
Parameter Inference
with Bifurcation Diagrams

Gregory Szep
King’s College London

London, WC2R 2LS
gregory.szep@kcl.ac.uk

Attila Csikász-Nagy
King’s College London

London, WC2R 2LS
attila.csikasz-nagy@kcl.ac.uk

Neil Dalchau
Microsoft Research Cambridge

Cambridge, CB1 2FB
ndalchau@microsoft.com

Abstract

Estimation of parameters in differential equation models can be achieved by ap-
plying learning algorithms to quantitative time-series data. However, sometimes it
is only possible to measure qualitative changes of a system in response to a con-
trolled condition. In dynamical systems theory, such change points are known as
bifurcations and lie on a function of the controlled condition called the bifurcation
diagram. In this work, we propose a gradient-based semi-supervised approach
for inferring the parameters of differential equations that produce a user-specified
bifurcation diagram. The cost function contains a supervised error term that is min-
imal when the model bifurcations match the specified targets and an unsupervised
bifurcation measure which has gradients that push optimisers towards bifurcating
parameter regimes. The gradients can be computed without the need to differentiate
through the operations of the solver that was used to compute the diagram. We
demonstrate parameter inference with minimal models which explore the space of
saddle-node and pitchfork diagrams and the genetic toggle switch from synthetic
biology. Furthermore, the cost landscape allows us to organise models in terms of
topological and geometric equivalence.

1 Introduction

Inverse problems [1] arise in biology and engineering in settings when the model is not fully known
and the desire is to match model behaviour to a given set of observations. This helps systematically
guide both model and experimental design. While we would like to understand the quantitative
details of a system, often only qualitative changes in response to varying experimental conditions
can be robustly measured across independent studies [2, 3]. For example, several studies are likely
to agree that the human immune system activates above a threshold concentration of a pathogen
and deactivates at a lower threshold concentration, but may disagree on the exact quantities of the
thresholds or the magnitudes of the immune response. Bifurcation theory provides us a framework
for studying these transitions in a manner that is independent of quantitative details [4]. The emerging
picture suggests that identification of the qualitative behaviour – the bifurcation diagram – should
precede any attempt at inferring other properties of a system [5].

Inferring the parameters of a model directly from a bifurcation diagram is difficult because it is not
obvious how multiple parameters in concert control the existence and position of a bifurcation. It
could even be impossible for the model to bifurcate in the manner desired. Several approaches exist
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to place bifurcations to desired locations once a manifold is present [6–8] yet typically resort to
sampling techniques to search for them in the first place [9, 10]. Progress has been made in cases
where model structure and stability conditions are used to refine the search space [11, 12] yet the
resulting objectives are still not explicit in the bifurcation targets and also not differentiable. In the
emerging field of scientific machine learning [13–15], parameters of structured mechanistic models
are favoured over flexible models in larger parameter spaces. A scalable method for navigating
the space of bifurcation diagrams would enable design of differential equations with high-level
qualitative constraints. Furthermore one could begin organising models according to qualitatively
distinct behaviours.

Back-propagation through differential equation solvers has been a breakthrough over the past couple
of years [16, 17] that enabled scalable parameter inference for differential equations from trajectory
data. Although one could use trajectory data to create the aforementioned qualitative constraints
[18, 19] this would entail over-constraining information originating from the kinetics and dynamical
transients of the model. Furthermore, such data usually does not contain sufficient information about
dynamical transients in order to identify kinetic parameters. Techniques for back-propagating through
implicit equation solvers have also been developed [20, 21] although to the best of the authors’
knowledge have not been applied to bifurcation diagrams at the time of writing this paper.

The problem of inferring differential equation parameters against a user-specified bifurcation diagram
decomposes into two parts: searching for bifurcating regimes and matching the locations of bifurcation
points to desired values. Matching bifurcation locations is a supervised problem where the data
are expressed as bifurcations points [7, 10]. Searching for bifurcations is an unsupervised problem
because when bifurcations are not present, there is no distance defined between data and prediction
[9]. Therefore only properties of the model can be used to start the search. We propose a semi-
supervised approach for performing both tasks in an end-to-end fashion. The bifurcation diagram
encodes high-level qualitative information defined by state space structures, rather than kinetics. We
apply the strategy of implicit layers [20, 21] to calculate gradients. To compute the diagram we use
a predictor-corrector method called deflated continuation [22, 23] developed for partial differential
equations.

We find that the cost function landscape contains basins that not only allow us to synthesise models
with a desired bifurcation diagram but also allow us to organise models in terms of topological and
geometric equivalence. We discuss the relevance of this in model selection. In summary, our paper
has the following main contributions:

• An end-to-end differentiable method for locating bifurcations in parameter space and then
matching their dependency on a control condition to user-specified locations

• Implementation of the method as a Julia package
github.com/gszep/BifurcationFit.jl

• Leveraging the cost landscape for a novel way of organising differential equation models in
terms of geometric and topological equivalence

1.1 Preliminaries

Suppose we collected observations along a scalar control condition p ∈ R and conclude that there are
specific values of p for which there are qualitative changes in system behaviour. Let D be the set of
those values and let us hypothesise that these transitions occur due to bifurcations in the dynamics that
drive the underlying mechanism. Let us model the mechanism with a parameterised set of differential
equations for states u ∈ RN with a vector function Fθ in a parameter space θ ∈ RM .

For the purposes of introducing this work, we will consider the simplest class of bifurcations known
as co-dimension one bifurcations not including limit cycles. Therefore D should contain conditions
for which we hypothesise changes in multi-stable behaviour. Let the equations be

∂u

∂t
= Fθ(u, p) where Fθ : RN+1 → RN (1)

In the context of the differential equations, and not considering limit cycles for now, a co-dimension
one bifurcation can be defined by a set of conditions on the determinant of the Jacobian

∣∣∂Fθ

∂u

∣∣. The
determinant of the Jacobian quantifies the rate at which trajectories in a local patch of state-space
u ∈ RN converge or diverge. The determinant approaching zero means that the dynamics of the
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system are slowing down, which is an important indicator for the onset of a transition between
qualitative behaviours. Furthermore, the slowing down must necessarily be followed by breakdown of
stability; for this to be true it is sufficient but not necessary to require that the determinant cross zero
with a finite slope, meaning that its directional derivative along the diagram d

ds

∣∣∂Fθ

∂u

∣∣ is not zero. The
set of predicted values for the control condition P(θ) ⊂ R at which bifurcations occur are defined as

P(θ) :=

{
p ∃ u : Fθ(u, p) = 0,

∣∣∣∣∂Fθ∂u

∣∣∣∣ = 0,
d

ds

∣∣∣∣∂Fθ∂u

∣∣∣∣ 6= 0

}
(2)

The most common bifurcations between steady states, not including limit cycles, are saddle-nodes
and pitchforks [24]. The relationships between our conditions for bifurcation (2) and the conditions
for saddle-node are detailed in Appendix B. Saddle-node bifurcations, which often appear in pairs
(Figure 1A) are defined by stable and unstable fixed points meeting and disappearing. Pitchfork
bifurcations are special cases of the saddle-node where a single steady state splits into two stable
and one unstable steady state (Figure 1B). To illustrate these bifurcations, we define minimal models
(Figure 1) that span the space of saddle-node and pitchforks, where indeed zero crossings in the
determinant with a finite slope define the set of prediction P(θ). The location of these crossings in
general may not match the targets D.

A B

Figure 1: Illustration of bifurcation diagrams for minimal models of bifurcations. A. Saddle-node
bifurcations arise for Fθ(u, p) = p+ θ1u+ θ2u

3 when θ = ( 5
2 ,−1). B. Pitchfork bifurcations arise

for Fθ(u, p) = θ1 + pu + θ2u
3 when θ = ( 1

2 ,−1). Targets are illustrated by light yellow vertical
lines. Bifurcation curves are shown as solid blue and red lines, with lighter shades indicating the
determinant crossing zero at locations P(θ) giving rise to unstable solutions.

For a given set of parameters θ one could compute the set of predicted bifurcations P(θ) using
parameter continuation methods [23, 22]. Our goal is to find optimal parameters θ∗ that match
predictions P(θ∗) to specified targets D. We must design a suitable cost function L so that

θ∗ := argminθL(θ|D) (3)
The optimal θ∗ is not expected to always be unique, but is in general a manifold representing the
space of qualitatively equivalent models. Ideally, the cost function L should reward θ for which the
number of predicted bifurcations is equal to the number of targets, |P(θ)| = |D|. This is especially
important in the case where there are no predictions |P(θ)| = 0.
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2 Proposed Method

2.1 Semi-supervised Cost Function

To identify parameter sets that give rise to bifurcation diagrams with specified bifurcation points, we
propose a semi-supervised cost function that comprises two terms. The role of the supervised term is
simply to reward predicted bifurcations to coincide with the specified target locations. This of course
relies on such bifurcations existing. The role of the unsupervised term is to encourage an optimiser to
move towards parameter regimes that do exhibit bifurcations.

2.1.1 Supervised term: matching bifurcations to target locations

In order for predicted bifurcations p(θ) ∈ P(θ) to match targets p′ ∈ D we need to evaluate an error
term |p(θ)−p′|. A naive approach might take an average over the norms for all prediction-target pairs.
However this gives rise to unwanted cross-terms and the possibility of multiple predictions matching
the same target without any penalty for unmatched targets. Therefore, we choose a geometric mean
over the predictions and an arithmetic mean over targets:

E(θ,D) =
1

|D|
∑
p′∈D

∏
p(θ)∈P(θ)

|p(θ)− p′|
1

|P| (4)

The supervised term is only zero when each target is matched by at least one prediction and allows
for cases where the number of predictions is greater than or equal to the number of targets |P| ≥ |D|.
An alternative approach, which undesirably introduces more hyper-parameters, would be to let each
prediction P(θ) represent the centroid of a mixture distribution and use expectation-maximisation to
match the centroids to targets D.

2.1.2 Unsupervised term: encouraging bifurcations

Figure 2: Bifurcation measure ϕθ(s) and determi-
nant

∣∣∂Fθ

∂u

∣∣ along the arclength s of two different
bifurcation curves demonstrating how maximising
the measure along the curve maintains the existing
bifurcation marked by a circle, while encouraging
new bifurcations marked by stars.

We can see from Figure 1 and definition (2) that
predictions p(θ) can be identified by looking
for points along the curve where the determi-
nant crosses zero

∣∣∂Fθ

∂u

∣∣ = 0 with a finite slope
d
ds

∣∣∂Fθ

∂u

∣∣ 6= 0. Using these quantities we can
define a positive semi-definite measure ϕθ(s) of
zero crossings in the determinant along a curve
parameterised by s which we define as

ϕθ(s) :=

(
1 +

∣∣∣∣∣
∣∣∂Fθ

∂u

∣∣
d
ds

∣∣∂Fθ

∂u

∣∣
∣∣∣∣∣
)−1

(5)

The bifurcation measure ϕθ(s) is maximal at
bifurcations and has finite gradients in non-
bifurcating regimes (Figure 2). More specifi-
cally, the measure ϕθ(s) is one at bifurcation
points and goes to zero an odd number of times
between bifurcations. This is because

∣∣∂Fθ

∂u

∣∣
must eventually turn around in order to return
back to zero, resulting in the directional deriva-
tive d

ds

∣∣∂Fθ

∂u

∣∣ going to zero. Hence the measure
ϕθ(s) goes to zero for each turning point (see
Figure 2).

On the other hand, as the determinant
∣∣∂Fθ

∂u

∣∣
diverges, we approach regimes far away from
any bifurcations and hence ϕθ(s) → 0. Since
we would still like to have non-zero gradients
with respect to θ in these regimes we designed
the measure to go to zero sufficiently slowly.
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While the calculation of the determinant is straightforward, its directional derivative requires a
tangent vector to the bifurcation curve. Fortunately the tangent vector Tθ(s) at the solution u(s), p(s)
anywhere along the curve s can be calculated as the nullspace of the rectangular N × (N + 1)
Jacobian

∂Fθ
∂(u, p)

∣∣∣∣
Fθ(u(s),p(s))=0

· Tθ(s) = 0 (6)

This equation guarantees that the tangent vector Tθ(s) is orthogonal to all hyper-planes defined by
the components of Fθ. In this setting the dimension of the nullspace is always known, and therefore
can reliably be calculated using QR factorisation methods [25].

Equipped with a measure that quantifies the appearance of bifurcations along a bifurcation arc we
can define the total measure for a bifurcation diagram as

Ψ(θ) :=

∫
Fθ(u,p)=0

ϕθ(s) ds∫
Fθ(u,p)=0

ds
. (7)

Here we denote
∫
Fθ(u,p)=0

ds as the sum of the line integrals in (u, p) ∈ RN+1 defined by the level
set Fθ(u, p) = 0 with s being an arbitrary parametrisation of the curves. The total measure Ψ(θ) is
normalised such that Ψ(θ) → 1 in the regimes where the controlled condition region p is densely
packed with bifurcations. The total measure Ψ(θ) is added to the supervised term as if it were a
likelihood. This defines the semi-supervised cost function as

L(θ|D) :=
(
|P| − |D|

)
log Ψ(θ) + E(θ,D), (8)

The pre-factor |D| − |P| in the unsupervised term ensures that the gradients are always pushing
optimisers towards a state where |D| = |P|. This can be seen as a step-wise annealing of the
unsupervised term until the desired state is reached.

2.2 Differentiating the semi-supervised cost function

To make use of gradient-based optimisers to locate desired bifurcation diagrams, we show here how to
differentiate the cost function. First, we note that while individual bifurcations p(θ) depend smoothly
on θ, the total number of predictions |P| does not have gradient contributions with respect to θ.
Therefore, we can safely drop the dependency in the prediction counter and now proceed in taking
gradients with respect to θ knowing that the only dependencies we need to track are for individual
bifurcations p(θ) within the definition the supervised term (4) and the total measure (7). Therefore,

∂L

∂θ
=
(
|P| − |D|

)
λ
∂Ψ

∂θ
Ψ(θ)−1 +

1

|D||P|
∑
p′

∏
p(θ)

|p(θ)− p′|
1

|P|
∑
p(θ)

∂p

∂θ
(p(θ)− p′)−1 (9)

In a similar vein to back-propagation through neural differential equations [16] we would like to be
able to calculate the gradient ∂L∂θ without having to differentiate through the operations of the solver
that finds the bifurcation diagram Fθ(u, p) = 0 and the bifurcation locations p(θ). To calculate the
gradient of the measure ∂Ψ

∂θ we need to differentiate line integrals that depend on θ. Fortunately this
can be done by the application of the generalised Leibniz integral rule, details of which can be found
in Appendix C.

The gradient of the bifurcation points ∂p
∂θ is found by application of the implicit function theorem to a

vector function Gθ : RN+1 → RN+1 whose components represent the two constraints Fθ(u, p) = 0

and
∣∣∂Fθ

∂u

∣∣ = 0. By following a similar strategy to that used by implicit layers [20] we yield an
(N + 1)×M Jacobian representing a deformation field [26] for each θ direction. The gradient we
are looking for becomes

∂p

∂θ
= −p̂ · ∂Gθ

∂(u, p)

−1 ∂Gθ
∂θ

∣∣∣∣
Gθ(u,p)=0

where Gθ(u, p) :=

[
Fθ(u, p)∣∣∂Fθ

∂u

∣∣ ] (10)

Here p̂ is a unit vector in (u, p) ∈ RN+1 that picks out the deformations along the p-direction. If
we wanted to place the bifurcation at target steady state u′ as well as target control condition p′ we
would use the full (N + 1)×M deformation matrix. Calculation of this matrix involves inverting an
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(N + 1)× (N + 1) Jacobian ∂Gθ

∂(u,p) . Instead of explicitly inverting the Jacobian the corresponding
system of linear equations is solved. The determinant of this Jacobian goes to zero in the degenerate
case where d

ds

∣∣∂Fθ

∂u

∣∣ = 0, further justifying our choice of measure Ψ(θ) which discourages the
degenerate case.

The cost function is piece-wise smooth and differentiable with undefined gradients only in parameter
contours where the number of predictions |P| changes; this is when Ψ(θ) is undefined and the inverse
of ∂Gθ

∂(u,p) does not exist. Given a set of solutions to Fθ(u, p) = 0 and locations p(θ) the gradient ∂L∂θ
can be evaluated using automatic differentiation methods [27–29] without needing to back-propagate
through the solver that obtained the level set Fθ(u, p) = 0 in the forward pass.

3 Experiments & Results

In this section, we apply the method first to minimal examples that can produce saddle-node and
pitchfork bifurcations, and then a more complex model that has multiple parametric regimes that
produce saddle-node bifurcations.

3.1 Minimal Models

Optimisations of two parameters (θ1, θ2) using simple gradient descent from Flux.jl with learning
rate η = 0.01 for the minimal saddle-node and pitchfork models yield trajectories approaching lines
of global minima in the cost function (Figures 3) which represent a set of geometrically equivalent
models. Two bifurcation diagrams are geometrically equivalent if the number, type and locations of
bifurcations match the specified targets D.

We can see that the geometrically equivalent lines are contained within larger basins where the correct
number and type of bifurcations are present but do not match the locations of targets D. All models
within this basin are in some sense topologically equivalent. This hierarchical classification allows
us to identify the set of models that satisfy observed qualitative behaviour [5] before any attempt
at inferring kinetic parameters, which is done by choosing a model along the line of geometrically
equivalent models.

Optimisation trajectories for the two minimal models appear mostly circumferential. This is because
the models were set up such that the radial direction from the origin in θ space mostly scale kinetics
whereas the circumferential direction changes the bifurcation topology. This suggests that the
gradients of our cost function seek to change model geometry over kinetics.

3.2 Genetic Toggle Switch

In this section we optimise a model where the states share a Hill function relationship with co-
operatively n = 2; these models often emerge from mass action kinetics with quasi-steady state
approximations and are used to model species concentrations. After re-scaling the equations govern-
ing the dynamics of concentrations, the simplified equations for state u1 and u2 become

∂tu1 =
a1 + (pu2)2

1 + (pu2)2
− µ1u1 ∂tu2 =

a2 + (ku1)2

1 + (ku1)2
− µ2u2 (11)

where ak is the baseline production rate for species k in the absence of the other species. Each species
has a finite degradation rate µk. Finally we have two sensitivity constants p and k, one of which is
chosen as our control condition. A baseline production rate ak > 1 recovers an inhibitor type hill
function for species k and is an activator otherwise. The sensitivities are proportional to the slope
of the hill productions. Solving for the steady states, substituting the equation for u1 into u2 and
rearranging gives rise to the relationship

k

µ1
=

(1 + ( p
µ2
u′)2)

√
a2 − u′

(a1 + ( p
µ2
u′)2)

√
u′ − 1

where u′ := u2µ2 (12)

which reveals that only a1, a2 and the ratio between the sensitivity and degradation parameters, k
µ1

,
affect the solutions to this equation, and hence the locations of the bifurcations (Figure 4A). In 98%
of 800 runs, optimisation using the ADAM optimiser [30] from Flux.jl with learning rate η = 0.1
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Figure 3: Saddle-node Fθ(u, p) = p+θ1u+θ2u
3 and pitchfork Fθ(u, p) = θ1 +up+θ2u

3 optimised
with respect to θ so that predicted bifurcations P(θ) match targets D in control condition p. The
right panel shows bifurcations diagrams for the three optimal θ∗ marked by stars on the left panel.
The optimisation trajectories in white follow the gradient of the cost, approaching the black lines of
global minima in the left panel

converged to one of two clusters: mutual activation (a1 < 1, a2 < 1; cluster 1) and mutual inhibition
(a1 > 1, a2 > 1; cluster 2) regimes. Example bifurcation diagrams illustrate how the bifurcation
curves of each species are positively correlated in mutual activation and negatively correlated for
mutual inhibition (Figure 4B).

In order to maintain biological interpretability, optimisation was restricted to the positive parameter
regime by transforming the parameters to log-space θ → 10θ. At the beginning of each optimisation
run an initial θ was chosen in the log-space by sampling from a multivariate normal distribution with
mean zero and standard deviation one.

3.3 Complexity

Performing one iteration of the optimisation requires the computation of the gradient of the cost (9),
requiring a computation of the bifurcation diagram with parameter continuation methods, which
includes the evaluation of matrix inversions (10). Instead of evaluating the inversions directly, we
solve a system of linear equations, applying the same strategy as implicit layers [20, 21]. This leaves
us with the computational bottleneck of calculating the determinant of the state space Jacobian,
required in both the bifurcation measure (5) and gradient (10). This calculation scales like N2 where
N is the number of state space variables (Figure 5).
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A B

Figure 4: Bifurcation inference for the two-state model (11). A. Optimal parameter estimates θ∗
for the targets D = {4, 5} reveal two clusters of qualitatively different regimes: mutual activation
(a1 < 1; cluster 1) and mutual inhibition (a1 > 1; cluster 2). B. Example bifurcation diagrams
indicate positively and negatively correlated dependencies between the two model states, as a function
of the control condition.

Figure 5: Complexity scaling of calculating the gradient of the cost function. Calculations were
performed on an Intel Core i7-6700HQ CPU @ 2.60GHz x 8 without GPU acceleration

For this calculation a model (13) was chosen that so that it is extensible both in the number of
parameters M and the number of states N .{

∂tu1 = sin2p− (θ1 sin2p+ 1)u1

∂tun = un−1 − (µ2
n + 1)un 2 ≤ n ≤ N (13)

In this model only the first state u1 defines the shape of the bifurcation diagram, while the remaining
states are merely linearly proportional to the first. The parameters µn contain sums of θm allowing us
a flexible choice on the number of parameters while maintaining stable solutions for the bifurcation
diagram.

While still tractable on laptop computers for states N < 100 our implementation currently does
not scale well for partial differential equations where a large the number of states N arises from
discretisation of the spatial variables. The only reason we need this determinant is because it
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is an indicator of bifurcations. We can address the computational bottleneck by finding a more
computationally efficient way of calculating this indicator. One approach would be to take the product
of a finite subset of eigenvalues of the system. Note that any more efficient calculation must still
permit back-propagation through it.

4 Conclusion & Broader Impact

We proposed a gradient-based semi-supervised approach for inferring the parameters of differential
equations that produce a user-specified bifurcation diagram. By applying implicit layers [20, 21]
and the generalised Leibniz rule [31] to the geometry of the implicitly defined steady states [32] it
is possible to use automatic differentiation methods to efficiently calculate gradients. We defined
a bifurcation measure that uses the determinant of the state-space Jacobian as an indicator for
bifurcating parameter regimes in the unsupervised term of the cost function. The gradients of the cost
can be efficiently computed using automatic differentiation methods. The computational bottleneck
is the evaluation of the state-space Jacobian determinant which limits the implementation to ordinary
differential equations.

We demonstrated our approach on models with one bifurcation parameter that can give rise to
pitchforks and saddle-nodes. The estimated parameters form distinct clusters, allowing us to organise
models in terms of topological and geometric equivalence. In the case of the genetic toggle switch
we recovered mutual activation and inhibition regimes.

Although we did not consider limit cycles, our approach can be modified using the conditions for
Poincaré-Andronov-Hopf bifurcations instead of the conditions on the Jacobian determinant. Our
approach generalises naturally to bifurcation manifolds such as limit point curves or surfaces. This is
because the normal components of implicit derivatives can still be calculated for under-determined
systems of equations [26, 33, 34]. In the case of manifolds it would be more appropriate to use
isosurface extraction algorithms rather than continuation to obtain the steady-state manifold. Our
approach does not depend on the details of the steady-state solver and therefore can still be applied.

In dynamical systems theory the geometry of state-space determines all of the qualitative behaviours
of a system. Our work makes progress towards designing models directly in state-space, rather
than the spatial or temporal domain. This is valuable to experimentalists who only have qualitative
observations available to them and wish to navigate the space of qualitative behaviours of their
system. Our work lies within a trend of progress in the scientific machine learning community, where
structured domain-informed models are favoured over flexible models that live in large parameter
spaces.
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Appendix

A Bifurcation Diagrams as Tangent Fields

Let each component of the vector function Fθ in the model (1) implicitly define a surface embedded
in RN+1. Let’s assume that the intersection of these N surfaces exists and is not null or degenerate,
then the steady states of (1) must be a set of one dimensional space curves in z ∈ RN+1 defined by

Fθ(z) = 0 (14)

Figure 6: Two implicit surfaces fθ(z) = 0 and gθ(z) = 0 in R3 intersecting to form a space curve
which is tangent to field Tθ(z) and perpendicular to gradients ∂zfθ and ∂zgθ

An expression for the field Tθ(z) tangent to the set of curves would allow us to take derivatives and
integrals along the bifurcation curve. This is exactly what we need to do to evaluate our cost function
8. Fortunately the tangent field can be constructed by ensuring it is perpendicular to the gradient
∂z of each component of Fθ as illustrated by an example two component system in Figure 6. The
tangent field Tθ(z) can be constructed perpendicular to all gradient vectors using the properties of
the determinant [32]

Tθ(z) :=

∣∣∣∣ ẑ
∂zFθ

∣∣∣∣ Tθ : RN+1 → RN+1 (15)

=

N+1∑
i=1

ẑi(−1)i+1

∣∣∣∣ ∂Fθ
∂(z \ zi)

∣∣∣∣ (16)

where ẑ is a collection of unit basis vectors in the RN+1 space and ∂zFθ is anN×(N+1) rectangular
Jacobian matrix of partial derivatives and z \ zi denotes the N dimensional vector z with component
zi removed. This construction ensures perpendicularity to any gradients of Fθ

Tθ(z) · ∂zfθ =

∣∣∣∣ ∂zfθ∂zFθ

∣∣∣∣ = 0 ∀fθ ∈ Fθ (17)

since the determinant of any matrix with two identical rows or columns is zero. Note that the tangent
field Tθ(z) is actually defined for all values of z where adjacent field lines trace out other level sets
where Fθ(z) 6= 0. Furthermore deformations with respect to θ are always orthogonal to the tangent

Tθ(z) ·
dTθ
dθ

= 0 (18)

Figure 7 shows how the bifurcation curve defined by Fθ(z) = 0 picks out one of many level sets
or traces in tangent field Tθ(z) for the saddle and pitchfork. The tangent field Tθ(z) can always be

1



Figure 7: Left/Right : Determinant
∣∣∂Fθ

∂u

∣∣ and tangent field Tθ(z) for the saddle-node/pitchfork
models for some set values of θ revealing that

∣∣∂Fθ

∂u

∣∣ = 0 defines bifurcations

analytically evaluated by taking the determinant in (15). We will proceed with calculations on Tθ(z)
in the whole space z and pick out a single trace by solving Fθ(z) = 0 later. For our two models

Tθ(z) = û− ( 3θ2u
2 + θ1 ) p̂

saddle−node model

Tθ(z) = uû− ( 3θ2u
2 + p ) p̂

pitchfork model

(19)

Figure 7 reveals that
∣∣∂Fθ

∂u

∣∣ = 0 is also a level set and that the intersection with level set Fθ(z) = 0
defines the bifurcations at specific parameter θ. In this particular setting we can see that the tangent
field Tθ(z) only folds when

∣∣∂Fθ

∂u

∣∣ = 0. Plotting the value of the determinant along Fθ(z) = 0 from
Figure 7 would give rise to Figures 1. The directional derivative of the determinant

∣∣∂Fθ

∂u

∣∣ along the
tangent field Tθ(z) is defined as

d

ds

∣∣∣∣∂Fθ∂u

∣∣∣∣ := T̂θ(z) ·
∂

∂z

∣∣∣∣∂Fθ∂u

∣∣∣∣ (20)

where T̂θ(z) is the unit tangent field.

B Conditions for Bifurcations

A saddle-node bifurcation is the generic bifurcation of equilibria and additional conditions are
required at a bifurcation point to obtain a transcritical or pitchfork bifurcations [4]. If we are not
specifically looking for transcritical or pitchfork bifurcations, it is sufficient to consider a non-zero
Hessian determinant and non-zero vector slope∣∣∣∣∂2Fθ

∂u2

∣∣∣∣ 6= 0
∂Fθ
∂p
6= 0 (21)

In the multidimensional case we would like to express the above conditions succinctly in terms of a
scalar derivative. Let us consider the non-degeneracy condition along the equilibrium manifold in
terms of the state-space determinant

d

ds

∣∣∣∣∂Fθ∂u

∣∣∣∣ 6= 0 (22)
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Applying Jacobi’s formula and expanding the directional derivative in terms of basis vectors û(s)
and p̂(s) that are tangent to the equilibrium manifold at a particular location s we get

p̂(s) Tr

[
∂2Fθ
∂u∂p

adj
∂Fθ
∂u

]
+

N∑
n=1

ûn(s) Tr

[
∂2Fθ
∂u∂un

adj
∂F

∂u

]
6= 0 (23)

We can see this expression contains the vector Hessian ∂2Fθ

∂u2 whos determinant is non-zero for the
non-degenerate case. The slope ∂Fθ

∂p is non-zero when the transversality condition holds.

C Leibniz Rule for Space Curves

Suppose there exists a one dimensional space curve C(θ) embedded in z ∈ RN+1 whose geometry
changes depending on input parameters θ ∈ RM . This curve could be open or closed and changes in
θ could change the curve topology as well. Let the function γθ : R→ RN+1 be a parameterisation
of the position vector along the curve within a fixed domain s ∈ S. Note that the choice of
parameterisation is arbitrary and our results should not depend on this choice. Furthermore, if we
parametrise the curve C(θ) with respect to a fixed domain S the dependence on θ is picked up by the
parameterisation γθ(s). We can write a line integral of any scalar function Lθ : RN+1 → R on the
curve as

L(θ) :=

∫
C(θ)

Lθ(z) dz =

∫
S
Lθ(z)

∣∣∣∣dγθds
∣∣∣∣ ds z=γθ(s) (24)

where
∣∣∣dγθds ∣∣∣ is the magnitude of tangent vectors to the space curve and we remind ourselves that the

integrand is evaluated at z = γθ(s). We would like to track how this integral changes with respect to
θ. The total derivative with respect to θ can be propagated into the integrand [31] as long as we keep
track of implicit dependencies

dL

dθ
=

∫
S

∣∣∣∣dγθds
∣∣∣∣ (∂L∂θ +

∂L

∂z
· dz
dθ

)
+ Lθ(z)

d

dθ

∣∣∣∣dγθds
∣∣∣∣ ds z=γθ(s) (25)

Here we applied the total derivative rule in the first term due to the implicit dependence of z on θ
through z = γθ(s). Applying the chain rule to the second term

d

dθ

∣∣∣∣dγθds
∣∣∣∣ =

∣∣∣∣dγθds
∣∣∣∣−1

dγθ
ds
· d
dθ

(
dγθ
ds

)
(26)

By choosing an s that has no implicit θ dependence we can commute derivatives

d

dθ

(
dγθ
ds

)
=

d

ds

(
dγθ
dθ

)
⇒ d

dθ

∣∣∣∣dγθds
∣∣∣∣ =

∣∣∣∣dγθds
∣∣∣∣−1

dγθ
ds
· d
ds

(
dγθ
dθ

)
(27)

To proceed we note that the unit tangent vector can be written as an evaluation of a tangent field T̂θ(z)
defined in the whole domain z ∈ RN+1 along the parametric curve z = γθ(s). The unit tangent field
may disagree with the tangent given by dγθ

ds up to a sign

T̂θ(z)
∣∣∣
z=γθ(s)

= ±
∣∣∣∣dγθds

∣∣∣∣−1
dγθ
ds

(28)

this leads to

d

dθ

∣∣∣∣dγθds
∣∣∣∣ =

∣∣∣∣dγθds
∣∣∣∣ (T̂θ(z) · ∂∂z

(
dΓθ
dθ

)
· T̂θ(z)

)
z=γθ(s)

(29)

It is possible to find the normal deformation of the implicit space curves due to changes in θ. This
can be done by taking the total derivative of the implicit equation defining the level set

dFθ(z)

dθ
=
∂F

∂θ
+
∂F

∂z
· dz
dθ

(30)
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We can rearrange for dz
dθ using the Moore-Penrose inverse of the rectangular Jacobian matrix ∂F

∂z
which appeared in equation (15). Since the level set is defined by Fθ(z) = 0 the total derivative along
the level set dFθ(z) = 0 and we arrive at an expression for the deformation field [26]

dz

dθ
= −∂F

∂z

>
(
∂F

∂z

∂F

∂z

>
)−1

∂F

∂θ
(31)

The tangential component of the deformation field is not uniquely determined because there is no
unique way of parameterising a surface. This is the subject of many computer graphics papers
[26, 33, 34]. We are however not interested in the continuous propagation of a mesh - as is the subject
of those papers. In fact we are looking for a deformation field that is orthogonal to the tangent vector
T̂θ(z) · dzdθ = 0 for the space curve, and therefore letting the tangential component of the deformation
equal zero is a valid choice and we can it instead of the parameterised deformation

dγθ
dθ
→ dz

dθ
(32)

To summarise we now have the gradient of our line integral only in terms of the implicit function
defining the integration region.

dL

dθ
=

∫
Fθ(z)=0

∂L

∂θ
+
∂L

∂z
· ϕθ(z) + Lθ(z) T̂θ(z) ·

∂ϕ

∂z
· T̂θ(z) dz

(33)

where T̂θ(z) :=
Tθ(z)

|Tθ(z)|
Tθ(z) :=

∣∣∣∣ ẑ
∂zFθ

∣∣∣∣ ϕθ(z) := −∂F
∂z

>
(
∂F

∂z

∂F

∂z

>
)−1

∂F

∂θ

(34)

We have settled on choosing normal deformations which we will call ϕθ(z). The above result can be
seen a the generalised Leibniz rule [31] for the case of line integration regions. The last integrand
term can be seen as the divergence the vector field ϕθ(z) projected onto the one dimensional space
curve.
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