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Alzheimer’s Disease Neuroimaging

Initiative



Alzheimer’s Disease Neuroimaging Initiative (ADNI)
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ADNI is a longitudinal study designed to develop clinical, imaging,

genetic, and biochemical biomarkers for the early detection and

tracking of Alzheimer’s disease (AD).

1Image: ADNI.
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ADNI data

SEX FDG DX Aβ ε4 PTAU EDU AGE

Male 1.13615 CN × 0 0 16 78.3

Male 1.3086 Dementia 721.5 2 22.83 18 81.3

Male × MCI 1501 0 13.29 10 67.5

Male 1.25956 CN 547.3 0 31.43 16 70.7

Female × MCI × 0 × 13 81.4

. . .
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Associations between variables
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Graphical models



DAGs

A DAG is a directed graph such that following arrows it is

impossible to return to any vertex (no cycles). A PDAG has

additional undirected edges.

Vertices x , y , z correspond to stochastic variables.
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Classical (Bayesian) statistics

A single joint density on unknowns and observables. Different

possible factorizations:

p(x , y , z) = p(z | y , x)p(y | x)p(x) = p(x | y , z)p(y | z)p(z) = . . .
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Classical (Bayesian) statistics

p(x , y , z) = p(x | y)p(y | z)p(z) = p(z | y)p(y | x)p(x)

Typically some Markovian properties, for example here

x |= z | y

and corresponding factorizations of that density.
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Faithfulness assumption

Assume perfect correspondence between law p and DAG G

x |=
p
z | y ⇔ x |= z

G
| y

For example G having no edges is equivalent to complete

independence under p.

The implication “⇒” is faithfulness.
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Faithfulness violation

z1, . . . , z4 independent noise and

x = z1

w = x + z2

v = −x + z3

y = v + w + z4.

Independence x |= y not implied by the DAG.
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DAG discovery

What are the possible DAG models (edge orientations) under

faithfulness?

• x |= z implies x → y ← z

• x ̸|= z is compatible with all others

x ← y ← z x → y → z x ← y → z︸ ︷︷ ︸
Markov equivalence class (MEC)
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v-structures

x , y , and z in a DAG form an v-structure if x → y ← z and x

and z are not adjacent.

p(x , y , z) = p(y | x , z)p(x)p(z)
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Collider bias

Among babies of low birth weight (y) maternal smoking (x) was

associated with lower infant mortality.

Think: if z are other independent causes of low birth weight,

then

x → y ← z and x ̸|= z | y .
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Markov equivalence classes

All DAGs on a vertex set V with n vertices with the same set of

v-structures and the same set of adjacencies are observationally

equivalent and form the Markov equivalence class (MEC)

denotedMn (Verma and Pearl, 1990)
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CPDAG

A way to represent a MEC is the CPDAG (completed

PDAG):

Arrows x → y only if all members of the equivalence class agree on

the direction; undirected edges x − y otherwise.

Mn is the space of CPDAGs or MECs with elments denoted

γ, η, · · · ∈ Mn.
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Two variables

What are the MECs on two variables x and y?

No v-structures, so

γ0 = “x y ′′ = {“x y”}
γ1 = “x − y ′′ = {“x → y”, “x ← y”}

Not so nice when trying to infer causation from association.

But: Re-factorizing p(data|θ)p(θ) as p(θ|data)p(data) has some

applications.
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Characterisation of CPDAGs

S. A. Andersson, D. Madigan and M. D. Perlman, “A

characterization of Markov equivalence classes for acyclic

digraphs”, Annals of Statistics 25 (1997) 505-541.
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Learn the Markov equivalence class
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Learn the Markov equivalence class
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Random walk on CPDAGs



Random walks for causal models
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Uniform random walk on a graph

Random walk visits vertices with many edges more often, so needs

to spends less time there:

E[τv ] =
1

deg(v)
, τv residence time in v

After τv time units, the process jumps to a neighbour (picked at

random.)

With Markovianity

τv ∼ Exp(deg(v))
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Neighbours??

Declare adjacency between CPDAGs:

γ = {“x → y z”, “x ← y z”}(= “x − y z”)

and

η = {x → y ← z}

are neighbours, because I can insert an edge into “x → y z” to

obtain “x → y ← z”.

Notation: η ∈ Insert(γ), γ ∈ Delete(η).
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Chickering’s operators

The operator Insert(γ, x , y ,T ) inserts the edge x → y to the

CPDAG γ and directs previously undirected edges t − y to t → y

for t ∈ T , such that vertices t ∈ T become “tails” of a v-structure

t → y ← x .

Fineprint: Here x and y are not adjacent and T are (undirected) neighbours of

y that are not adjacent to x . The resulting PDAG is then completed.
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Valid moves

Denote by NAx(y) the (undirected) neighbours of y that are

adjacent to x .

Insert(γ, x , y ,T ) is a valid move, if and only if

• NAx(y) and the elements of T form a clique and

• any path from y to x without a directed edge pointing

towards y (such a path is called semi-directed) contains a

vertex in NAx(y) ∪ T .

Story for the delete operator is a bit simpler
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Random walk on CPDAGs

η1 η2

γ

ζ1 ζ2 ζ3 ζ4

A MEC γ with two neighbours η1, η2 in Insert(γ) and four

neighbours ζ1, . . . , ζ4 in Delete(γ). This is a lattice!
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Random walk on CPDAGs

η1 η2

γ

ζ1 ζ2 ζ3 ζ4

Random walk will leave γ after an exponentially distributed time

with total rate Λ(γ) = 6 towards one of the six neighbours drawn

from κγ = U({η1, η2, ζ1, ζ2, ζ3, ζ4}). (Not so easy to count for

large graphs...)
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Adding momentum



Lifted random walk for causal models
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Lifted random walk

γ+1 := (γ,+1) γ−1 := (γ,−1)

γ−1γ+1

If γ ∈Mn has 2 direct neighbours in Insert(γ) and 4 direct

neighbours in Delete(γ):

Move up from γ+1 with total rate 2, move from γ+1 to γ−1 with

rate 2 = 4− 2 and down from γ−1 with total rate 4.
24



Lifted random walk
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Mixing

Continuous-time trace of the number of edges of the sampled

graphs when targeting a uniform distribution on CPDAGs with 100

vertices. Blue: Lifted, orange: Normal.

The total time of 1 unit corresponds to 5 000 jumps.
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Causal discovery



Causality

One DAG and a corresponding factorization

p(x , y , z) = p(y | x , z)p(x)p(z)

can describe a family different of joint densities corresponding to

different interventions:

pdo(z=z0)(x , y) = p(x)p(y | x , z0) ̸= p(x , y)

pdo(y=y0)(x , z) = p(x)p(z) = p(x , z)
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Causal discovery

Difficult problem: Learn a causal model from observational

data.

Assuming that all relevant variables are observed, the causal model

is in the observational MEC.

If you know the MEC, you can think of experiments to pin down

the causal relationships further, e.g. by gene knockouts.
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Score based causal discovery



Markov equivalent score

A scoring function for DAGs is a Markov equivalent score if it

assigns the same score to any DAG in the same MEC.

Example: Bayesian information criterion (BIC).

Exponentiated BIC score factorises over the DAGs

w(G ,Data) =
∏
x∈V

w(PaG (x), x ,Data),

Changes in w can be computed efficiently by comparing local

scores.
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ADNI

There are 1213442454842881 (1.2 quadrillion) directed acyclic

graphs on 9 vertices. These are some of them.
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ADNI

There are 1213442454842881 (1.2 quadrillion) directed acyclic

graphs on 9 vertices. These are some of them.

Given the graph structure, perform regression on the parents of a

variable to obtain a model, e.g.

DX = β1 · EDU + β2 · FDG + β3 · PTAU + error term.
30



Zanella process

Continuous time random walk to sample from a distribution π

defined onMn.

Like in Metropolis-Hastings we need a balancing function g such

as
√
t or min(1, t) with the property g(t) = tg(1/t).

The Zanella process is defined by the jump intensity

λ(γ ↷ η) =

g

(
π{η}
π{γ}

)
if η ∈ Insert(γ) ⊔ Delete(γ)

0 otherwise

,

where γ ∈Mn.
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Lifted Zanella process

A random walk onMn × {+1,−1} with correct marginal:

For γ ∈Mn,

λ(γ+1 ↷ η+1) =

g

(
π{η}
π{γ}

)
if η ∈ Insert(γ)

0 otherwise.

λ(η−1 ↷ γ−1) =

g

(
π{γ}
π{η}

)
if γ ∈ Delete(η)

0 otherwise.

and for γ ∈Mn and d ∈ {−1,+1},

λ(γd ↷ γ−d) =

(
−
∑
η
λ(γd ↷ ηd) +

∑
η
λ(γ−d ↷ η−d)

)+

.
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Moving efficiently

Linear-time approach for applying a GES operator.

Previous approaches: add the inserted edge to the initial CPDAG,

obtaining a PDAG associated with the new MEC γ′.
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Moving efficiently

Linear-time approach for applying a GES operator.

Our approach: find a consistent DAG extension of the initial

CPDAG in time O(n +m), which has the property that applying

the operator directly yields a DAG from γ′.
33



What else is there?

• Plug and play: CausalInference.jl

• Intriguing connection to the GES algorithms (greedy search

for the MEC which maximises score).

• Some ideas how to handle unobserved confounders.

34

CausalInference.jl


What causal models does the ADNI data suggest?
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