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The Alan Turing Institute is the national
centre for data science, headquartered at
the British Library.
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Supervised Learning

Learning to predict some target variable y from a knowledge of some
other variables X (the input features).
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Unsupervised Learning

Learning data transformations, e.g., dimension reduction
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A plethora of models

March, 2019 The Alan Turing Institute
MLJ

13



Machine learning toolboxes

A machine learning toolbox:

– Provides a uniform interface for fitting, evaluating, tuning and
benchmarking models.

– Provides common preprocessing tasks (such as data cleaning and type
coercion)

– Allows for model composition (aka pipelining)
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Toolboxes in other ecosystems
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Goals for MLJ

– Want usability, interoperability, extensibility and reproducibility
– Want avoid common pain-points:

– Identifying all models that solve a given task
– Routine operations requiring a lot of code
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Model search and tasks
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Model search and tasks
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Quick performance evaluation
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Meta-algorithms as model wrappers
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Use any tabular data format
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Scientific types
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Categorical data

categorical 6= integer

data = [1, 2, 2, 2, 1, 2, 1, 1, 3, 2]

train = [1, 2, 2, 2, 1] eval = [1, 3, 2]

MLJ expects CategoricalArray.CategoricalValue for categoricals.
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Goals for MLJ

– Want usability, interoperability, extensibility and reproducibility
– Want avoid common pain-points:

– Identifying all models that solve a given task
– Routine operations requiring a lot of code
– Passage from data source to algorithm-specific data format

– Probabilistic predictions (evaluation, inconsistent representations,
. . . )
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Model composition (aka pipelining)
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Data science competitions (kaggle)
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More complicated example

March, 2019 The Alan Turing Institute
MLJ

32



More complicated example

March, 2019 The Alan Turing Institute
MLJ

33



Target transformations
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Model composition (aka pipelining)
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Compact syntax for linear pipeline

Does not generalize!
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The dimension reducer
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The classifier
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Summary of unstreamlined workflow
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Refactoring as learning network: Step 1
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Refactoring as learning network: Step 2
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Training a learning network
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Prediction in a learning network
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Prediction in a learning network
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Summarizing
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Summarizing
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Still a need stand-alone model!
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Macro to the rescue
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Composite is now a model like any other
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Goals for MLJ

– Want usability, interoperability, extensibility and reproducibility
– Want avoid common pain-points:

– Identifying all models that solve a given task
– Routine operations requiring a lot of code
– Passage from data source to algorithm-specific data format
– Probabilistic predictions: evaluation, inconsistent representations
– Limitations of model composition API

— barrier to innovation!
– Hope that project adds some focus to Julia ML development more

generally
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Road map

Enhancing functionality: Adding models

– Wrap the scit-learn (python/C) models (Z. Nugent, D. Arenas)

– Flux.jl deep learning (A. Shridhar)

– Turing.jl probabilistic programming (M. Trapp)

– Geostats.jl (J. Hoffimann)

– Data cleaning? Feature engineering (featuretools?)
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Road map

Enhancing core functionality

– Systematic benchmarking

– More comprehensive performance evaluation

– Tuning using Bayesian optimization

– Tuning using gradient descent and AD

– Iterative model control
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Road map

Broadening scope

– Extend or supplement LossFunctions.jl

– Add sparse data support (NLP)

– Time series
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Road map

Scalability

– Online learning support and distributed data

– DAG scheduling (J. Samaroo)

– Automated estimates of cpu/memory requirements
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github.com/alan-turing-institute/MLJ.jl
Resources for this talk: examples/JuliaCon2019/

Core design: Anthony Blaom, Franz Kiraly, Sebastian Vollmer

Lead contributor: Anthony Blaom

Julia language consultants: Mike Innes, Avik Sengupta

Other contributors, past and present: Dilum Aluthge, Diego Arenas, Edoardo Barp, Gergö Bohner, Michael K. Borregaard, Valentin Churavy, Harvey

Devereux, Mosè Giordano, Thibaut Lienart, Mohammed Nook, Piotr Oleśkiewicz, Julian Samaroo, Ayush Shridar, Yiannis Simillides, Annika Stechemesser
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turing.ac.uk
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