
Hermite-Padé approximation

Here we approximate the function considered in Olver & Xu, 2020:

Since this function has square root-type branch points, we might try Hermite-Padé (HP) approximation because

HP approximants have algebraic branch points.

Let

and

then 

Suppose we have the function values , . We want to find polynomials  of degrees

 such that 

We assume some kind of normalization so that the trivial solution  is not admissable. Because

of the isometry ( ), ( ) is a least squares problem whose solution can be computed with the SVD. If the

number of unknown polynomial coefficients matches the number of points on the Chebyshev grid, we obtain the

'interpolation' case:

The Hermite-Padé approximant of , viz. , is the algebraic function defined by

Note that if  and  in ( ), then the HP approximant, , is a polynomial

interpolant off on the grid; if , then the HP approximant, , is a rational interpolant of

f(with poles in the complex x-plane). If , then for every x,  will generally be an m-valued approximant

of f(with poles and algebraic branch points in the complex x-plane). We want to pick only one branch of the

m-valued function  to approximate f. One way to do this is to solve ( ) with Newton's method using a
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polynomial or rational approximant as first guess. Here we will 'cheat' in the case  by using the quadratic

formula to solve ( ) and then picking the solution/branch that is closest to .

First, consider a polynomial approximation to ( ):

f = @(t) sin(10*t + 20*sqrt(t.^2 + epsilon^2));
fc = chebfun(f);
plot(fc)

plotcoeffs(fc)
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Examples of quadratic (i.e., ) Hermite-Padé approximants for the 'interpolation' case. Let the degrees of

the polynomials be equal, , then the number of points on the grid is .

xx = linspace(-1,1,1000)';
d = 30;
fff = f(xx);
psi = quadHPapproxinterp(f,xx,fff,d);
semilogy(xx,abs(psi-fff)), grid on, hold on
d = 50;
psi = quadHPapproxinterp(f,xx,fff,d);
semilogy(xx,abs(psi-fff))
d = 100;
psi = quadHPapproxinterp(f,xx,fff,d);
semilogy(xx,abs(psi-fff)),axis([-1 1 1e-17 1e0])
legend('d = 30, N = 91','d = 50, N = 151','d = 100, N = 301')
xlabel('x')
ylabel('error')
hold off
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Compare the rate of convergence of quadratic and rational ( ) Hermite-Padé approximants in the

interpolation case as a function of the number of grid points, . As before, let the polynomials have equal

degrees.

dvec = 10:100;
quaderror = zeros(length(dvec),1);
Np1 = 3*dvec+2;
for d = dvec
    psi = quadHPapproxinterp(f,xx,fff,d);
    quaderror(d-dvec(1)+1) = max(abs(psi - fff));
end
semilogy(Np1,quaderror,'.'), grid on, hold on

dvec = 10:round(1.5*dvec(end));
raterror = zeros(length(dvec),1);
Np1 = 2*dvec+1;
for d = dvec
    psi = ratHPapproxinterp(f,xx,d);
    raterror(d-dvec(1)+1) = max(abs(psi - fff));
end
semilogy(Np1,raterror,'.'), hold off
legend('quadratic HP','rational HP')
xlabel('N+1')
ylabel('max error')
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function psi = quadHPapproxinterp(f,xx,fff,d)
% compute a quadratic HP approximant in the 'interpolation' case. Let all
% the polynomials have the same degree
n = 3*d + 2;
N = n-1;
x = chebpts(N+1);
ff = f(flipud(x));
psi = zeros(length(fff),1);
tol = 0;
degs = d*[1, 1, 1];
coeffs = MVLS_Cheb_2nd_kind3(ff,degs,tol);
evals = MVLS_Cheb_2nd_kind_eval(coeffs,degs,xx);
p0 = evals(:,:,1);
p1 = evals(:,:,2);
p2 = evals(:,:,3);
% solve p0 + p1*psi + p2*psi^2 = 0
psi1 = (-p1 + sqrt(p1.^2 - 4*p0.*p2))./(2*p2);
psi2 = (-p1 - sqrt(p1.^2 - 4*p0.*p2))./(2*p2);
e1 = abs(fff - psi1);
e2 = abs(fff - psi2);
inds1 = e1<e2;
psi(inds1) = psi1(inds1);
psi(~inds1) = psi2(~inds1);
end

function psi = ratHPapproxinterp(f,xx,d)
% compute a diagonal rational interpolant on the Chebyshev grid, hence the
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% numerator and denominator polynomials have the same degree
n = 2*d + 1;
N = n-1;
x = chebpts(N+1);
ff = f(flipud(x));
tol = 0;
degs = d*[1, 1];
coeffs = MVLS_Cheb_2nd_kind3(ff,degs,tol);
evals = MVLS_Cheb_2nd_kind_eval(coeffs,degs,xx);
p0 = evals(:,:,1);
p1 = evals(:,:,2);
% solve p0 + p1*psi = 0 
psi = -p0./p1;
end
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