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OVERVIE

» Computing with curves!
» Multivariate orthogonal polynomials
» Nonclassical domains:
» Half-disks, trapeziums
» Circles, arcs, spheres and polar caps (¢)

« Quadratic surfaces of revolution



« What is the "right” way to represent curves and
surfaces!

* "Right” implies spectrally accurate

* What is the "right” way to do function approximation

on and inside curves and surfaces!?

- "Right” implies spectrally accurate, a la
Chebyshev expansion



USE ALGEBRAIC CURVES/SURFACES!

- Approximate general curves/surfaces by algebraic curves/surfaces
» [hat Is zero sets of polynomials

» Use restrictions of polynomials to algebraic curves for function
approximation

* Polynomials modulo the vanishing ideal

- Orthogonalizing gives multivariate orthogonal polynomials
with nice structure



PRESENTING CURVES,
3 OPTIONS

» Gnid points + Interpolation

e Parameterisation

« |evel set method
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Approximation of Curves and Surfaces by Algebraic Curves and Surfaces
PA Smith - Annals of Mathematics, 1926 - JSTOR

00 (1) z~~~~~~ An (X, y) n=1 which will converge uniformly in a region R containing J to a
continuous function which is 0 on J, and which, in R1 is> 0 at points exterior to J and< 0 at
interior points. The series (1) moreover is to give rise (by equating successive sums to zero)
to a sequence of non-singular algebraic ovals converging to J in a manner explicitely
described in Theorem 1. Analogous results will be obtained for (n-1) dimensional manifolds

in n-space (for example, simple closed surfaces in 3-space) but only for a restricted class of ...

w DY o
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H™ML] On the approximation of convex bodies by convex algebraic level
surfaces
A Kro0 - Journal of Approximation Theory, 2010 - Elsevier

In this note we consider the problem of the approximation of convex bodies in R d by level
surfaces of convex algebraic polynomials. Hammer (1963)[1] verified that any convex body
in R d can be approximated by a level surface of a convex algebraic polynomial. In Kroo ...

v WYY Cited by 3 Related articles All 6 versions Web of Science: 3

PoF] Approximate implicitization
T Dokken - Mathematical methods for curves and surfaces, 2001 - researchgate.net

... Page 10. Implicit Surfaces and Algebraic Distance The intention is to find a polynomial q
describing an implicit surface that approximates . / in the tetrahedral Bernstein basis of degree
mqgO0"C +++"'m b+Bm + 0. The task is to find the unknown values b+ for +++ " m that satisfy ..

v Y9 Cited by 88 Related articles All 4 versions 99




APPROXIMATE IMPLICITIZATION

Usually, curves are given by points (1,¥y1), - - -, (Tm, Ym )

There exists an easy way to numerically calculate a polynomial p(z, y) whose zero
set approximates the desired curve:

Embed the curve in a square, and represent p(x, y) as a degree n tensored Cheby-
shev expansion

Construct the evaluation matrix at the points
The null space of this matrix gives the coefficients of p(x, y)

Adaptively increase n until there is a nullspace
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APPROXIMATE |IMPLICITISATION
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APPROXIMATE |IMPLICITISATION
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The zero set of the polynomial match the given points: its in the kernel of the Vandermonde matrix



* Long term goal: computational methods on complicated domains as algebraic
curves

— Solve PDEs on surfaces, inside surfaces, etc. using orthogonal polynomials a
la ultraspherical spectral method

— Work with geometries defined via nonuniform rational B-splines (NURBS)

* Short term goal: do something (anything!) with OPs on and inside simple algebraic
curves and surfaces



MULTIVARIATE ORTHOGONAL
POLYNOMIALS

[Dunkl & Xu 2014]



ELASSU AN

Classical multivariate orthogonal polynomials
allow function approximation and
solving PDEs on
balls, circles, squares, triangles, spheres



ELASSU AN

Fast transforms in software thanks to Slevinsky



2D OPS ARE (KINDA) LIKE | D OPS

» Non-unigueness
SliiRE =Tl reclurrence
» Jacobl operators

» bvaluation

» Clenshaw and multiplication operators



Domain Weight OPs
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e Consider an inner product on § C R? of the form
(1) = [ @l pute.y)av

 Consider orthonormal polynomials P,k (x,y), k = 0, ...,n with respect to this
inner product



NON-UNIQENESS

* In D, OPs are only uniquely defined up to sign

— If p,(x) are orthogonal so are +p, (x) for any choice of signs

* In 2D, OPs are only defined up to orthogonal transformations

— Forany @, € O(n+ 1), Q,P, are also orthonormal polynomials:

)
1, n=1m

\Onxm n+m

(QnPr, (QuPrm) ™) = Qn (P, PTY QT =«




T HREE-TERM R

* In ID, OPs satisfy three-term recurrences:

=CURS

-NC

LPn (33) i Cn—lpn—l(x) + ApPn (33) T bnpn+1(33)

— This follows since form < n — 1,

D D) =

m

e In 2D, OPs satisfy two block three-term recurrences: for AZ, AY € R(n+1)x(n+1)
be, B% c R(n—kl)x(n—l—Z), Cﬁ, Cg c R(n—|—2)><(n—|—1)

ZC]Pn(ZB, y) = ﬁ—lpn—l(x7 y) T Aipn(ﬂj, y) = B’?;Pn—l-l(xa y)
y[P)n (SB, y) E Ofryr,—lpn—l(xv y) g A%Pn (:C, y) - B%Pn+1($, y)

— This follows since form < n — 1,

<:EIP’n,IP’;rn> =
(YPn, Pp,) =

<Pn, a:IP’;>

0
(BB



JACOBI OPERATORS

* |D OPs have symmetric tridiagonal Jacobi operators:

(CLO bo
po(x) po(z) o T
Jl (@) | = 4| (=) |, g
C1 a-

* 2D OPs have a pair of commuting operators J; and J,, satisfying

IPO(:U??/) IP)()(CC,y) PO(xvy)
J. Pl(x7y) — T Pl(x7y) and Jy Pl(xvy)

* Here, J; and Jy, are block tridiagonal symmetric operators:

AL s D AY BY
G & (&

B e and Jy = o
\ C \




Y AXis
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X Axis

Au+vx,yu =1
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Degree 2-polynomial
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DISCRETISATIONS OF PDES

[Beuchler & Schoeber| 2006]
[LiI & Shen 2010]
[SO, Townsend & Huybrechs 201 9]



OPS LEAD TO
DISCRETISATIONS OF PDES

SPARS

Y AXis

hh bk bk L_‘L
50 A b b b

100 -

150 -

X AXxis oo

Sparsity not specific to a triangle: suaranteed because
boundary Is algebraic curve!



NON-CLASSICAL!?




EVALUATION

* |D OPs can be constructed via forward recurrence build from the Jacobi operator

O\ \ frol)
Llp@| = (9 )@ = [%7 .20 4 pi()

* However, 2D OPs have too much information:

/A"” i xl BY \

i || PRI e S ey
' Ol ZH—mie. VB '




* We rectify this by finding a pseudo-inverse

BZB
(D;{i | D%)<BZ) = In+1

e Define

(1
re| YR e o

\ &

* We obtain a lower triangular system

]P)O (:Ua y) 1
L:c,y Pl (CE" y) —] O
for
Lw,y B Rifv,y
( 1l
DEAZ — D2 + DYAY — yDY i
= DfC{f R D%C’g D"fA‘f — gl D%A% — yD:‘f I

\




CLENSHAW'S ALGORITHM

* Evaluating an expansion is thus a back-substritution:

(fo) (fo)
o
fir e b

i)

* Constructing multiplication operators follows also by:

f(Jas Jy)

— A recurrence of block-banded operator multiplications, that gives a block-
banded operator

f(z,y) = (Po(z,y) T, Pa(ay) " ...)




HALF-DISK

» We can construct OPs ortho. wirt. (1 — 2 — 42)? on a half-disk:

(a,b)  Slabtk+3) __2\k/2 p(bb) Y
el ) — R (R e e A <\/1——x2>

where R\*® (z) are ortho. wirt. (1 — 22)*2 on 0 < < 1

* Example of domain whose boundary is an algebraic curve

* Generalizes to trapeziums and disk-slices




HALF-DISK

Surprisingly hard to construct (help)

» We can consfruct OPs ortho. w.rt. (1 — 22 — %2)? on a half-disk:

h  Slabtk+3) __2\k/2 p(bb) Y

whele R\*? (z) aje ortho. wirt. (1 — 22)*/2 on 0 < < 1
. Examp orhain whose boundary Is an algebraic curve

* Generalizes to trapeziums and disk-slices




OPS LEAD TO
DISCRETISATIONS OF PDES

SPARS
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100 -
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200 A

Au+vx,y)u=f
[Snowball & SO 2019]



CIRCLES
AND
ARCS



VWhat about inner products on curves!
(f,9) = / f(z,y)g(x, y)w(z,y)ds
T

When I' Is an algebraic curve it is the root of a polynomial
The dimension of the degree n polynomials collapses
But the structure of OPs is still there!

— Three-term recurrences, Jacobi operators, etc.

For special curves and welights, we can express in terms of |D OPs



CIRCLES



POLYNOMIALS ON A CIRCLE



POLYNOMIALS ON A CIRCLE
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POLYNOMIALS ON A CIRCLE




POLYNOMIALS ON A CIRCLE

DimenRsiens




OPS ON THE CIRCLE (UNIFORM WEIGHT)
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OPS ON THE CIRCLE (UNIFORM WEIGHT)

1 T()(CC)

12 T1 (3?)

4 yUo(z)
s TRl

ey yUi ()
ey i S

4£IZ2 3x T3 ((L’)

b yUs(z)

S Sy 15 Ty(z)



OPS ON THE CIRCLE (UNIFORM WEIGHT)

: T () 1
2 Ti(x) cos 6
Y yUp(x) sin 6
: LY. iy
Jae— | Ty (z) cos 20
2wy yU, (1) sin 20
3 - e — =
g™ — 3 T () cos 30
Az y — y yUs () sin 360
Sy Ty(x) cos 46

8x°y — dxy yUs(x) sin 46



OPS ON THE CIRCLE

* Not to be confused with OPs on the Unit Circle (OPUC) a la Simon, which are
polynomials in z = x + iy

— OPUC concerns spectral theory of orthogonal operators, where here we
have commuting symmetric operators



Consider weights with the symmetry w(x, y) = w(x, —y)

We can write the inner product as

19 = | [fVT=aDge VI= %) + fla, V1= aDg(a, V1= 2%)] w(e) da

—1

Define two weights on [—1, 1]

) e SRR
wp(t) 7l m wé](t) Ein, 1 t (t)

and denote the corresponding OPs as p,,(t) and ¢, (%)

A simple calculation shows that OPs on the circle are

Po(z,y) =po(z) ~ and  Pa(z,y) = (yi"(f )

:



INTERPOLATION BY
ARC POLYNOMIALS
VIA QUADRATURE




OPS ON THE ARC

* An important special case is uniform weight on an arc x > h

B

0 otherwise

w(z,y) = w(z, —y) = w(z) = {
— Polynomials are invariant under rotations so any arc can be rotated to this
canonical case
* We then get

Ty (x)

Po(z,y) =1 and [ = {yUhl(x)

where T2 (x) are orthogonal with respect 1/4/1 — 22 on [h,1] and U*(z) or
thogonal with respect to v/1 — x2 on |h, 1]

* We can calculate these using Stieltjes procedure / Lanczos

[Huybrechs ZCE]



In I D, exactness of Gaussian quadrature means OPs are orthogonal with respect
to a discrete inner product

— Orthogonality w.rit.  a discrete inner product Is sufficient tointerpolate by
quadrature

Let 1,...,2Tp, Wwe,...,wpr be the Gaussian quadrature rule associated with
1/4/1 — z2 on [0, A

s califiistexact for polynomials of degree 2M — |1

Define the 2 M -point discrete inner product

ij (e B

where y,; = \/1 =z

IBhe 2M polynomials T (z), ..., T (z),yUd(x),...,yUs;_,(x) arc orifio
onal w.rit. this discrete inner product



* The fact that orthogonality is preserved is sufficient to show that the interpolating
polynomial is

fM(xay) W <T0h7f>MTOh(x)
+ N (TF, ), T (o) + (UL o ]

OO 1 b

h
yUn—l (:E)
<yU]’\l4_1, ?/UJ}\L4—1> VI

* Writing x = cosf and y = sin 8, this shows that we can interpolate by trigono-
metric polynomials on arcs

— There Is a connection with the Fourier extension problem
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Arc OPs Chebyshev
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COEFFIC]

sin 1060

=N DECES

02 106
(1 + —2> cos — cos 10060

T T
v s %
© ArcOPs 8# (6}

Right example from [Adcock & Huybrechs 2010]



SQUAR




SPHERES
AND
POLAR CAPS (¢)




VWhat about higher dimensional algebraic surfaces! Let's consider the sphere
2ty + 22 =1

The circle gave us Fourier; the sphere gives us spherical harmonics
Spherical harmonics have the problem of too much structure

— Irreducible representations of SO(3) (Clebsch—Gordan coefficients, ... )
— Diagonalize the spherical Laplacian

— Diagonalize the integral operator 1/||x — y||

— Millions of papers by physics, representation theorists, computational math-
ematicians, weather modellers...

|dea: forget this all and treat them as orthogonal polynomials in x, y, 2

Extends to polar caps!



Spherical harmonics
(not typical basis)

APlERIR el

>

QFs with respect to (1 — s o sk



Spherical harmonics
(not typical basis)

APlERIR el

>

QFs with respect to (1 — s o sk

Polar cap OPs

( 1/2)()6,)7) ZH(l/Z)(x y)

2

OPs with respect to (1 —x* —y?)* on disk slice



* Shallow water equation with coriolis force:
U = —f(ZU,y,Z)H xu+Vh=0
ht — —HV -u

— h(x,y, z) is expanded in spherical harmonics, u in the tangent space, and
n=(z,y,2)" isthe unit normal

— H is the reference height and f(z,y, z) = 2=z where T is the length of |
day In seconds




* Shallow water equation with coriolis force:
U = —f(ZU,y,Z)H xu+Vh=0
ht — —HV -u

— h(x,y, z) is expanded in spherical harmonics, u in the tangent space, and
n=(z,y,2)" isthe unit normal

— H is the reference height and f(z,y, z) = 2=z where T is the length of |
day In seconds




QUA

DRATIC CURVES




* Thearcleisabitboring, so lets push this idea further and consider general quadratic
curves, that Is, roots to polynomials of the form:

Az + Bxy+ Cy? + Dx + Ey+ F =0

* By affine transformations, we can reduce this to 5 canonical examples (circles,
hyperbolas, parabolas, crosses, and parallel lines)

* Just as in the circle, In each case we have a collapse In dimension, so that the degree
n > 1 polynomials are of dimension 2



5 CANONICAL CASES

)\

rt =y° +1




* For each of these 5 cases, we can on a case-by-case basis reduce the problem to
two families of | D OPs, for weights with surtable symmetric properties

— And in each of the 5 cases, we can construct an interpolative quadrature rule

* We consider only two cases: Hyperbola on one or two branches

Two branches One branch

w(z,y) = w(—z,y) = w(y) w(x,y) = w(z, —y) = w(z)



OPS ON
ONE BRANCH HYP

RBOLA

» Consider weights of the form

w(:p, y) S w(:v, _y)
supported on (possibly a subset of) x > 1

* We can write the inner product as
/ fla,y)g(z, y)w(z,y) ds =
r2=y2+1
| [ Ve = Dge Vo= 1) + £ Ve~ g~V — 1)) wn(e) da
1

* Let p,(t) denote OPs with respect to wg(t) and ¢, (t) denote OPs with respect
to wy(t) = (#2 — Dw(t)

* OPs on the hyperbola are then

Po(z,y) = po(x)  and Pn(w’y):(yin_(f()x))



APPLICATION:
INTERPOLATION OF
NEARLY SINGULAR FUNCTIONS




Consider a function on the interval [—1, 1] of the form

ft) = ft, V2 + €2)
where f(z,y) is smooth in z and y on the hyperbola z2 = y? + €

As an example

F(t) = sin(10t + 20V/t2 + €2)

becomes a "nice" function

f(z,y) = sin(10x + 20y)

ldea: interpolate f(x,y) by far(x,y) using OPs on the hyperbola at the points
(x5, y5) coming from Gaussian quadrature from wg so that

fre(t) = far(t, V2 + €2)
interpolates at the points x;

Just like the arc, the interpolation coefficients come from quadrature



Hyperbola, M = 20
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Coefficients for M=100

**.* @ e=05
x B e=0.05
f‘* @ ©=0.005
% e=0




COLLOCATION COEFFICIENTS

u +sin(t + V2 + €2)u = 0, e =1

W 4 =




COLLOCATION COEFFICIENTS

u +sin(t + V2 + €2)u = 0, e =1

VV
10°° \\/\/ v
i
| VW o ek Chet il
VVVWVYVV‘V coefficients

to even resolve
variable coefficient




OPS ON
TWO BRANCH HYPERBOLA




Consider weights of the form

w(—CE,y) o ’lU(.CE,y)
We can write the inner product as
(f9) =/ [f( 0F S Lol Ry IS )

FVP+ 199V + 1y)| wiy

Let pn(t) denote OPs with respect to w(t) and ¢, (t) denote OPs with respect
to wy(t) = (1 + t2)w(t)

OPs on the hyperbola are then

Po(x,y) =po(y)  and P”(w’y):< pn—(y) )



APPLICATION:
INTERPOLATION
Q:
FUNCTIONS WITH POLE SINGULARITIES




e Consider
f(t) =sin(t + 2/t)

on the real line

e Project f to the two-branch hyperbola £ = y? + 1 as

fl@,y) = flz —y)=sin(z -y +2(z +y))

R GiEe—7  yithent "=z Iy

* We use Gaussian weight w(t) = e~t" with Gauss—Hermite points, calculated with

high precision arithmetic (BigFloat)

— Again, w1 (t) = (1 + t%)w(t) is non-classical so we use Stieltjes procedure
with high precision arithmetic



-10

0

|0 points

10



-10

0

20 points

10



} I
-10

0

40 points

]
10



_ |
- 40

]
40

200 points



Convergence of interpolant




SQUAR




* Consider solving PDEs on the square with Dirichlet conditions, using a polynomial
basis

* [he restriction operator maps polynomials inside the square to polynomials on the
boundary of a square

* Thisis also an (4th order) algebraic curve:
A=)l =o7) =1

What does the space of polynomials look like?






OPS ON THE SQUAR

Theorem 3.2. Forn =0,1,2, a basis for BY,, is denoted by Y,, ; and given by

Y(),l(-'lf,y) = 1, Yl 1(:1“’:1,/) =T Yl,?(-’lf"y) =Y,

(vﬂ’y( (yﬂ'y(

7).

For n > 3, the four polynomials in BV? that are linearly independent modulo the ideal
can be given by

Yoi(z,y)=p 2%, y%), Yao(z,y) =y, Yaos(z,y)=p

3,
YQ’III,,I(:I:,J) = p’(,:)/l’}’(” Y )
3,
Y2'In,,2(may) = p((,:’/Q’Y(” Y )
3+1,
YQ’HL,B("I“’:/) =& ,Up(,:;t11[1+1 ’Y( Y )’
1,841,
Y271L,4(-’an) - 'I'Up;:;t1[2+ ’y(” Y )
formn =2m > 2, and
1,3,
Yomi1,1(2,y) = zpp 77 (%, %),
1,3,
Y21n+1 2(1‘,3})2 :j—Z f 7(1'2’?./2)’
41,
Y21n+1 '3(1', y) [ p;:/l_*_ 'Y(I.2’ y2)7
341,
Y27n+1 4(1‘1 y) Jp:L[2+ '7(1.2’ y2)

formn =2m + 1> 3. In particular, these bases satisfy the equation ()20271 = 0.



S THERE A GOOD BASIS



QUADRATIC SURFACES OF
REVOLUTION

We can form OPs on and inside
quadratic curves of revolution
N arbitrary dimensions



On the cone

i e (7)) 7 )

e

Spherical harmonics

In the cone

X
0100 = P19 = 20py ()

-

Ball OPs



INTRODUCING... .
CONEFUN!

julia> @Etime f = Fun((t,x,y) —> exp(cos(10xxy+t))/(x"2+y*2+(t-0.1)"2), Conic());
1.183671 seconds (3.95 M allocations: 286.165 MiB, 4.20% gc time)

julia> length(f.coefficients)
24964

julia> f(0.1, @0.1cos(0.2), 0.1sin(0.2))
269.89743610716334

julia> Etime f = Fun((t,x,y) -> 1/(t + 0.01), Cone(), 100_000);
1.276525 seconds (3.02 M allocations: 631.528 MiB, 3.68% gc time)

Uses Slevinsky's awesome Fast Transforms package
which has spherical harmonic, triangular OF and disk OP transforms



* Just like 2D, we have block-tridiagonal Jacobi operators Jz, Jy, J,

— In fact, the blocks are also tridiagonal (tridiagonal-block-tridiagonal)
— And can be found in closed form via Jacobi polynomial manipulations
* Justlike 2D, we can find a lower tridiagonal recurrence L ,, , using pseudo-inverse
By,
of | BY
By
— In fact, it can be written explicitly and is O(n)

— No poles!

* Just like 2D, we can use Clenshaw to construct f(Jy, Jy, J%)

* We thus can reduce, e.g, variable coefficient Helmholtz
(As +a(z,y,2))u =0

to a banded-block-banded matrix



NG EN | SPACE OF SEFIESS




To do more complicated PDEs like shallow water, we need to work with w Iin the
tangent space of the sphere

We will represent these using vector-valued polynomials p(z,y, 2) restricted to
the sphere in the ideal n(x,y, z) - p(z,y,2) =0

— Here n(x,y, z) = (x, v, Z)T s the unit normal

Sounds complicated... but turns out using the surface gradient of spherical harmon-

ICS
VP, and n X VgP,

are orthogonal and in this vector-valued polynomial space

— And they have the structure of OPs: including tridiagonal-block-tridiagonal
lHegefoperators J* . JY, J?

VWe thus get banded-block-banded matrix for all of the following operators:

— Acting on spherical harmonics: Vg, f(x,y, z)

— Acting on tangent space: Vg -, nXx, f(z,¥, 2)



APPLICATION:
SHALLOW WATER EQUATION
WITH CORIOLIS FORCE




FUTURE DIRECTIONS

PDEs on spherical triangles
PDEs in Minkowski spacetime (Hyperbolic ball)
— Any good reason to solve with boundary conditions on the light cone??
Sparse spectral methods for PDEs inside curves
Other singular functions
— f(t) = f(t,+/t) on the parabola y* = x

Boundary integral methods?



PIECEWISE SIMPLE GEOMETRIES!

Flow In channel with obstacles

Rockets!

Spectral element method in pipe



