These notes loosely follow Fernandez-Villaverde and Levintal (2018) “Solution Methods for
Models with Rare Disasters” but omits several features, such as recursive preferences and
disaster risk.

1 Model

1.1 Household

The model admits a representative agent, so I directly write households’ problem as the
representative agent’s. The representative household solves, in the cashless limit,
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where C} is consumption, B;_; nominal bonds, X; investment, W; the real wage, L; labor,
R+ the gross real rental rate on capital, K;_; capital, I?; the gross nominal interest rate on
bonds, F; real profits from firms, and 7} real lump-sum transfers from the government. The
price of the final consumption good is P,. Markets are assumed complete, but securities are
in zero net supply. Because there is a representative agent, I may omit the Arrow securities
from the budget constraint. My notation treats B;_; and K, ; as the stocks of bonds and
capital present at time ¢, while B; and K, are the chosen stocks of bonds and capital for the
following period. I adopt this notation so that all time ¢ choices are dated at time ¢ rather
than having to differentiate between the predetermined time-t variables from the endogenous
controls.

Investment for capital follows the law of motion
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The Lagrangian for the household is
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which implies first-order conditions
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The first two equations can be combined by isolating A;, which obtains the intratemporal
consumption-labor condition
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Using A\; = C; 7 and defining the gross inflation rate I, = P;/P;_1, I can obtain the Euler
equation for households
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I can further simplify the Euler equation by defining the (real) stochastic discount factor
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After dividing through by exp(ns )\ and re-arranging, the investment condition becomes
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Finally, after dividing through by exp(ns.+) A, the first-order condition for next-period capital

is
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In summary, households’ optimality conditions are
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1.2 Production
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Final Producers There is a representative final goods firm which sells consumption goods

in a competitive market. It aggregates intermediate goods using the CES technology
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where € > 1 so that inputs are substitutes. Profit maximization for the final good firm is
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The FOC for Y;(j) is

Plugging this quantity into the identity

and simplifying yields the price index
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Intermediate Producers Intermediate goods are producing according to the Cobb-Douglas
technology

Yi(j) = exp(na) Kity ()L~ (j).

Intermediate producers minimize cost subject to the constraint of meeting demand and Calvo
price rigidities. Formally,
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The RHS of the inequality constraint is the demand from final goods producers for interme-
diate j. The Lagrangian is
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so the first-order conditions are
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hence the optimal capital-labor ratio satisfies
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Since the RHS does not vary with j, all firms choose the same capital-labor ratio. Given
this optimal ratio, the marginal cost satisfies
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Therefore, (real) profits for an intermediate producer become
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In addition to the capital-labor choice, firms also have the chance to reset prices in every
period with probability 1 — #. This problem can be written as
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where I have imposed that intermediate output equals demand. The first-order condition is
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Divide by P,(j)~¢/(exp(ns.)u'(Cy)), apply the abuse of notation that [[._, IT;4, = 1, and
re-arrange to obtain
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This expression gives the optimal (real) reset price P} = P,(j)/P; (note that the RHS does
not depend on j). Define

Sl,t =E, 2(59)5 H eXp(nB,t+u)ul<Ct+s)MCt+SY;f+s (H Ht+s> )
s=0

u=1 u=1
0o s s e—1
Soi = Ey Z(B@S H exp(1g,4u)t (Crys)Yigs (H Ht+s> .
s=0 u=1 u=1
Using these definitions, I may write the optimal reset price more compactly as
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where S;; and Sy, satisfy the recursions
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These recursions can be further rewritten as
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By defining Sy, = Si./(exp(nz)u’(Cy)) and Say = Soy/(exp(ng)u/(Cy)), T can simplify

these recursions into the form I use for the numerical solution.

From this section, we obtain the following five equilibrium conditions:
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1.3 Monetary Policy

I specify the monetary policy rule as the following Taylor rule
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Any proceeds from monetary policy are distributed as lump sum to the representative house-
hold.

1.4 Aggregation

The price level is currently characterized as the integral
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To represent the model entirely in terms of aggregates, notice that, without loss of generality,
we may re-order the fraction 6 of firms which cannot reset prices to the top of the interval
so that
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The latter term can be further simplified under the law of large numbers assumption that
a positive measure of firms which cannot change their price still comprise a representative
sample of all firms, yielding
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The price dispersion term can similarly be re-written in terms of aggregates by distinguishing
which firms get to change prices.
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By invoking the law of large assumptions applied to any positive measure subset of firms,

we must have
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Thus, we acquire

1.5 Equilibrium

To close the model, I need to specify the functional form for investment, aggregate shocks,
and market-clearing conditions.

Following Jermann (1998), I assume the investment function takes the concave form
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where X = dx/(x + 1) is the steady-state investment rate (per unit of capital). The first
derivative of ®(-) w.r.t. X;/K;_ is
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This functional form implies the law of motion
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If K, = K,y = K, and X,,/K,, = X, then
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thus verifying the original conjecture that X represents the steady-state investment rate.
There are four shocks in the model: a4, 75+, Mo, and ng,. Without loss of generality, I
assume all shocks follow AR(1) processes with persistence p; and standard deviation o;.

Markets must clear for capital, labor, bonds, final goods, and intermediate goods, . The
first three markets clear as a consequence of optimality conditions and the assumption that

bonds have zero net supply. To clear the market for final goods, we set the sum of aggregate
consumption demand C; and investment demand X; equal to aggregate supply Y;, which

satisfies
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Re-arranging yields the output market-clearing condition
Ci+ Xy =Y,
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It can be shown that V}” > 1 by applying Jensen’s inequality. For our purposes, because the
dimensionality of our model is not too large, we add the auxiliary Y; variable, even though

we could substitute it out of the system of equations.

All together, the full set of endogenous equilibrium conditions are
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as well as the law of motion for capital
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and the four exogenous processes
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1.6 Deterministic Steady State

To provide an initial guess for the risk-adjusted linearization and to provide a verification
that the model is coded correctly, I determine some reasonable guesses for the deterministic
steady state.

Within this subsection, I denote the deterministic steady state values by an absence of
a time subscript. The exogenous processes, by construction, have steady states of 0, i.e.
ng =1L =na = ng = 0. Further, A =1.

Focusing now on the endogenous equilibrium conditions, from (21),
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From (24), the fact that X is the steady-state investment rate, and the fact that ®'(X) = 1,

Q=1
From (25), first observing that,
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which ensures that K does indeed remain at steady state, it must be the cast that
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Thus,
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Note that P* depends on MC and fundamental parameters, hence the above equation pins
down MC, which then pins down the ratio of K to L. From (32),
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From the Taylor rule (33), the steady state interest and inflation rates are R and II, respec-
tively, and from the Euler equation (23), R must satisfy
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From (34),

C+X=Y.
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As shown previously, the steady-state investment rate is X, hence
X =XK

Finally, I claim that the deterministic steady state reduces to a nonlinear equation in L.
Using the aggregate supply and capital accumulation equations,
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The intratemporal condition for consumption and labor implies
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Given a guess for L, I can compute C' using these two equations. Given C, I can compute

W. Given the wage W, I can compute K and MC'. Given the marginal cost MC', 1 can
compute the inflation-related terms.

K

2 Risk-Adjusted Linearization

We now proceed to converting the equilibrium conditions into a suitable form for a risk-
adjusted linearization. The system should conform to the representation

0 = log E¢ [exp (§(2t,y1) + Us2eq1 + Doyisn)]
ze1 = (26 Ye) + Az %) (Ve — Eeyern) + Sz ve) e,
where z; are (predetermined) state variables and 1, are (nondetermined) jump variables.
For the remainder of this section, lower case variables are the logs of previously upper

case variables, and with a small abuse of notation, let s;; = log(Sl,t) and sy = 10g<g27t).
Additionally, let ry, = log(Rk,) and v, = log(V}).

Equation (21) becomes
Ll/
1=pex —t
wexp(nz,t) o,
0 =logE; |exp 1og(cp) + 0+ vl — (—ye + wt),
b

Equation (22) will not be used in the system of equations for the risk-adjusted linearization,
but it simplifies the other equations. Taking logs and re-arranging yields

0 =1log(B) + npt+1 + (—ycer1) — mpe — (—yct) — Mega
M1 = 108;(5) — N+ ’YCE+Z7ﬁ,t+1 — YCi41 -

-

I3 forward-looking
Equation (23) becomes
0=logE; |exp | 7 +myq— i1
~—  —— ~—
3 both forward-looking
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Equation (24) becomes

0 = log E; [exp (g; + log (®' (exp(z; — ki-1))))] -

For equation (25), observe that the RHS is not log-linear in the forward-looking variables.
To handle this case, I define the new variable

Xt ’ Xt Xt
o s o _ 41
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Then (25) can be written as
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Equation (26) becomes

0=1logE; |exp | (1 — a)ws + args —ar — (1 — ) log(1 — ) — alog(a) — me;

.
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Equation (27) becomes
0=logE; |exp k;t_l—lt—log<1 ) — (W — Tk t)
-«
€

Like the stochastic discount factor, equation (28) will not be used in the system of equations,
but it will be useful to simplify other equations. Taking logs yields

. €
p; = log 1 + 51+ — Sat.

€ —

Equation (29) becomes

Siy — MCyY,
=, [exp (log(8) + mys1 + empp1 + S1.441)]

0 =1logE; |exp | log(f) — log(exp(s1+) — exp(mect) exp(ys)) + Myt1 + €Mes1 + S1.441
. - - N N —  —
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and equation (30) becomes

0 =logE; |exp | log(d) — log(exp(sa+) — exp(yt)) + miiq +£e — D)mq + 52,441

~~
I3 both forward-looking

Equation (31) becomes
I
(1= 0)(PIL)!— + 0
0 = log ¢ [exp ((1 — €)m — log((1 — 0) exp((1 — €)(p; + m)) + 6))] .

1=

Equation (32) becomes
_ vy
I ((1 — 0)(PF 1)~ + 9‘/210—1)
0 = logE; [exp (vy — emr; — log((1 — ) exp(—e(p; + m)) + O exp(vi_1)))] -

1

Equation (33) becomes
0 =log E¢ [exp (¢rri—1 + (1 = dr)r + (1 = @p)(dn(me — ) + &y (Y — Y1-1)) + R — 1)) -
Equation (34) becomes
0 = log E; [exp(y: — log(exp(c:) + exp(z:)))] -
Equation (35) becomes
0 = logE; [exp(a; + aky—1 4+ (1 — a)ly — vy — y)] -

Equation (36) becomes

<1/x <
ke = log <1 + 1 1/X(exp<xt — k) T = 1/X> + ki1

The autoregressive processes (37) to (40) remain as they are.

The jump variables are v, ¢, ly, Wy, T, T, G, Ty, Thy, W, MCt, S14, S24, and v,. The state
variables are k;_1, v;_1, 7_1, Yy+—1, and the autoregressive processes. The equations defining
the evolution of the lags v;_1, r;_1, and y;_; are obtained by the formula z;_1)11 = 2.

This system has three forward difference equations (25), (29), and (30). To ensure accuracy
of the risk-adjusted linearization, I derive N-period ahead forward difference equations for
all three.
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First, redefine €); as

X X X,
Q_1—5+<I>< >—c1>’( ) .
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Then we can write (25) recursively as

Qr = E[My 1 (R 441 + Q141
= E[Myp1 R vn + Qept My B [My g2 (R 2 + Qry2i1)]]
= E[Myp1 Ric i) + Qua BBy 1 [Myyn My o (Ric g2 + Quy2€42))

By the tower property,

Qr = E[My 1 Ry 1] + Qe Bt [Mya My o (Ric g2 + QraoShi42)]
r /2

=K, Z H Qi H Mo | Ripys | + Mipa My 2Qio8 24140

s=1 u=1 u=1

s=1 \u=1 u=1 s=1

2 S— S 2
=L, Z H Dyt H Mty | Rrpys | + H(Mt+th+s)Et+2 (M1 3(R 143 + Qt+3Qt+3)]]

s=1 \u=l1 u=1 s=1

B 3 s—1 s 3
= [E; Z H Qg H Mty | Brpys | + H(Mt+th+s)Qt+3]

and so on, with the abuse of notation that H2:1 Q. = 1. Given this recursive structure,
define DQ ; and P( & as

D) =By [ Q1 My DY |
Pént) =E |:Qt+1Mt+1P(n 1)}

Q.t+1

with boundary conditions

0  Rrg:
0
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Then I may write the N-period ahead recursive form of equation (25) as

ZDQt+P(N.
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To see why this recursion works, it is simpler to first verify that Pg’z is correct:
PY) = By [Qu1 M1 Qe
( 2 = B Q1 My 1 (Ee g1 [Qe0Mi12Q112))]

=E; (B

H(Qt+th+s)Qt+2] ]

s=1

2
= Et H(Qt+th+s)Qt+2] .

s=1

where the second equality for sz follows from the fact that M;,; is measurable with respect
to the information set at time ¢ + 1 and can therefore be moved insided the conditional
expectation E;y4[-]. Continuing for one more recursion, I have

i 2
Pgi =E; | Qi M Erp H(Qt+1+th+1+s)Qt+3”
L s=1
3
=K, H(Qt+th+s)Qt+3] .
| s=1
Similarly, for Dg,, I have
DY = By Qo Myoy BB _ By, R
Q. — Lt t+14M¢41 Qt+1 = t[ t+1 K,t+1]
Dg)t = Ey[Qe 1 M1 Ee 1 [Miy 2 R 142])
=E; [Qt+1Mt+1Mt+2RK t+2]
DY), = B[ Myt Byt [Qusa My Myss R )]
= Ey[ Q1 Qo My 1 My o My 3R p43].

Since Pé"t) and Dg 35 are time-t conditional expectations, they are measurable at time ¢, so
they are not forward-looking variables. Thus, to get this version of (25) in the appropriate
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(n

form, define d ,,+ = log(DQ}) and py . = log(ng ), and use the following 2N + 1 equations:

N
0 =logE; |exp | ¢ — log (Z exp(dgnt) + eXP(pq,N,t)> (42)
n=1
£
p -
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~—— ?/}'1’ ~~
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—— N ~——
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p -
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For (29), observe that

Sii = MCyY; + OB [ M, (I, | (MCyy 1Yy + 0By [MyyoTIE, 551 4 10])]

= MCyY; + OBy [My 1115, M Cri1 Yoy + OMya 115 My TT5, 5 S1 o]
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1 s
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+ E;

Thus, define Dgﬁt and ng?t as the recursions
n € n—1
Dgl),t = Et[eMt+1Ht+1Dgl,t—i-)1]7
n € n—1
Ps(*l,)t = Et[eMt+1Ht+1Pé1,t+)1]>
with boundary conditions

D), = MG,
Pg:)l),t - Sl,t'
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Given these definitions, it follows that

DY), = By0M, 1 T15, M Cyy1 Y]
[‘9Mt+1Ht+1SLt+1]

[0My 1 TT5 By [0My 45115 550 14
= By [6° My 115 M,y o115 551 440)].

Slt_Et

Slt—Et

Thus, defining dg; ; = log(Dg1,) and ps1 = log(Ps1¢), the N-period ahead recursive form of
(29) results in the 2N + 1 equations

N-1
0=logE, |exp [ s, —log (Z exp(dsi ) + exp(psl,N,t)> (45)
n=0
b
. _
logE; |exp | log(6) — ds1 i+ mMiy1 + €mpp1 + dsin—1¢41 ifn>1
%,—/ v \ —~ J
0= i I3 both forward-looking ( 46)
logE; |exp | dsi0¢ —mec — y; if n=0.
\ | g
logE; |exp | 10g(0) — D1t + Mgt + €M1 + Dstn—1,41 ifn>1
%/_/ \b\/l-l/ N —~ J
t rward- in
0= 4 | I3 o forward-looking (47)
logE; |exp | log(0) — psi,1,¢ + Mug1 + €migr + S1,441 if n=1.
—_—— O~ —m
L | ¢ both forward-looking
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It is straightforward to show that a similar recursive form applies to (30):

N-1
0=1ogE; [exp | s24 — log (Z exp(dsant) + exp(pslN,t)) (48)
n=0
€
) _
logE; |exp | log(0) — dsant +mus1 + (€ — 1)1 + dson—1441 ifn>1
N———’ N N ~ - 4
0— i I3 both forward-looking ( 49)
logE; |exp | ds2,0t — Yt if n=0.
—_—
L L 13
) -
logE; |exp | log(€) — psont + mus1 + (€ — 1)1 + Ps2n—1,441 ifn>1
e dh
0 — L 13 ot forward-looking ( 5 0)
logE; |exp | log(€) — pso.1t +miy1 + (€ — 1)mppq + So441 ifn=1,
—_——— T~~~ -
L L 13 both forward-looking

where terms and boundary conditions are analogously defined.
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