
These notes present an endowment economy with long-run risk, stochastic volatility,
(two) heterogeneous agents, and incomplete markets.

1 Model

1.1 Technology and Financial Markets

There exists a single tree producing nondurable consumption in every time period. I postu-
late that dividends Yt from the tree follow

∆ log(Yt+1) = µy + xt + σy,tεy,t+1, (1)

xt+1 = ρxxt + σxσy,tεx,t+1, (2)

σ2
y,t = (1− ρσ)σ2

y + ρσσ
2
y,t + σy,tςεσ,t+1. (3)

Thus, aggregate consumption is subject to long-run risk and stochastic volatility.
Financial markets are incomplete. Agents are permitted to trade two assets, a one-period

risk-free bond and shares in the tree. Bonds are denominated in units of consumption and
are in zero net supply. I normalize the stock of shares to one and let Qt denote the price of
a share.

1.2 Household

There are H types of households i, and each type has measure λi. Because agents are
identical within types, I will present the model in terms of the representative agents for each
type. Household i has Epstein-Zin preferences and chooses consumption Ci,t, next-period
bond holdings Bi,t, and next-period stock holdings Si,t to maximize

Vi,t =

(
(1− βi) (Ci,t)

1−ψi + βiEt
[
(Vi,t+1)

1−γi] 1−ψi
1−γi

) 1
1−ψi

, (4)

where βi is the time preference rate; ψi is the inverse intertemporal elasticity of substitution;
and γi is the risk aversion coefficient for household i, subject to the budget constraint

Ci,t +Bi,t +QtSi,t ≤ (Yt +Rq,tQt)Si,t−1 +Rt−1Bi,t−1 + Ti,t. (5)

Agents choose their consumption, next-period bond holdings, and next-period stock holdings
using income from dividends, capital gains on last period’s stock holdings, the return from
last period’s bond holdings given the lagged interest rate Rt−1, and any net transfers Ti,t
implemented by a fiscal authority. My notation treats Bi,t−1 and Si,t−1 as the quantity of
bonds and shares present at time t, while Bi,t and Si,t are the chosen quantities of bonds and
shares for the following period. I adopt this notation so that all time t choices are dated at
time t rather than having to differentiate between the predetermined time-t variables from
the endogenous controls.
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Solving the household’s problem is the same as solving the maximization problem

Vi,t = max
Ci,t,Bi,t,Si,t

(
(1− βi) (Ci,t)

1−ψi + βiEt
[
(Vi,t+1)

1−γi] 1−ψi
1−γi

) 1
1−ψi

+ Ξi,t ((Yt +Rq,tQt)Si,t−1 +Rt−1Bi,t−1 + Ti,t − (Ci,t +Bi,t +QtSi,t)) .

(6)

Define V̂i,t = V 1−ψi
i,t , hence V̂

ψi
1−ψi
i,t = V ψi

i,t , and conjecture that Vi,t is a function of the state
variables Si,t−1 ≡ and Bi,t−1, among other states (e.g. the realized shocks). The first-order
conditions with respect to controls are

0 =
1

1− ψi
V̂

ψi
1−ψi
i,t (1− βi)(1− ψi)C−ψit − Ξi,t

0 =
1

1− ψi
V̂

ψi
1−ψi
i,t βi

1− ψi
1− γi

Et[V 1−γi
i,t+1 ]

γi−ψi
1−γi (1− γi)Et

[
V −γii,t+1

∂Vi,t+1

∂Bi,t

]
− Ξi,t,

0 =
1

1− ψi
V̂

ψi
1−ψi
i,t βi

1− ψi
1− γi

Et[V 1−γi
i,t+1 ]

γi−ψi
1−γi (1− γi)Et

[
V −γii,t+1

∂Vi,t+1

∂Si,t

]
− Ξi,tQt.

The envelope conditions for Bt−1 and Kt−1 are

∂Vi,t
∂Bi,t−1

= Ξi,tRt−1,

∂Vi,t
∂Ki,t−1

= Ξi,t(Yt +Rq,tQt)

The Euler equation for bonds can be obtained by combining the envelope condition for
Bi,t−1 with the first and third first-order conditions. Iterate the envelope condition for Bi,t−1
forward by one period.

∂Vi,t+1

∂Bi,t

= Ξi,t+1Rt.

Define

CEi,t = Et[V 1−γi
i,t+1 ]

1
1−γi (7)

as households’ certainty equivalent. Substitute this expression and the iterated envelope
condition into the third first-order condition.

0 =
1

1− ψi
V̂

ψi
1−ψi
i,t βi(1− ψi)CEγi−ψii,t Et

[
V −γii,t+1λt+1Rt

]
− Ξi,t

= V ψi
i,t βiCE

γi−ψi
i,t Et

[
V −γii,t+1Ξi,t+1Rt

]
− Ξi,t

Observe that, from the first-order condition with respect to consumption,

Ξi,t+1

Ξi,t

=
V ψi
i,t+1(1− βi)C

−ψi
i,t+1

V ψi
i,t (1− βi)C−ψii,t

.
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Divide the second first-order condition by Ξi,t and substitute these quantities. Re-arrange
to acquire

1 = βiCEγi−ψii,t Et

[
V −γii,t+1RtV

ψi
i,t+1

(1− βi)C−ψii,t+1

(1− βi)C−ψii,t

]

= CEγi−ψii,t Et

[
βi

(1− βi)C−ψii,t+1

(1− βi)C−ψii,t

V ψi−γi
i,t+1 Rt

]
.

Define agent i’s stochastic discount factor between periods t and t+ 1 as

Mi,t,t+1 = βi
C−ψii,t+1

C−ψii,t

(
Vi,t+1

CEi,t

)ψi−γi
. (8)

Using these definitions, the Euler equation for bonds becomes

1 = Et [Mi,t,t+1Rt] . (9)

Households’ asset pricing equation for shares in the endowment tree can be obtained using
similar steps and will take the familiar form from consumption-based asset pricing. Iterate
the envelope condition for Si,t−1 forward by one period.

∂Vi,t+1

∂Si,t
= Ξi,t+1(Yt+1 +Rq,t+1Qt+1).

Substitute this expression and other quantities derived previously into the third first-order
condition.

0 = V ψi
i,t βiCE

γi−ψi
i,t Et

[
V −γii,t+1Ξi,t+1(Yt+1 +Rq,t+1Qt+1)

]
− Ξi,tQt.

Divide by Ξi,t and plug in Ξi,t+1/Ξi,t.

0 = V ψi
i,t βiCE

γi−ψi
i,t Et

[
V ψi−γi
i,t+1 (1− βi)C−ψii,t+1

V ψi
i,t (1− βi)C−ψii,t

(Yt+1 +Rq,t+1Qt+1)

]
−Qt

= Et [Mi,t,t+1(Yt+1 +Rq,t+1Qt+1)]−Qt

Qt = Et [Mi,t,t+1(Yt+1 +Rq,t+1Qt+1)] .

Finally, because Vt is defined recursively, I can express households’ preferences as a forward-
looking difference equation. The value function Vi,t is homogeneous of degree 1 in Ci,t and
Vi,t+1. By Euler’s Theorem,

Vi,t =
∂Vi,t
∂Ci,t

Ci,t + Et
[
∂Vi,t
∂Vi,t+1

Vi,t+1

]
. (10)
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The derivatives in this expression are, after simplification,

∂Vi,t
∂Ci,t

= V ψi
i,t (1− βi)C−ψii,t

∂Vi,t
∂Vi,t+1

= V ψi
i,t βiEt[V

1−γi
i,t+1 ]

γi−ψi
1−γi V −γii,t+1.

It is easy to verify this claim is true by direct calculation. Since Et[V 1−γi
i,t+1 ] is t-measurable,

Et
[
∂Vi,t
∂Vi,t+1

Vi,t+1

]
= Et

[
V ψi
i,t βiEt[V

1−γi
i,t+1 ]

γi−ψi
1−γi V 1−γi

i,t+1

]
= V ψi

i,t βiEt[V
1−γi
i,t+1 ]

γi−ψi
1−γi Et[V 1−γi

i,t+1 ]

= V ψi
i,t βiEt[V

1−γi
i,t+1 ]

1−ψi
1−γi .

Further algebraic manipulation verifies the claim.
To obtain a forward difference equation, define

Ωi,t =
Vi,t

∂Vi,t/∂Ci,t
. (11)

Given this definition, (10) becomes

Ωi,t = Ci,t + Et
[
∂Vi,t
∂Vi,t+1

1

∂Vi,t/∂Ci,t
Vi,t+1

]
= Ci,t + Et

[
∂Vi,t+1/∂Ci,t+1

∂Vi,t/∂Ci,t

∂Vi,t
∂Vi,t+1

Vi,t+1

∂Vi,t+1/∂Ci,t+1

]
.

Notice that

∂Vi,t+1/∂Ci,t+1

∂Vi,t/∂Ci,t

∂Vi,t
∂Vi,t+1

=
V ψi
i,t+1(1− βi)C

−ψi
i,t+1

V ψi
i,t (1− βi)C−ψii,t

V ψi
i,t βiEt[V

1−γi
i,t+1 ]

γi−ψi
1−γi V −γii,t+1

= βi
C−ψii,t+1

C−ψii,t

(
Vi,t+1

CEi,t

)ψi−γi
= Mi,t,t+1.

Therefore, (10) simplifies to

Ωi,t = Ci,t + Et[Mt,t+1Ωi,t+1], (12)

which is a forward difference equation in Ωi,t. This expression also shows that Ωi,t may be
interpreted as wealth because it is the price of a claim to consumption.
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The equations defining the value function Vi,t and certainty equivalent CEi,t can also be
rewritten using Ωi,t. Observe that

V ψi
i,t βiCE

1−ψi
i,t = Et

[
∂Vi,t
∂Vi,t+1

Vi,t+1

]
= Vi,t −

∂Vi,t
∂Ci,t

Ci,t =
∂Vi,t
∂Ci,t

(Ωi,t − Ci,t)

= V ψi
i,t (1− βi)C−ψii,t (Ωi,t − Ci,t)

CEi,t =

(
1− βi
βi

C1−ψi
i,t

(
Ωi,t

Ci,t
− 1

)) 1
1−ψi

.

Plug this version of CEi,t into the definition of the value function to acquire

Vi,t =

(
(1− βi)C1−ψi

i,t + βi
1− βi
βi

C1−ψi
i,t

(
Ωi,t

Ci,t
− 1

)) 1
1−ψi

= Ci,t

(
(1− βi)

Ωi,t

Ci,t

) 1
1−ψi

.

In light of these formulas, it will be convenient to define

Ṽi,t =
Vi,t
Ci,t

, C̃E i,t =
CEi,t
Ci,t

, Ω̃i,t =
Ωi,t

Ci,t
. (13)

These transformations adjust the definition of the stochastic discount factor to become

Mi,t,t+1 = βi
C−ψii,t+1

C−ψii,t

(
Ṽi,t+1Ci,t+1L(Lt+1)

C̃E i,tCi,t

)ψi−γi

= βi
C−γii,t+1

C−γii,t

(
Ṽi,t+1

C̃E i,t

)ψi−γi

.

Finally, because there is heterogeneity in agents’ portfolio choices, I need to include type i’s
individual budget constraints as optimality conditions.

In summary, households’ optimality conditions are

Ṽi,t = ((1− βi)Ω̃t)
1

1−ψi , (14)

C̃E i,t =

(
1− βi
βi

(Ω̃i,t − 1)

) 1
1−ψi

, (15)

Ω̃i,t = 1 + Et
[
Mi,t,t+1

Ci,t+1

Ci,t
Ω̃i,t+1

]
, (16)

Mi,t,t+1 = βi
C−γii,t+1

C−γii,t

(
Ṽi,t+1

C̃E i,t

)ψi−γi

, (17)

1 = Et [Mi,t,t+1Rt] , (18)

Qt = Et [Mi,t,t+1 (Yt+1 +Rq,t+1Qt+1)] , (19)

Ci,t +Bi,t +QtSi,t ≤
1

λi
(Yt +Rq,tQt)Si,t−1. (20)
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1.3 Equilibrium

To close the model, I need to specify market-clearing conditions, fiscal policy, and the ag-
gregate state variables.

1.3.1 Market Clearing

Markets must clear for consumption, bonds, and the tree. Since dividends from the tree
are nondurable and there are no aggregate savings technologies, the consumption market
satisfies ∑

i

λiCi,t = Yt. (21)

The bond market has zero net supply, hence∑
i

λiBi,t = 0. (22)

Finally, the stock of shares is normalized to one, so∑
i

λiSi,t = 1. (23)

Because the stock of shares in the tree do not change over time, Rq,t ≡ 1 so that the gross
capital gains between periods t and t+ 1 is Qt+1/Qt.

1.3.2 Fiscal Policy

The government exists only to implement lump-sum transfers among the different types,
and the transfers are used only to guarantee a nondegenerate wealth distribution. Follow-
ing Kekre and Lenel (2020), I assume that households fully anticipate the transfers for all
households except themselves, which they believe to be zero. As a consequence, from the
perspective of each household, the net transfers Ti,t are unaffected by their consumption and
portfolio choice decisions.

The transfers follow the rule

Ti,t = −τi,t(Rt−1Bi,t−1 + (Yt +Qt)Si,t−1), (24)

where τi,t = τ i for all households except a positive measure, for whom τi,t = τt, which ensures
that

∑
i Ti,t = 0. Essentially, all households pay a type-specific tax that is proportional to

their wealth before transfers. To pin down τt, define δi as the fraction of the measure of
households in type i who pay τ i, so that 1 − δi is the measure of households who pay τt.
Then

0 =
∑
i

Ti,t = −
∑
i

τi,t(Rt−1Bi,t−1 + (Yt +Qt)Si,t−1)

6



= −Rt−1
∑
i

τi,tBi,t−1 − (Yt +Qt)
∑
i

τi,tSi,t−1

= −Rt−1
∑
i

τ iδiλiBi,t−1 − (Yt +Qt)
∑
i

τ iδiλiSi,t−1

−Rt−1τt
∑
i

(1− δi)λiBi,t−1 − (Yt +Qt)τt
∑
i

(1− δi)λiSi,t−1.

Let δi ≡ δ. Then

0 =
∑
i

Ti,t = −Rt−1δ
∑
i

τ iλiBi,t−1 − (Yt +Qt)δ
∑
i

τ iλiSi,t−1

−Rt−1(1− δ)τt
∑
i

λiBi,t−1 − (Yt +Qt)(1− δ)τt
∑
i

λiSi,t−1

= −Rt−1δ
∑
i

τ iλiBi,t−1 − (Yt +Qt)δ
∑
i

τ iλiSi,t−1 − (Yt +Qt)(1− δ)τt

by market-clearing for bonds and shares. Re-arranging yields

τt = − 1

(Yt +Qt)(1− δ)

(
Rt−1δ

∑
i

τ iλiBi,t−1 + (Yt +Qt)δ
∑
i

τ iλiSi,t−1

)

= − δ

1− δ

(
Rt−1

Yt +Qt

∑
i

τ iλiBi,t−1 +
∑
i

τ iλiSi,t−1

)
Notice that the quantity

Rt−1Bi,t−1 + (Yt +Qt)Si,t−1
Yt +Qt

is type i’s wealth share in the absence of redistributive taxes. Thus, it is economically more
meaningful to write the taxation rule as

τt = − δ

1− δ
∑
i

τ i

(
Rt−1Bi,t−1 + (Yt +Qt)Si,t−1

Yt +Qt

)
. (25)

An alternative approach is the one taken by Kekre and Lenel (2020). In their paper, they
set δi = 1 for all groups except one, who pay the required amount to balance the budget.
Let i∗ denote this group. Then the transfer rule is

τt =
−
∑

i 6=i∗ τ iλi(Rt−1Bi,t−1 + (Yt +Qt)Si,t−1)

λi∗(Rt−1Bi∗,t−1 + (Yt +Qt)Si∗,t−1)
. (26)

1.3.3 Aggregate State Variables

Aside from the exogenous shocks, the wealth distribution is a state variable. By construction,
agents can be aggregated within the household types, so I only need to track the wealth
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distribution across the H types. Let Wi,t denote the wealth share of type i in time t given
agents’ portfolio allocations at time t− 1. Then

Wi,t = λi
Rt−1Bi,t−1 + (Yt +Qt)Si,t−1 + Ti,t

Yt +Qt

. (27)

Households in type i obtain a bond position of Rt−1Bi,t−1 at the start of period t, earn divi-
dends YtSi,t−1 from the tree, hold shares worth QtSi,t−1, and receive redistributive transfers
Ti,t. The total stock of shares is one, so the total wealth in period t is the sum of aggregate
dividends Yt and the value of the tree, inclusive of capital gains.

Given this definition of the wealth distribution, each type i’s budget constraint becomes

Ci,t +Bi,t +QtSi,t ≤
1

λi
Wi,t(Yt +Qt). (28)

Iterating the wealth shares one period forward yields

Wi,t+1 = λi
RtBi,t + (Yt+1 +Qt+1)Si,t + Ti,t+1

Yt+1 +Qt+1

= λi

(
Si,t +

RtBi,t + Ti,t+1

Yt+1 +Qt+1

)
.

Anticipating the need to write the forward-looking terms on RHS as linear, define the aux-
iliary variable

Θi,t = Si,t−1 +
Rt−1Bi,t−1 + Ti,t

Yt +Qt

. (29)

Note that I need to include Si,t−1 in (27) because it is possible that, with leverage, Rt−1Bi,t−1+
Ti,t < 0, and forward-looking variables must be strictly positive for a risk-adjusted lineariza-
tion. It follows that the evolution equation for the wealth share of type i is

Wi,t+1 = λiΘi,t+1 = λi(Et[Θi,t+1] + (Θi,t+1 − Et[Θi,t+1])).

The second equality is required to permit a risk-adjusted linearization. To allow greater
accuracy in the approximation, I can also incorporate expectations of Wi,t and Θi,t further
into the future. Define Θi,j,t = Et[Θi,t+j]. Then

Θi,j,t = Et[Θi,t+j] = Et[Et+1[Θi,t+1+(j−1)]] = Et[Θi,j−1,t+1].

Define Wi,j,t = Et[Wi,t+j]. Then

Wi,j,t = Et[λiΘi,t+j] = λiΘi,j,t

Wi,j,t+1 = λiEt+1[Θi,t+1+j] = λiΘi,j,t+1 = λi(Θi,j+1,t + (Θi,j,t+1 − Et[Θi,j,t+1])).

The final equality for Wi,j,t+1 follows from the fact that Θi,j,t = Et[Θi,j−1,t+1]. Thus, given
a choice of Nj for the maximum number of periods that I approximate the conditional
expectations of Θi,t+j, the wealth share for type i and the jth period ahead expectation of
the wealth share evolve according to

Wi,j,t+1 = λi(Θi,j+1,t + (Θi,j,t+1 − Et[Θi,j,t+1])), (30)

Wi,t+1 = λi(Θi,1,t + (Θi,t+1 − Et[Θi,t+1])). (31)
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1.3.4 Equilibrium Conditions

Since the tree and wealth shares must sum to one, I reduce dimensionality by setting SH,t =
1−

∑
i 6=H Si,t and WH,t = 1−

∑
i 6=HWi,t.

All together, the equilibrium conditions are

Ṽi,t = ((1− βi)Ω̃i,t)
1

1−ψi , (32)

C̃E t =

(
1− βi
βi

(Ω̃i,t − 1)

) 1
1−ψi

, (33)

Ω̃i,t = 1 + Et
[
Mt,t+1

Ci,t+1

Ci,t
Ω̃t+1

]
, (34)

Mi,t,t+1 = βi
C−γii,t+1

C−γii,t

(
Ṽi,t+1

C̃E i,t

)ψi−γi

, (35)

1 = Et [Mi,t,t+1Rt] , (36)

Qt = Et [Mi,t,t+1 (Yt+1 +Qt+1)] , (37)

Ci,t +Bi,t +QtSi,t ≤
1

λi
Wi,t(Yt +Qt), (38)

Rq,t = 1, (39)

Ti,t = −τi,t(RtBi,t−1 + (Yt +Qt)Si,t−1), (40)

τt = − δ

1− δ
∑
i

τ i

(
Rt−1Bi,t−1 + (Yt +Qt)Si,t−1

Yt +Qt

)
, (41)

τi,t = δτ i + (1− δ)τt (42)

Yt =
H∑
i=1

λiCi,t (43)

0 =
H∑
i=1

λiBi,t (44)

1 =
H∑
i=1

λiSi,t (45)

Θi,t = Si,t +
Rt−1Bi,t−1 + Ti,t

Yt +Qt

(46)

Θi,1,t = Et[Θi,t+1] (47)

Θi,j,t = Et[Θi,j−1,t+1] for j = 2, . . . , Nj, (48)

Wi,j,t+1 = λi(Θi,j+1,t + (Θi,j,t+1 − Et[Θi,j,t+1])), (49)

Wi,t+1 = λi(Θi,1,t + (Θi,t+1 − Et[Θi,t+1])), (50)

and the exogenous processes

∆ log(Yt+1) = µy + xt + σy,tεy,t+1, (51)
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xt+1 = ρxxt + σxσy,tεx,t+1, (52)

σ2
y,t = (1− ρσ)σ2

y + ρσσ
2
y,t + σy,tςεσ,t+1. (53)

1.3.5 Stationary Equilibrium Conditions

Because of the unit root in Yt, the model is non-stationary. To obtain a stationary represen-
tation, define the transformations

C̃i,t =
Ci,t
Yt
, Q̃t =

Qt

Yt
, B̃i,t−1 =

Bi,t−1

Yt
, B̃i,t =

Bi,t

Yt
, T̃i,t =

Ti,t
Yt
, (54)

Ỹt = exp(∆ log(Yt)− µy) = exp(xt−1 + σy,t−1εy,t) (55)

Most of the calculations for the stationary representation are straightforward, so I only show
the work for the more complicated cases.

The stochastic discount factor (35) becomes

Mi,t,t+1 = βi
C−γii,t+1

C−γii,t

(
Ṽi,t+1

C̃E i,t

)ψi−γi

= βi
C̃−γii,t+1

C̃−γii,t

(
Ṽi,t+1

C̃E i,t

)ψi−γi (
Yt+1

Yt

)−γi
= βi

C̃−γii,t+1

C̃−γii,t

(
Ṽi,t+1

C̃E i,t

)ψi−γi

(exp(log(Yt+1)− log(Yt)))
−γi

= βi
C̃−γii,t+1

C̃−γii,t

(
Ṽi,t+1

C̃E i,t

)ψi−γi (
Ỹt+1 exp(µy)

)−γi
.

The forward difference equation for Ω̃t (34) becomes

Ω̃i,t = 1 + Et

[
Mi,t,t+1

C̃i,t+1Yt+1

C̃i,tYt
Ω̃i,t

]

= 1 + exp(µy)Et

[
Mi,t,t+1

C̃i,t+1

C̃i,t
Ỹt+1Ω̃i,t

]
.

The asset pricing equation for the endowment tree (37) becomes

Q̃tYt = Et[Mi,t,t+1(Yt+1 + Q̃t+1Yt+1)]

Q̃t = Et
[
Mi,t,t+1(1 + Q̃t+1)

Yt+1

Yt

]
= exp(µy)Et[Mi,t,t+1(1 + Q̃t+1)Ỹt+1].
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Instead of Yt, the relevant endowment process is

log(Ỹt) = xt−1 + σy,t−1εy,t.

I will also remove the fiscal policy from equilibrium conditions to reduce dimensionality.
First, I substitute the net transfer term (40) into the definition of Θi,t.

Θi,t = (1− τi,t)

(
Si,t−1 +

Rt−1B̃i,t−1

1 + Q̃t

)
.

Second, when coding the model, I will treat the common tax rate (41) and type-specific tax
rate (42) as functions of the state and jump variables. Third, if I use the redistribution
scheme adopted by Kekre and Lenel (2020), then for the group i∗ whose tax clears the
budget,

Θi∗,t =

(
1−
−
∑

i 6=i∗ τ iλi(Rt−1B̃i,t−1 + (1 + Q̃t)Si,t−1)

λi∗(Rt−1B̃i∗,t−1 + (1 + Q̃t)Si∗,t−1)

)(
Si∗,t−1(1 + Q̃t) +Rt−1B̃i∗,t−1

1 + Q̃t

)

=
λi∗(Rt−1B̃i∗,t−1 + Si∗,t−1(1 + Q̃t)) +

∑
i 6=i∗ τ iλi(Rt−1B̃i,t−1 + Si,t−1(1 + Q̃t))

1 + Q̃t

= λi∗

(
Rt−1B̃i∗,t−1

1 + Q̃t

+ Si∗,t−1

)
+
∑
i 6=i∗

τ iλi

(
Rt−1B̃i,t−1

1 + Q̃t

+ Si,t−1

)
.

Finally, I will further reduce the model’s dimensionality by using the market-clearing
condition for wealth to remove the wealth share state for type H:

WH,t = 1−
H−1∑
i=1

Wi,t. (56)

In summary, the stationary equilibrium conditions (excluding the exogenous shocks) are

Ṽi,t = ((1− βi)Ω̃i,t)
1

1−ψi , (57)

C̃E i,t =

(
1− βi
βi

(Ω̃i,t − 1)

) 1
1−ψi

, (58)

Ω̃i,t = 1 + exp(µy)Et

[
Mi,t,t+1

C̃i,t+1

C̃i,t
Ỹt+1Ω̃i,t+1

]
, (59)

Mi,t,t+1 = βi
C̃−γii,t+1

C̃−γii,t

(
Ṽi,t+1

C̃E i,t

)ψi−γi (
Ỹt+1 exp(µy)

)−γi
, (60)

1 = Et [Mi,t,t+1Rt] , (61)

Q̃t = exp(µy)Et[Mi,t,t+1(1 + Q̃t+1)Ỹt+1], (62)
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C̃i,t + B̃i,t + Q̃tSi,t ≤
1

λi
Wi,t(1 + Q̃t), (63)

Rq,t = 1, (64)

T̃i,t = −τi,t(RtB̃i,t−1 + (1 + Q̃t)Si,t−1), (65)

τt =

−
δ

1−δ
∑

i τ i

(
Rt−1B̃i,t−1+(1+Q̃t)Si,t−1

1+Q̃t

)
if fixing δi ≡ δ,

−
∑
i6=i∗ τ iλi(Rt−1B̃i,t−1+(1+Q̃t)Si,t−1)

λi∗ (Rt−1B̃i∗,t−1+(1+Q̃t)Si∗,t−1)
if using KL2020 tax rule,

(66)

τi,t =


δτ i + (1− δ)τt if fixing δi ≡ δ,

τ i if using KL2020 tax rule & i 6= i∗,

τt if using KL2020 tax rule & i = i∗,

(67)

1 =
H∑
i=1

λiC̃i,t, (68)

0 =
H∑
i=1

λiB̃i,t, (69)

1 =
H∑
i=1

λiSi,t, (70)

WH,t = 1−
H−1∑
i=1

Wi,t, (71)

Θi,t = Si,t−1 +
Rt−1B̃i,t−1 + T̃i,t

1 + Q̃t

=

(1− τi,t)
(
Si,t−1 +

Rt−1B̃i,t−1

1+Q̃t

)
,

λi∗
Rt−1B̃i∗,t−1

1+Q̃t
+ Si∗,t−1 +

∑
i 6=i∗ τ iλi

(
Rt−1B̃i,t−1

1+Q̃t
+ Si,t−1

)
if i = i∗,

(72)

Θi,1,t = Et[Θi,t+1] (73)

Θi,j,t = Et[Θi,j−1,t+1] for j = 2, . . . , Nj, (74)

Wi,j,t+1 = λi(Θi,j+1,t + (Θi,j,t+1 − Et[Θi,j,t+1])), (75)

Wi,t+1 = λi(Θi,1,t + (Θi,t+1 − Et[Θi,t+1])). (76)

1.4 Representative Agent

To provide an initial guess for the risk-adjusted linearization and to provide a verification
that the model is coded correctly, I solve the representative agent version of the model and
use its solution as an initial guess for the heterogeneous agent version.

To solve the representative agent version, I use the deterministic steady state as an initial
guess. Within this subsection, I denote the deterministic steady state values by an absence
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of a time subscript or tilde. By construction, the growth of the endowment is exp(x), the
long-run growth rate (excluding the deterministic growth µy) is x = 0, and the long-run
volatility is σy.

Focusing now on the equilibrium conditions, from (57) and (58)

Ṽi = ((1− βi)Ω̃i)
1

1−ψi , C̃E i =

(
1− βi
βi

(Ω̃i − 1)

) 1
1−ψi

⇒ Ṽi

C̃E i
=

(
(1− βi)Ω̃i

1−βi
βi

(Ω̃i − 1)

) 1
1−ψi

=

(
βi

Ω̃i

Ω̃i − 1

) 1
1−ψi

.

From (60) and (59),

Mi = βi

(
Ṽi

C̃E i

)ψi−γi

(Y exp(µy))
−γi = βi

(
βi

Ω̃i

Ω̃i − 1

)ψi−γi
1−ψi

(Y exp(µy))
−γi

Ω̃i = 1 + exp(µy)MiY Ω̃i

= 1 + exp(µy)βi

(
βi

Ω̃i

Ω̃i − 1

)ψi−γi
1−ψi

(Y exp(µy))
−γiY Ω̃i

= 1 + β
ψi−γi+(1−ψi)

1−ψi
i

(
βi

Ω̃i

Ω̃i − 1

)ψi−γi
1−ψi

(Y exp(µy))
1−γiΩ̃i

1 =

βiY exp(µy)

(
Ω̃i

Ω̃i − 1

) 1
1−ψi

1−γi

Ω̃i − 1 = (βiY exp(µy))
1−ψiΩ̃i

Ω̃i =
1

1− (βiY exp(µy))1−ψi
.

Since Y can be determined directly from parameters, this is a closed form formula for Ω̃i,
which also determines the values of Ṽi, C̃E i, and Mi in the deterministic steady state.

Moving onto the remaining equilibrium conditions, the Euler equation (61) becomes

R =
1

Mi

.

The tree asset pricing condition (62) becomes

Q = exp(µy)(Mi(1 +Q)Y ) = exp(µy)MiY + exp(µy)MiY Q

Q =
exp(µy)MiY

1− exp(µy)MiY
.

Since there is a representative agent, Bi = 0, Si = 1, and Wi = 1, hence Ci = Y = exp(x).
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1.4.1 Initial Guess for Heterogeneous Agent Model

I need to specify how a representative-agent solution (zr, yr,Ψr) is interpolated into (z, y,Ψ)
because the dimensionalities differ.

The interpolation is relatively straightforward for z and y since the individual-specific
variables will be the same as in the representative agent version. Not all jump and state
variables, however, can be based on zr and yr. The initial portfolio allocation will be set to
γ−1i /

∑
i γ
−1
i so that lower risk aversion agents hold a larger share of the tree. Additionally,

I assume that consumption shares are equal to the portfolio allocation as well. I set the
consumption choices all to the same value, as implied by the representative agent solution.
Similarly, the price of the tree per dividend is the same as in yr. The wealth distribution, by
assumption, can be arbitrarily chosen. The budget constraint for type i implies that bonds
satisfy

Bi =
1

λi
Wi(1 +Q)− Ci −QSi.

In a steady state, the wealth shares are

Wi = λi(1− τi)
(
Si +

RBi

1 +Q

)
.

Combine these two equations to eliminate Wi. Since Si, R, Q, and Ci all have guesses and
given tax rates τ i, I have a system of H − 1 equations for the portfolio bond allocations, as
the last bond position follows from bond market clearing. In the case where H = 2, I have

B1 = (1− τ1)(S1(1 +Q) +RB1)− C1 −QS1

(1− (1− τ1)R)B1 = S1((1− τ1) +Q(1− τ1 − 1))− C1

B1 =
S1((1− τ1)− τ1Q)− C1

1− (1− τ1)R
.

After the portfolio choice is set, all remaining state and jump variables in the heterogeneous
agent model can be populated.

The interpolation for Ψ is more complicated. Rather than formalize the interpolation
scheme, I briefly sketch it. The idea is that in the representative agent solution, the deviation
of a jump variable from steady state is a linear combination of the deviations of the state
variables from steady state. For initial guesses of Ψ for the heterogeneous agent solution,
I will use the same coefficients for each row corresponding to type i’s jump variable. With
sufficiently small heterogeneity, the dependence on the new state variables like the wealth
distribution should be small. If nonzero guesses are needed, then small perturbations in the
economically sensible direction should work.
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2 Risk-Adjusted Linearization

We now proceed to converting the equilibrium conditions into a suitable form for a risk-
adjusted linearization. The system should conform to the representation

0 = logEt [exp (ξ(zt, yt) + Γ5zt+1 + Γ6yt+1)]

zt+1 = µ(zt, yt) + Λ(zt, yt)(yt+1 − Etyt+1) + Σ(zt, yt)εt+1,

where zt are (predetermined) state variables and yt are (nondetermined) jump variables.
For the remainder of this section, lower case variables are generally the logs of previously
upper case variables, whether or not they had tildes. The exceptions are as follows. The
lowercase equivalent of the certainty equivalent CEi,t will be the plain lowercase letters cet.
Additionally, depending on the number of agents and redistribute taxes, it may not always
be numerically feasible to take the log of bond positions. The reason is that levered agents
will take negative bond positions, so if agent i is levered, the log position would have to be
− log(|Bi,t|). More generally, I would have to specify which types I expect to be levered before
running the numerical algorithms. Thus, instead of a lowercase letter, I may sometimes use
a capital letter for bond positions because I will linearize with respect to the level rather
than the log. To avoid extra notation, I will now apply an abuse of notation and let Bi,t

denote the bond position per dividend (rather than the total bond position). I will also
not take the logs of Θi,t, Θi,j,t, Wi,t, and Wi,j,t, but because they appear as forward-looking
variables in some equations, I will add their log values as auxiliary variables and denote them
by lowercase letters.

2.1 Exogenous Shocks

The martingale difference sequences are all standard normal random variables. The matrix
Σ(zt, yt) has nonzero entries for the rows corresponding to the three exogenous shocks yt, xt,
and σy,t, which take the form

yt+1 = xt + σy,tεy,t+1, (77)

xt+1 = ρxxt + σxσy,tεx,t+1, (78)

σ2
y,t+1 = (1− ρσ)σ2

y + ρσσ
2
y,t + σy,tςεσ,t+1. (79)

2.2 Endogenous Equilibrium Conditions

2.2.1 Preferences, Asset Pricing, and Market Clearing

In this subsection, I list the risk-adjusted linearization of equations related to households’
preferences and asset pricing.

Equation (57) becomes

0 =
1

1− ψi
(log(1− βi) + ωi,t)− vi,t.
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Equation (58) becomes

0 =
1

1− ψi
(log(1− βi)− log(β) + log(exp(ωi,t)− 1))− cei,t

Equation (59) will be handled later because it is a forward difference equation. Equation
(60) will be directly substituted rather than used as an equilibrium condition. Using the
transformations for a risk-adjusted linearization, the stochastic discount factor becomes

mi,t,t+1 = log(β)− γi(ci,t+1 − ci,t) + (ψif − γi)(vi,t+1 − cei,t)− γi(yt+1 + µy)

= log(β) + γici,t − (ψi − γi)cei,t − γiµy︸ ︷︷ ︸
ξ

−γici,t+1 + (ψi − γi)vi,t+1 − γiyt+1︸ ︷︷ ︸
forward

.

Equation (61) becomes

0 = Et

 rt︸︷︷︸
ξ

+mi,t,t+1︸ ︷︷ ︸
both


Equation (37) will be handled below because it is a forward difference equation.

The market-clearing conditions (68)-(70) become

0 = log

(
H∑
i=1

λiC̃i,t

)
,

0 = log

(
−
∑H−1

i=1 λiB̃i,t

λHB̃H,t

)
,

0 = log

(
H∑
i=1

λiSi,t

)
.

Notice that because bonds are in zero net supply, the bond market-clearing condition has
to separate out at least one component of the sum. Without loss of generality, we separate
out the bond position of type H, with the assumption that type H households are either
borrowers or savers in the stochastic steady state.

2.2.2 Portfolio Choice and the Wealth Distribution

Due to the required form of equilibrium conditions for a risk-adjusted linearization, I need to
be careful with the handling of the portfolio choice and the wealth distribution. The budget
constraints for each type (63) bind in equilibrium so that

0 = wi,t − log(λi) + log(1 + exp(qt))− log(exp(ci,t) +Bi,t + exp(qt + si,t)).

If I choose to use the log bond positions bi,t, then the condition becomes

0 = wi,t − log(λi) + log(1 + exp(qt))− log(exp(ci,t) + exp(bi,t) + exp(qt + si,t)).
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The net transfer rule (65) has already been substituted into (72), so I will skip this
condition. The common tax rate (66) and tax rate on type i (67) become

τt = − δ

1− δ
∑
i

τ i

(
exp(rt−1)Bi,t−1 + (1 + exp(qt)) exp(si,t−1)

1 + exp(qt)

)
,

τi,t = δτ i + (1− δ)τt

if the first tax rule is implemented. Under the Kekre and Lenel (2020) rule, τi,t = τ i except for
some i∗. The wealth market-clearing condition (71) is directly substituted into the relevant
equilibrium conditions, or else the degrees of freedom will be too large, and the steady state
will not be stable.

Equation (72) becomes

0 = log(1− τi,t) + log

(
exp(si,t−1) +

exp(rt−1)Bi,t−1

1 + exp(qt)

)
− log(Θi,t).

The conditional expectations for Wi,t (75) can be written as

Wi,j,t+1 = λiΘi,j+1,t + λi(Θi,j,t+1 − Et[Θi,j,t+1]).

The wealth shares for types i ∈ {1, . . . , H − 1} in (76) evolve according to

Wi,t+1 = λiΘi,1,t + λi(Θi,t+1 − Et[Θi,t+1]).

I also need to add equations for the auxiliary variables to implement the conditional
expectations of Θi,t. Let

θi,t = log(Θi,t), (80)

θi,j,t = log(Θi,j,t), (81)

so that (73) and (74) become

Θi,1,t = Et [Θi,t+1] = Et [exp(log(Θi,t+1))] = Et[exp(θi,t+1)]

⇒ 1 = Et [exp (θi,t+1 − log(Θi,1,t))] ,

Θi,j,t = Et [Θi,j−1,t+1] = Et [exp(log(Θi,j−1,t+1))] = Et[exp(θi,j−1,t+1)],

⇒ 1 = Et [exp (θi,j−1,t+1 − log(Θi,j,t))] .

Re-arranging yields the required form

0 = − log(Θi,1,t)︸ ︷︷ ︸
ξ

+ θi,t+1︸ ︷︷ ︸
forward

,

0 = − log(Θi,j,t)︸ ︷︷ ︸
ξ

+ θi,j−1,t+1︸ ︷︷ ︸
forward

.
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To add θi,t and θi,j,t as jump variables, I add the following equations to the system: which
implies the equations

1 = exp(θi,t − log(Θi,t))⇒ 0 = θi,t − log(Θi,t),

1 = exp(θi,j,t − log(Θi,j,t))⇒ 0 = θi,j,t − log(Θi,j,t).

Note that I cannot use wi,t or wi,j,t. Given the work done previously, (73) and (74) can
be written as

1 = Et[exp(θi,t+1 − θi,1,t)],
1 = Et[exp(θi,j−1,t+1 − θi,j,t)].

However, takings logs of (76) would yield

wi,t+1 = log(λi) + θi,t+1 = log(λi) + Et[θi,t+1] + (θi,t+1 − Et[θi,t+1]).

Observe that

Θi,1,t = Et[Θi,t+1]⇒ θi,1,t = log(Θi,1,t) = log(Et[Θi,t+1]) 6= Et[log(Θi,t+1)] = Et[θi,t+1].

The same problem occurs for (75).

2.3 Forward Difference Equations

This system has two forward difference equations (59) and (62). To ensure accuracy of the
risk-adjusted linearization, I derive N -period ahead forward difference equations for both.
For (37), define

D
(n)
i,Q,t = Et[Mi,t,t+1D

(n−1)
i,Q,t+1], (82)

P
(n)
i,Q,t = Et[Mi,t,t+1P

(n−1)
i,Q,t+1], (83)

with boundary conditions D
(0)
i,Q,t = Yt and P

(0)
i,Q,t = Qt. To get these equations in a stationary

form, let D̃
(n)
i,Q,t = D

(n)
i,Q,t/Yt and P̃

(n)
i,Q,t = P

(n)
i,Q,t/Yt, hence

D̃
(n)
i,Q,t = exp(µy)Et[Mi,t,t+1Ỹt+1D̃

(n−1)
i,Q,t+1], (84)

P̃
(n)
i,Q,t = exp(µy)Et[Mi,t,t+1Ỹt+1P̃

(n−1)
i,Q,t+1], (85)

with boundary conditions D̃
(0)
i,Q,t = 1 and P̃

(0)
i,Q,t = Q̃t. Therefore, if di,q,n,t = log(D̃

(n)
i,Q,t) and

pi,q,n,t = log(P̃
(n)
i,Q,t), then the forward difference equations in (62) can be represented as the

H × (2N + 1) equations:

0 = logEt

exp

qt − log

(
N∑
n=1

exp(di,q,n,t) + exp(pi,q,n,t)

)
︸ ︷︷ ︸

ξ


 (86)
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0 =



logEt

exp

µy − di,q,n,t︸ ︷︷ ︸
ξ

+mi,t,t+1︸ ︷︷ ︸
both

+ yt+1 + di,q,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n > 1

logEt

exp

µy − di,q,1,t︸ ︷︷ ︸
ξ

+mi,t,t+1︸ ︷︷ ︸
both

+ yt+1︸︷︷︸
forward-looking


 if n = 1,

(87)

0 =



logEt

exp

µy − pi,q,n,t︸ ︷︷ ︸
ξ

+mi,t,t+1︸ ︷︷ ︸
both

+ yt+1 + pi,q,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n > 1

logEt

exp

µy − pi,q,1,t︸ ︷︷ ︸
ξ

+mi,t,t+1︸ ︷︷ ︸
both

+ yt+1 + qt+1︸ ︷︷ ︸
forward-looking


 if n = 1.

(88)

The forward difference equation (59) yields the recursion

0 = logEt

exp

ωi,t − log

(
N−1∑
n=0

exp(di,ω,n,t) + exp(pi,ω,N,t)

)
︸ ︷︷ ︸

ξ


 (89)

0 =



logEt

exp

µy − ci,t − di,ω,n,t︸ ︷︷ ︸
ξ

+mi,t,t+1︸ ︷︷ ︸
both

+ ci,t+1 + yt+1 + di,ω,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n ≥ 1

logEt

exp

di,ω,0,t︸ ︷︷ ︸
ξ


 if n = 0.

(90)

0 =



logEt

exp

µy − ci,t − pi,ω,n,t︸ ︷︷ ︸
ξ

+mi,t,t+1︸ ︷︷ ︸
both

+ ci,t+1 + yt+1 + pi,ω,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n > 1

logEt

exp

µy − ci,t − pi,ω,1,t︸ ︷︷ ︸
ξ

+mi,t,t+1︸ ︷︷ ︸
both

+ ci,t+1 + yt+1 + ωi,t+1︸ ︷︷ ︸
forward-looking


 if n = 1,

(91)

where terms and boundary conditions are analogously defined. For details of the derivation,
see these notes.

For the representative agent model, the jump variables are qt, ct, vt, cet, and ωt. The
state variables are the autoregressive processes.
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https://github.com/chenwilliam77/RiskAdjustedLinearizations.jl/blob/main/examples/nk_ezdis/nk_ezdis.pdf


For the heterogenous agent model, the aggregate jump variables are qt, and rt. The jump
variables for types i ∈ {1, . . . , H − 1} are ci,t, Bi,t, and si,t. The jump variables for types
i ∈ {1, . . . , H} are vi,t, cei,t, ωi,t, θi,t, θi,j,t, Θi,t, and Θi,j,t. The state variables are rt−1, Bi,t−1,
si,t−1, Wi,t, Wi,j,t, and the autoregressive processes. The equations defining the evolution of
the lags rt−1, Bi,t−1, and si,t−1 are obtained by the formula z(t−1)+1 = zt.
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