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Supervised Learning

Learning to predict some target variable Yy from a knowledge of some
other variables X (the input features).

March, 2019 The Alan Turing Institute
MLJ



Supervised Learning
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Supervised Learning
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Supervised Learning
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Supervised Learning
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Supervised Learning

@ training data
—— degree =1
—— degree =3
—— degree = 12

& test data

temperature (deg C)

. s s . |
0.0 25 5.0 75

time (hours)

March, 2019 The Alan Turing Institute
MLJ



Supervised Learning
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Unsupervised Learning

Learning data transformations, e.g., dimension reduction
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Unsupervised Learning

Learning data transformations, e.g., dimension reduction
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A plethora of models
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Machine learning toolboxes

A machine learning toolbox:
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Machine learning toolboxes

A machine learning toolbox:

- Provides a uniform interface for fitting, evaluating, tuning and
benchmarking models.
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Machine learning toolboxes

A machine learning toolbox:
- Provides a uniform interface for fitting, evaluating, tuning and
benchmarking models.

— Provides common preprocessing tasks (such as data cleaning and type
coercion)
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Machine learning toolboxes

A machine learning toolbox:

- Provides a uniform interface for fitting, evaluating, tuning and
benchmarking models.

— Provides common preprocessing tasks (such as data cleaning and type
coercion)

— Allows for model composition (aka pipelining)
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Toolboxes in other ecosystems
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Goals for MLJ
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Goals for MLJ

— Want usability, interoperability, extensibility and reproducibility

March, 2019 The Alan Turing Institute
MLJ



Goals for MLJ

— Want usability, interoperability, extensibility and reproducibility
— Want avoid common pain-points:
— ldentifying all models that solve a given task

March, 2019 The Alan Turing Institute
MLJ



Goals for MLJ

— Want usability, interoperability, extensibility and reproducibility
— Want avoid common pain-points:

— ldentifying all models that solve a given task
— Routine operations requiring a lot of code
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Model search and tasks

using MLJ

models()

Dict{Any,Any} with 9 entries:

"MultivariateStats" => Any["ICA", "RidgeRegressor", "KernelPCA", "PCA"]

"MLI" => Any["MLJ.Constant.DeterministicConstantRegressor", "ML..

"DecisionTree" => Any["DecisionTreeRegressor", "DecisionTreeClassifier"]

"ScikitLearn" => Any["SVMLRegressor", "SVMNuClassifier", "ElasticNet", ..

"LIBSVM" => Any["EpsilonSVR", "LinearSvC", "NuSVR", "NuSvC", "Sv(C"..

"Clustering" => Any["KMeans", "KMedoids"]

"GLM" => Any["OLSRegressor", "GLMCountRegressor"]

"NaiveBayes" => Any["GaussianNBClassifier", "MultinomialNBClassifier"]

""XGBoost" => Any["XGBoostCount", "XGBoostRegressor", "XGBoostClassi..
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Model search and tasks

task = load_boston()
models(task)

Dict{Any,Any} with 6 entries:

"MultivariateStats" => Any["RidgeRegressor"]
"MLI" => Any["MLJ.Constant.DeterministicConstantRegressor", "ML..
"DecisionTree" => Any["DecisionTreeRegressor"]
"ScikitLearn" => Any["SVMLRegressor", "ElasticNet", "ElasticNetCV", "SV..
"LIBSVM" => Any["EpsilonSVR", "NuSVR"]
""XGBoost" => Any["XGBoostRegressor"]

March, 2019 The Alan Turing Institute

MLJ



Quick performance evaluation

@load DecisionTreeRegressor # load code

tree_ = DecisionTreeRegressor(n_subfeatures=3)

tree = machine(tree_, task)

evaluate! (tree,
resampling=Holdout(fraction_train=0.7),
measure=[rms, mav])
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Quick performance evaluation

@load DecisionTreeRegressor # load code

tree_ = DecisionTreeRegressor(n_subfeatures=3)

tree = machine(tree_, task)

evaluate!(tree,
resampling=Holdout(fraction_train=0.7),
measure=[rms, mav])

(MLJ.rms = 8.795939100833767,
MLJ.mav = 5.785953164160401,)
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Meta-algorithms as model wrappers

forest_ = EnsembleModel(atom=tree_, n=10)
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Meta-algorithms as model wrappers

forest_ = EnsembleModel(atom=tree_, n=10)

rl

range(forest_, :bagging_fraction, lower=0.4, upper=1.0);

r2 = range(forest_, :(atom.n_subfeatures), lower=1, upper=12)
self_tuning_forest_ = TunedModel(model=forest_,
tuning=Grid(),
resampling=CV(),
ranges=[r1,r2],
measure=rms)
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Meta-algorithms as model wrappers

self_tuning_forest = machine(self_tuning_forest_, task)

evaluate!(self_tuning_forest,
resampling=CV(),
measure=[rms, rms1pl])

(MLJ.rms = [2.91827, 3.40544, 4.60971, 4.54709, 8.12081, 3.79819],
MLJ.rmslpl = [0.148546, 0.119118, 0.148812, 0.134863, 0.345141, 0.221093],)
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Goals for MLJ

— Want usability, interoperability, extensibility and reproducibility
— Want avoid common pain-points:

— ldentifying all models that solve a given task
— Routine operations requiring a lot of code
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Scientific types
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Categorical data

categorical # integer
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Categorical data
categorical # integer
data = [1,2,2,2,1,2,1,1,3,2]

train = [1,2,2,2,1] eval =[1,3,2]
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Categorical data
categorical # integer
data = [1,2,2,2,1,2,1,1,3,2]

train = [1,2,2,2,1] eval =[1,3,2]

MLJ expects CategoricalArray.CategoricalValue for categoricals.
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Goals for MLJ

— Want usability, interoperability, extensibility and reproducibility
— Want avoid common pain-points:

— ldentifying all models that solve a given task
— Routine operations requiring a lot of code
— Passage from data source to algorithm-specific data format
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— ldentifying all models that solve a given task
— Routine operations requiring a lot of code
— Passage from data source to algorithm-specific data format
— Probabilistic predictions (evaluation, inconsistent representations,

)

March, 2019 The Alan Turing Institute 28
MLJ



Goals for MLJ

— Want usability, interoperability, extensibility and reproducibility
— Want avoid common pain-points:
— ldentifying all models that solve a given task
— Routine operations requiring a lot of code
— Passage from data source to algorithm-specific data format
— Probabilistic predictions: evaluation, inconsistent representations
— Limitations of model composition API
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Goals for MLJ

— Want usability, interoperability, extensibility and reproducibility
— Want avoid common pain-points:
— ldentifying all models that solve a given task
— Routine operations requiring a lot of code
— Passage from data source to algorithm-specific data format
— Probabilistic predictions: evaluation, inconsistent representations
— Limitations of model composition APl — barrier to innovation!
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Model composition (aka pipelining)

dim_reducer

predict

classifier

yhat
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Data science competitions (kaggle)
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More complicated example

yi

vyl

predict

Two model stack with meta-model

machinel

predict

machine2

yhat
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More complicated example

Two model stack with meta-model

machinel

Xs 7 ymeta
— ~ [ veat }—

predict

Xbot ~,
ybot =

machine2 el

Xtop
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Jiop >/ machine2

Xmeta—y
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machines with training inputs
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Target transformations

£ scikit-learn / scikit-learn Plusedby~ 61,555 ©Watch~ 2,268
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Model composition (aka pipelining)

dim_reducer

predict

classifier

yhat
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Model composition (aka pipelining)

predict

composite

yhat
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Compact syntax for linear pipeline

composite_ = @pipeline dim_reducer_ classifier_
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Compact syntax for linear pipeline

composite_ = @pipeline dim_reducer_ classifier_

Does not generalize!

March, 2019 The Alan Turing Institute
MLJ

37



The dimension reducer

Xsmall

transform
dim_reducer

dim_reducer_ = PCA()

dim_reducer = machine(dim_reducer_, X)
fit!(dim_reducer)

Xsmall = transform(dim_reducer, X);
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The classifier

Xsmall predict yhat

classifier

classifier_ = SVC()

classifier = machine(classifier_, Xsmall, vy)
fit!(classifier)

y = predict(classifier, Xsmall)
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Summary of unstreamlined workflow

dim_reducer_ = PCA()

dim_reducer = machine(dim_reducer_, X)
fit!(dim_reducer)

Xsmall = transform(dim_reducer, X);

classifier_ = SVC()

classifier = machine(classifier_, Xsmall, y)
fit!(classifier)

y = predict(classifier, Xsmall)
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Refactoring as learning network: Step 1

X
y

source(X)
source(y)

dim_reducer_ = PCA()

dim_reducer = machine(dim_reducer_, X)
fit!(dim_reducer)

Xsmall = transform(dim_reducer, X);

classifier_ = SVC()

classifier = machine(classifier_, Xsmall, y)
fit!(classifier)

y = predict(classifier, Xsmall)
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Refactoring as learning network: Step 2

X
y

source(X)
source(y)

dim_reducer_ = PCA()
dim_reducer = machine(dim_reducer_, X)
Xsmall = transform(dim_reducer, X);

classifier_ = SVC()
classifier = machine(classifier_, Xsmall, vy)
y = predict(classifier, Xsmall)
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Training a learning network

X
y

source(X)
source(y)

dim_reducer_ = PCA()
dim_reducer = machine(dim_reducer_, X)
Xsmall = transform(dim_reducer, X);

classifier_ = SVC()
classifier = machine(classifier_, Xsmall, vy)
y = predict(classifier, Xsmall)

fit!(§)
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Prediction in a learning network

y(rows=3:4)

2-element Array{CategoricalString{UInt8},1}:

"versicolor"
"versicolor"
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Prediction in a learning network

Xnew = (SepallLength = [4.0, 5.2],
SepalWidth = [3.2, 3.01],
PetalLength = [1.2, 1.5],
PetalwWidth = [0.1, 0.4],)

¥ (Xnew)

2-element Array{CategoricalString{UInt8},1}:

""'setosa"
""'setosa"
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Summarizing

Xsmall

transform
dim_reducer

Xsmall

predict

classifier

yhat
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Summarizing

transform
dim_reducer

Xsmall

Y

predict

classifier

yhat
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Still a need stand-alone model!

predict

composite

yvhat
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Macro to the rescue

composite = @from_network Composite(pca=dim_reducer_, svc=classifier_) <= (X, y, ¥)
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Composite is now a model like any other

composite_ = @from_network Composite(pca=dim_reducer_, svc=classifier_) <= (X, y, V)

composite = machine(composite_, X2, y2)
fit!(composite)
predict(composite, Xnew)
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Goals for MLJ

— Want usability, interoperability, extensibility and reproducibility
— Want avoid common pain-points:
— ldentifying all models that solve a given task
— Routine operations requiring a lot of code
— Passage from data source to algorithm-specific data format
— Probabilistic predictions: evaluation, inconsistent representations
— Limitations of model composition API

March, 2019 The Alan Turing Institute 51
MLJ



Goals for MLJ

— Want usability, interoperability, extensibility and reproducibility
— Want avoid common pain-points:
— ldentifying all models that solve a given task
— Routine operations requiring a lot of code
— Passage from data source to algorithm-specific data format
— Probabilistic predictions: evaluation, inconsistent representations
— Limitations of model composition APl — barrier to innovation!

March, 2019 The Alan Turing Institute 51
MLJ



Goals for MLJ

— Want usability, interoperability, extensibility and reproducibility
— Want avoid common pain-points:
— ldentifying all models that solve a given task
— Routine operations requiring a lot of code
— Passage from data source to algorithm-specific data format
— Probabilistic predictions: evaluation, inconsistent representations
— Limitations of model composition APl — barrier to innovation!

— Hope that project adds some focus to Julia ML development more
generally
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Road map
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Road map

Enhancing functionality: Adding models

— Wrap the scit-learn (python/C) models (Z. Nugent, D. Arenas)
— Flux.jl deep learning (A. Shridhar)

— Turing.jl probabilistic programming (M. Trapp)

- Geostats.|l (J. Hoffimann)

— Data cleaning? Feature engineering (featuretools?)
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Road map

Enhancing core functionality

Systematic benchmarking

More comprehensive performance evaluation

Tuning using Bayesian optimization

Tuning using gradient descent and AD

lterative model control
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Road map

Broadening scope

— Extend or supplement LossFunctions.jl
— Add sparse data support (NLP)

— Time series
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Road map

Scalability

— Online learning support and distributed data
— DAG scheduling (J. Samaroo)

— Automated estimates of cpu/memory requirements
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github.com/alan-turing-institute/M LJ.j|

Resources for this talk: examples/JuliaCon2019/

Core design: Anthony Blaom, Franz Kiraly, Sebastian Vollmer
Lead contributor: Anthony Blaom

Julia language consultants: Mike Innes, Avik Sengupta

Other contributors, past and present: Dilum Aluthge, Diego Arenas, Edoardo Barp, Gergd Bohner, Michael K. Borregaard, Valentin Churavy, Harvey

Devereux, Mose Giordano, Thibaut Lienart, Mohammed Nook, Piotr Oleskiewicz, Julian Samaroo, Ayush Shridar, Yiannis Simillides, Annika Stechemesser
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