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To approximate functions of the form

f(
3
√
t2 + ε2, t), t ∈ [−1, 1], (1)

we set y = t and recast f as a bivariate function f(x, y) on the cubic curve γ, where

γ =
{

(x, y) : y2 = φ(x) = x3 − ε2, y ∈ [−1, 1], x ∈ [ε2/3,
(
1 + ε2

)1/3
]
}
, (2)

and find its interpolant on γ. Let (xk,N ,±yk,N), k = 1, . . . , N be 2N points on γ, where
yk,N =

√
φ(xk,N) 6= 0, then from Theorem 3.2, the unique interpolant of f at the points

(xk,N ,±yk,N), k = 1, . . . , N is
LN(fe(x)) + yLN(fo(x)),

where

fe =
1

2

[
f(x,

√
φ(x)) + f(x,−

√
φ(x))

]
, fo =

1

2
√
φ(x)

[
f(x,

√
φ(x))− f(x,−

√
φ(x))

]
,

and LN(fe(x)), LN(fo(x)) are the Lagrange interpolating polynomials of fe and fo at xk,N , k =
1, . . . , N .

For comparison purposes with standard bases, we also approximate functions of the form
(1) using algebraic Hermite–Padé (HP) approximation.

To compute an HP approximant, we require an orthogonal basis with respect to a discrete
inner product. For concreteness, we choose the Chebyshev polynomials which are orthogonal
with respect to the following discrete inner product:

〈f, g〉 =
2

N

N−1∑
k=0

f(xk,N)g(xk,N), xk,N = cos [(2k + 1)π/(2N)] . (3)

With this inner product, we approximate functions using polynomials of the form

pj(x) =

dj∑
k=0

√
wkckTk(x), w0 =

1

2
, wk = 1, 1 ≤ k ≤ dj,

so that (if dj ≤ N − 1)

‖pj‖2 = 〈pj, pj〉 = ‖c‖22 = |c0|2 + · · ·+ |cdj |2. (4)

Suppose we have the function values f(xk,N), k = 0, . . . , N . We want to find polynomials
p0, . . . , pm of degrees d0, . . . , dm such that

‖p0 + p1f + p2f
2 + · · ·+ pmf

m‖ = minimum. (5)

We assume some kind of normalization so that the trivial solution p0 = . . . = pm = 0 is not
admissible. Because of the isometry (4), (5) is a least squares problem whose solution can
be computed with the SVD. If the number of unknown polynomial coefficients matches the
number of points on the Chebyshev grid, we obtain the ‘interpolation’ case:

n :=
m∑
j=0

dj +m, N = n ⇒ ‖p0 + p1f + p2f
2 + · · ·+ pmf

m‖ = minimum = 0. (6)
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The HP approximant of f(x), viz. ψ(x), is the algebraic function defined by

p0(x) + p1(x)ψ(x) + p2(x)ψ2(x) + · · ·+ pm(x)ψm(x) = 0. (7)

Note that if m = 1 and p1(x) = 1 in (6), then the HP approximant, ψ(x) = −p0(x), is a
polynomial interpolant of f on the grid; if m = 1, then the HP approximant, ψ = −p0(x)/p1(x),
is a rational interpolant of f (with poles in the complex x-plane). If m ≥ 2, then for every x,
ψ(x) will generally be an m-valued approximant of f (with poles and algebraic branch points
in the complex x-plane). We want to pick only one branch of the m-valued function ψ to
approximate f . One way to do this is to solve (7) with Newton’s method using a polynomial
or rational approximant as first guess. We shall only consider ‘diagonal’ HP approximants,
which are approximants for which all the polynomials have equal degrees (d0 = · · · = dm).

As an example, we approximate

f(t) = sin(10t+ 20
3
√
t2 + ε2), t ∈ [−1, 1], ε = 0.01.

by interpolating f at the points (xk,N ,±
√
φ(xk,N)) on γ defined in (2), where xk,N are the

Chebyshev points given in (3) and translated to the interval [ε2/3, (1 + ε2)1/3]. We also ap-
proximate f using HP approximants with m = 0, 1, 2, 3 (polynomial, rational, quadratic and
cubic approximants). The figure shows that the interpolant on the cubic curve γ converges
super-exponentially (since f is an entire function in x and y) and significantly faster the HP
approximants (which in addition appear to have stability/ill-conditioning issues).
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