1(1 + it),

θ

(
Mt

Pt

)−1
=

it
1 + it

C−σt .
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1.2 Production

Final Producers There is a representative final goods firm which sells consumption goods
in a competitive market. It aggregates intermediate goods using the CES technology

Yt =

(∫ 1

0

Yt(j)
ε−1
ε

) ε
ε−1

where ε > 1 so that inputs are substitutes. Profit maximization for the final good firm is

max
Yt(j)

Pt

(∫ 1

0

Yt(j)
ε−1
ε

) ε
ε−1

−
∫ 1

0

Pt(j)Yt(j) dj.

The FOC for Yt(j) is

0 = Pt
ε

ε− 1

(∫ 1

0

Yt(j)
ε
ε−1

) 1
ε−1 ε− 1

ε
Yt(j)

− 1
ε − Pt(j)

0 =

(∫ 1

0

Yt(j)
ε
ε−1

) 1
ε−1

Yt(j)
− 1
ε − Pt(j)

Pt

0 =

(∫ 1

0

Yt(j)
ε
ε−1

)− ε
ε−1

Yt(j)−
(
Pt(j)

Pt

)−ε
Yt(j) =

(
Pt(j)

Pt

)−ε
Yt.

Plugging this quantity into the identity

PtYt =

∫ 1

0

Pt(j)Yt(j) dj

and simplifying yields the price index

Pt =

(∫ 1

0

Pt(j)
1−ε dj

) 1
1−ε

.

Intermediate Producers Intermediate goods are producing according to the linear tech-
nology

Yt(j) = AtNt(j).

Intermediate producers minimize cost subject to the constraint of meeting demand and Calvo
price rigidities. Formally,

min
Nt(j)

WtNt(j) s.t. AtNt(j) ≥
(
Pt(j)

Pt

)−ε
Yt.
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The Lagrangian is

L = WtNt(j) + ϕt(j)

((
Pt(j)

Pt

)−ε
Yt − AtNt(j)

)
,

so the first-order condition is

0 = Wt − ϕt(j)At ⇒ ϕt(j) =
Wt

At
.

The multiplier ϕt can be interpreted as the nominal marginal cost. Let mct be the real
marginal cost. Then profits for an intermediate producer is

Πt(j) =
Pt(j)

Pt
Yt(j)−mctYt(j).

In addition to the labor choice, firms also have the chance to reset prices in every period
with probability 1− φ. This problem can be written as

max
Pt(j)

Et
∞∑
s=0

(βφ)s
u′(Ct+s)

u′(Ct)

(
Pt(j)

Pt+s

(
Pt(j)

Pt+s

)−ε
Yt+s −mct+s

(
Pt(j)

Pt+s

)−ε
Yt+s

)
,

where I have imposed that output equals demand. The first-order condition is

0 = (1− ε)Pt(j)−εEt
∞∑
s=0

(βφ)s
u′(Ct+s)

u′(Ct)
(Pt+s)

−(1−ε)Yt+s

+ εPt(j)
−ε−1Et

∞∑
s=0

(βφ)s
u′(Ct+s)

u′(Ct)
mct+sP

ε
t+sYt+s

Divide by Pt(j)
−ε/u′(Ct) and re-arrange to obtain

Pt(j) =
ε

ε− 1

Et
∑∞

s=0(βφ)su′(Ct+s)mct+sP
ε
t+sYt+s

Et
∑∞

s=0(βφ)su′(Ct+s)P
ε−1
t+s Yt+s

.

This expression gives the optimal reset price P ∗t , which we can write more compactly as

P ∗t =
ε

ε− 1

X1,t

X2,t

where

X1,t = u′(Ct)mctP
ε
t Yt + φβEtX1,t+1

X2,t = u′(Ct)P
ε−1
t Yt + φβEtX2,t+1.
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1.3 Equilibrium and Aggregation

To close the model, I assume that the log of technology At follows the AR(1)

logAt = ρa logAt1 + εa,t,

and the growth rate in the log money supply follows the AR(1)

∆ logMt = (1− ρm)π + ρm∆ logMt−1 + εm,t,

where π is the steady-state rate of inflation. Note that this specification ensures that money
balances grow at the same rate as the price level, which ensures real balances are stationary.
To re-write the money growth equation in real terms, note that

log(mt) = log(Mt)− log(Pt)⇒ ∆ log(mt) = log(mt)− log(mt−1) = ∆ log(Mt)− log(1 + πt),

hence

∆ log(mt) = (1− ρm)π + ρm∆ log(mt−1) + ρm log(1 + πt−1)− log(1 + πt) + εm,t.

In equilibrium, bond-holding must be zero, hence

Ct = wtNt +
Πt

Pt
.

Real dividends Πt satisfy the accounting identity

Πt

Pt
=

∫ 1

0

(
Pt(j)

Pt
Yt(j)−

Wt

Pt
Nt(j)

)
dj

=

∫ 1

0

Pt(j)

Pt
Yt(j) dj − wt

∫ 1

0

Nt(j) dj

where wt = Wt/Pt. Aggregate labor supply Nt equals aggregate labor demand in equilibrium,
and market-clearing for consumption requires

Ct =

∫ 1

0

Pt(j)

Pt
Yt(j) dj =

∫ 1

0

Pt(j)

Pt

(
Pt(j)

Pt

)−ε
Yt dj = P ε−1

t Yt

∫ 1

0

Pt(j)
1−ε dj = Yt

since
∫ 1

0
Pt(j)

1−ε dj = P 1−ε
t .

The quantity Yt is aggregate output, so we must have∫ 1

0

AtNt(j) dj =

∫ 1

0

(
Pt(j)

Pt

)−ε
Yt dj

AtNt = Yt

∫ 1

0

(
Pt(j)

Pt

)−ε
dj = vtYt.
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Thus, aggregate output is

Yt =
AtNt

vt
.

It can be shown that vt ≥ 1 by applying Jensen’s inequality.
Finally, recall that

P 1−ε
t =

∫ 1

0

Pt(j)
1−ε dj.

In each period, a fraction φ cannot change their price. Without loss of generality, we may
re-order these firms to the top of the interval so that

P 1−ε
t = (1− φ)(P ∗t )1−ε +

∫ 1

1−φ
Pt−1(j)

1−ε dj.

The latter term can be further simplified under the law of large numbers assumption that
a positive measure of firms which cannot change their price still comprise a representative
sample of all firms, yielding

P 1−ε
t = (1− φ)(P ∗t )1−ε + φ

∫ 1

0

Pt−1(j)
1−ε dj = (1− φ)(P ∗t )1−ε + φP 1−ε

t−1 .

Dividing by P 1−ε
t−1 implies

(1 + πt)
1−ε = (1− φ)(1 + π∗t )

1−ε + φ

The price dispersion term can similarly be re-written in terms of aggregates by distinguishing
which firms get to change prices.

vt =

∫ 1−φ

0

(
P ∗t
Pt

)−ε
dj +

∫ 1

1−φ

(
Pt−1(j)

Pt

)−ε
dj

=

∫ 1−φ

0

(
P ∗t
Pt−1

)−ε(
Pt−1
Pt

)−ε
dj +

∫ 1

1−φ

(
Pt−1(j)

Pt−1

)−ε(
Pt−1
Pt

)−ε
dj

= (1− φ)(1 + π∗t )
−ε(1 + πt)

ε + (1 + πt)
ε

∫ 1

1−φ

(
Pt−1(j)

Pt−1

)−ε
dj.

By invoking the law of large assumptions applied to any positive measure subset of firms,
we must have ∫ 1

1−φ

(
Pt−1(j)

Pt−1

)−ε
dj = φ

∫ 1

0

(
Pt−1(j)

Pt−1

)−ε
dj = φvt−1.

Thus, we acquire

vt = (1− φ)(1 + π∗t )
−ε(1 + πt)

ε + φ(1 + πt)
εvt−1

= (1 + πt)
ε((1− φ)(1 + π∗t )

−ε + φvt−1).
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To finish, we need to derive an expression characterizing π∗t . Define

x1,t ≡
X1,t

P ε
t

, x2,t ≡
X2,t

P ε−1
t

.

It follows that

x1,t = u′(Ct)mctYt + φβEt
X1,t+1

P ε
t

= u′(Ct)mctYt + φβEt
[
X1,t+1

P ε
t+1

P ε
t+1

P ε
t

]
= u′(Ct)mctYt + φβEt[x1,t+1(1 + πt+1)

ε]

x2,t = C−σt Yt + φβEt
X2,t+1

P ε−1
t

= C−σt Yt + φβEt
[
X2,t+1

P ε−1
t+1

P ε−1
t+1

P ε−1
t

]
= C−σt Yt + φβEt[x2,t+1(1 + πt+1)

ε−1].

Further,

X1,t

X2,t

=
x1,t
x2,t

Pt,

hence

P ∗t =
ε

ε− 1

x1,t
x2,t

Pt

(1 + π∗t ) =
ε

ε− 1

x1,t
x2,t

(1 + πt)

6



All together, the full set of equilibrium conditions are

C−σt = βEt
[
C−σt+1

(1 + it)

1 + πt+1

]
C−σt = ψ

Nη
t

wt

mt = θ
1 + it
it

Cσ
t

mct =
wt
At

Ct = Yt

Yt =
AtNt

vt
vt = (1 + πt)

ε((1− φ)(1 + π∗t )
−ε + φvt−1)

(1 + πt)
1−ε = (1− φ)(1 + π∗t )

1−ε + φ

(1 + π∗t ) =
ε

ε− 1

x1,t
x2,t

(1 + πt)

x1,t = C−σt mctYt + φβEt[x1,t+1(1 + πt+1)
ε]

x2,t = C−σt Yt + φβEt[x2,t+1(1 + πt+1)
ε−1]

logAt = ρa log(At−1) + εa,t

∆ log(mt) = (1− ρm)π + ρm∆ log(mt−1) + ρm log(1 + πt−1)− log(1 + πt) + εm,t

∆ logmt = logmt − logmt−1,

which comprise 14 equations in 14 aggregate variables

(Ct, it, πt, Nt, wt,mt,mct, At, Yt, vt, π
∗
t , x1,t, x2,t,∆ logmt).

Alternatively, the money growth equation can be replaced by the Taylor rule

log(1 + it) = (1− ρi) log(1 + i) + ρi log(1 + it−1) + (1− ρi)φπ(log(1 + πt)− log(1 + π)) + εi,t,

and the third equation relating money demand to consumption could also be ignored. To
reduce the number of equations, we utilize this specification. Furthermore, we can also
substitute 1 + π∗t to remove π∗t from the aggregate variables.

2 Risk-Adjusted Linearization

We now proceed to converting the equilibrium conditions into a suitable form for a risk-
adjusted linearization. The system should conform to the representation

0 = logEt [exp (ξ(zt, yt) + Γ5zt+1 + Γ6yt+1)]

zt+1 = µ(zt, yt) + Λ(zt, yt)(yt+1 − Etyt+1) + Σ(zt, yt)εt+1,
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where zt are (predetermined) state variables and yt are (nondetermined) jump variables.
For the remainder of this section, lower case variables are the logs of previously upper case
variables, and variables with a tilde are the logs of previously lower case variables (e.g. the
real wage wt)

The first equation becomes

1 = βEt
[
C−σt+1

C−σt

1 + it
1 + πt+1

]
0 = logEt

[
exp

(
log(β)− σ(ct+1 − ct) + ĩt − π̃t+1

)]
= logEt

exp

log(β) + σct + ĩt︸ ︷︷ ︸
ξ

− σct+1 − π̃t+1︸ ︷︷ ︸
Forward-Looking

 ,
where ct = log(Ct), ĩt = log(1 + it), and π̃t = log(1 + πt+1).

The second equation becomes

1 = ψ
Nη
t

C−σt wt

0 = logEt

exp

log(ψ) + ηnt − (−σct + ŵt)︸ ︷︷ ︸
ξ

 ,
where nt = log(Nt) and ŵt = log(wt).

The third equation becomes

1 =
wt

Atmct
0 = logEt [exp (ŵt − at − m̃ct)] .

The fourth and fifth equation become

0 = logEt [exp (ct − at − nt + v̂t)] .

The sixth equation becomes

0 = v̂t − επ̃t − log((1− φ) exp(π̃∗t )
−ε + φ exp(v̂t−1)),

where v̂t−1 will be treated as an additional state variable, i.e. if at = v̂t is a jump variable
and bt = v̂t−1 is a state variable, then

bt+1 = at.

The seventh equation becomes

0 = (1− ε)π̃t − log((1− φ) exp(π̃∗t )
1−ε + φ).

8



The eighth equation becomes

0 = π̃∗t − log

(
ε

ε− 1

)
− π̃t − (x̂1,t − x̂2,t)).

By plugging this expression for π̃∗t into the previous two equations, we can also remove one
more variable from the system.

The ninth and tenth equation become

1 = Et
[
φβ

x1,t+1(1 + πt+1)

x1,t − C−σt mctAtNt/vt

]

0 = logEt

exp

log(φ) + log(β)− log(exp(x̂1,t)− exp((1− σ)ct + m̃ct))︸ ︷︷ ︸
ξ

+x̂1,t+1 + επ̃t+1




0 = logEt

exp

log(φ) + log(β)− log(exp(x̂2,t)− exp((1− σ)ct))︸ ︷︷ ︸
ξ

+x̂2,t+1 + (ε− 1)π̃t+1


 ,

where the fact that x1,t and x2,t must both be positive implies x1,t−C−σt mctYt and x2,t−C−σt Yt
are both positive, as the expectations on the RHS are also both positive.

For the monetary policy rule, we use ĩt−1 ≡ log(1 + it−1) and εi,t as states and treat it as a
jump variable, hence

ĩt = (1− ρi)̃i+ ρiĩt−1 + (1− ρi)φπ(π̃t − π̃) + εi,t.

This formulation allows us to treat the policy rule as an expectational equation.

The above nine equations comprise the expectational equations. The following four equations
comprise the states:

at+1 = ρaat + εa,t+1

v̂(t−1)+1 = v̂t

ĩ(t−1)+1 = ĩt

εi,t+1 = εi,t+1

To conclude, note that we have three forward difference equations. The first is the Euler
equation, which can be expressed as
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