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Reproducing Kernel of Bessel Potential space
The standard definition of Bessel potential space  can be found in ([1], [2], [6], [11]). Here the normal
splines will be constructed in the Bessel potential space  defined as:

where  is space of L. Schwartz tempered distributions, parameter  may be treated as a fractional
differentiation order and  is a Fourier transform of the . The parameter  introduced here may be treated
as a "scaling parameter". It allows to control approximation properties of the normal spline which usually are
getting better with smaller values of , also it may be used to reduce the ill-conditioness of the related
computational problem (in traditional theory ).

Theoretical properties of spaces  at  are identical — they are Hilbert spaces with inner product

and norm

It is easy to see that all  norms are equivalent. It means that space  is equivalent to 
.

Let's describe the Hölder spaces  ([9], [2]).

Definition 1. We denote the space

as Schwartz space (or space of complex-valued rapidly decreasing infinitely differentiable functions defined on 
) ([6], [7]).

Below is a definition of Hölder space  [9]:

Definition 2. If  is non-negative integer, , then  denotes the
completion of  in the norm
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Space  consists of all functions having bounded continuous derivatives up to order . It is easy to see
that  is Banach space [9].

Connection of Bessel potential spaces  with the spaces  is expressed in Embedding theorem
([9], [2]).

Embedding Theorem: If , where  non-integer, , then space  is continuously
embedded in .

Particularly from this theorem follows that if , corrected if necessary on a set of Lebesgue

measure zero, then it is uniformly continuous and bounded. Further if ,  — integer
non-negative number, then it can be treated as , where  is a class of functions with 
continuous derivatives.

It can be shown ([3], [11], [8], [4], [5]) that function

is a reproducing kernel of  space. Here  is modified Bessel function of the second kind [10]. The

exact value of  is not important here and will be set to  for ease of further calculations. This
reproducing kernel sometimes is called as Matérn kernel [4].

The kernel  becomes especially simple when  is half-integer.

In this case it is expressed via elementary functions (see [10]):
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Let , then  is continuously embedded in  and its
reproducing kernel with accuracy to constant multiplier can be presented as follows

In particular we have:
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