
DRAFT
Hyperelastics.jl: A Julia package for hyperelastic1

material modelling2

Carson Farmer1 and Hector Medina13

1 School of Engineering, Liberty University, Lynchburg, VA, United States4

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor: Open Journals
Reviewers:

• @openjournals

Submitted: 01 January 1970
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary5

Hyperelastics.jl is a Julia (Bezanson et al., 2017) implementation for the largest (70+)6

collection of hyperelastic material models in existence. The package provides a set of analytical7

and data-driven strain energy density functions (SEDF) and the tools required to calibrate the8

models to material tests. The package is designed to leverage multiple-dispatch to define a9

common set of functions for calculating the SEDF, Second Piola Kirchoff stress tensor, and the10

Cauchy stress tensor. The package provides: 1) a material model library that is AD compatible11

and 2) a set of extensible methods for easily defining and testing new material models. The12

package leverages the ContinuumMechanicsBase.jl pacakge for defining the continuum scale13

quantities and their corresponding relationships.14

Statement of need15

The development of Hyperelastics.jl began as a study of the accuracy for a variety of material16

models for a set of experimental data. Often, researchers rely on custom implementations17

of material models and the data fitting process to find material parameters that match their18

experimental data. Hyperelastic models can well represent the nonlinear stress-deformation19

behavior of many biological tissues as well as engineering polymeric materials.20

The SEDFs included in this package cover most (if not all) of the available analytical models21

from the literature to date, from constitutive to phenomelogical models. Furthermore, a22

selection of data-driven models are incldued as a starting point for the development of new23

methods.24

Hyperelastics.jl is part of a spinoff Multi-Scale Material Modelling (𝑀3) Suite being25

developed by Vagus LLC (wwww.vagusllc.com), as a byproduct result of ongoing multi-26

functional material research being carried out in the Translational Robotics and Controls27

Engineering Research (TRACER) Lab at Liberty University. A pure Julia implementation allows28

for the use of automatic differentiation (AD) packages to calculate the partial derivatives of the29

SEDF. Hyperelastics.jl is designed to leverage multiple-dispatch to define a common set of30

functions for calculating the SED, Second Piola Kirchoff Stress Tensor, and the Cauchy Stress31

Tensor. The package provides a set of hyperelastic models and an interface to Optimization.jl32

for fitting model parameters.33

Currently, most commercial finite element codes only offer a limited number, often less than34

10, of hyperelastic models which limits the extent to which researchers are able to accurately35

model a given material. The closest project to Hyperelastics.jl is the matADi project by36

Andreas Dutzler (Dutzler, 2023) which has AD support for 18 material models.37

Farmer, & Medina. (2024). Hyperelastics.jl: A Julia package for hyperelastic material modelling. Journal of Open Source Software, 0(0), ¿PAGE?
https://doi.org/10.xxxxxx/draft.

1

https://doi.org/10.xxxxxx/draft
https://github.com/openjournals
https://github.com/openjournals
https://doi.org/10.5281
https://joss.theoj.org
https://github.com/openjournals
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft


DR
AF
T

Short Example with Code38

For commonly used datasets in hyperelastic modelling, such as the Treloar1944Uniaxial data39

(Treloar, 1943), functions are available for getting the datasets:40

using Hyperelastics

using Optimization, OptimizationOptimJL

using ComponentArrays: ComponentVector

using ForwardDiff

using CairoMakie, MakiePublication

set_theme!(theme_web(width = 800))

f = Figure()

ax = Axis(f[1,1])

treloar_data = Treloar1944Uniaxial()

scatter!(ax,

getindex.(treloar_data.data.λ, 1),

getindex.(treloar_data.data.s, 1),

label = "Treloar 1944 Experimental",

color = :black

)

axislegend(position = :lt)

41

Multiple dispatch is used on the corresponding function to calculate the values. Based42

on the model passed to the function, the correct method will be used in the calculation.43

StrainEnergyDensity, SecondPiolaKirchoffStressTensor, and CauchyStressTensor accept the44

deformation state as either the principal components in a vector, [𝜆1, 𝜆2, 𝜆3] or as the45

deformation gradient matrix, 𝐹𝑖𝑗. The returned value matches the type of the input. Parameters46

are accessed by field allowing for structs, NamedTuples, or other field-based data-types such47

as those in ComponentArrays.jl and LabelledArrays.jl. For example, the NeoHookean model is48

accessed with:49

Farmer, & Medina. (2024). Hyperelastics.jl: A Julia package for hyperelastic material modelling. Journal of Open Source Software, 0(0), ¿PAGE?
https://doi.org/10.xxxxxx/draft.

2

https://doi.org/10.xxxxxx/draft


DR
AF
T

ψ = NeoHookean()

λ_vec = [2.0, sqrt(1/2), sqrt(1/2)]

p = (μ = 10.0, )

W = StrainEnergyDensity(ψ, λ_vec, p)

or50

F = rand(3,3)

p = (μ = 20.0, )

W = StrainEnergyDensity(ψ, F, p)

A method for creating an OptimizationProblem compatible with Optimization.jl is provided.51

To fit the NeoHookean model to the Treloar data previously loaded, an additional field-52

indexed array is used as the initial guess to HyperelasticProblem. It is recommendedto use53

ComponentArrays.jl for optimization of model parameters.54

prob = HyperelasticProblem(

ψ,

treloar_data,

ComponentVector(μ = 0.2),

ad_type = AutoForwardDiff()

)

sol = solve(prob, LBFGS())

For fiting multiple models to the same dataset:55

models = Dict(

Gent => ComponentVector(

μ=240e-3,

J_m=80.0

),

EdwardVilgis => ComponentVector(

Ns=0.10,

Nc=0.20,

α=0.001,

η=0.001

),

NeoHookean => ComponentVector(

μ=200e-3

),

Beda => ComponentVector(

C1=0.1237,

C2=0.0424,

C3=7.84e-5,

K1=0.0168,

α=0.9,

β=0.68,

ζ=3.015

)

)

sol = Dict{Any, SciMLSolution}()

for (ψ, p_0) in models

HEProblem = HyperelasticProblem(

ψ(),

treloar_data,

p_0,

ad_type = AutoForwardDiff()

Farmer, & Medina. (2024). Hyperelastics.jl: A Julia package for hyperelastic material modelling. Journal of Open Source Software, 0(0), ¿PAGE?
https://doi.org/10.xxxxxx/draft.

3

https://doi.org/10.xxxxxx/draft


DRAFT
)

sol[ψ] = solve(HEProblem, NelderMead())

end

To predict the reponse of a model to a proivded dataset and parameters, a predict function56

is provided:57

f = Figure()

ax = Axis(f[1,1])

for (ψ, p) in sol

pred = predict(

ψ(),

treloar_data,

p.u,

ad_type = AutoForwardDiff()

)

lines!(

ax,

getindex.(pred.data.λ, 1),

getindex.(pred.data.s, 1),

label=string(ψ)

)

end

scatter!(ax,

getindex.(treloar_data.data.λ, 1),

getindex.(treloar_data.data.s, 1),

label = "Treloar 1944 Experimental",

color = :black

)

axislegend(position = :lt)

58

Farmer, & Medina. (2024). Hyperelastics.jl: A Julia package for hyperelastic material modelling. Journal of Open Source Software, 0(0), ¿PAGE?
https://doi.org/10.xxxxxx/draft.

4

https://doi.org/10.xxxxxx/draft


DRAFT
While the majority of the models provided by Hyperelastics.jl are based on closed form59

strain energy density functions, a selection of data-driven models are proivded. For example,60

the SussmanBathe model is created with:61

using DataInterpolations

ψ = SussmanBathe(treloar_data, k=4, interpolant = QuadraticSpline)

λ_1 = range(extrema(getindex.(treloar_data.data.λ, 1))..., length = 100)

uniaxial_prediction = HyperelasticUniaxialTest(λ_1, name = "Prediction")

pred = predict(ψ, uniaxial_prediction, [])

λ_1 = getindex.(treloar_data.data.λ, 1)

s_1 = getindex.(treloar_data.data.s, 1)

λ_hat_1 = getindex.(pred.data.λ, 1)

s_hat_1 = getindex.(pred.data.s, 1)

f, ax, p = lines(

λ_hat_1,

s_hat_1,

label = "Sussman-Bathe Approximation"

)

scatter!(

ax,

λ_1,

s_1,

label = "Treloar 1944 Experimental",

color = :black

)

axislegend(position = :lt)

62

Farmer, & Medina. (2024). Hyperelastics.jl: A Julia package for hyperelastic material modelling. Journal of Open Source Software, 0(0), ¿PAGE?
https://doi.org/10.xxxxxx/draft.

5

https://doi.org/10.xxxxxx/draft


DRAFT
Availability63

Hyperelastics.jl can be found on github.64

Acknowledgements65

The TRACER Lab is supported by the School of Engineering and the Center for Engineering66

Research and Education (CERE) at Liberty University.67

References68

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to69

numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/14100067170

Dutzler, A. (2023). matADi: Material definition with automatic differentiation. https:71

//github.com/adtzlr/matadi72

Treloar, L. (1943). The elasticity of a network of long-chain molecules—II. Transactions of the73

Faraday Society, 39, 241–246.74

Farmer, & Medina. (2024). Hyperelastics.jl: A Julia package for hyperelastic material modelling. Journal of Open Source Software, 0(0), ¿PAGE?
https://doi.org/10.xxxxxx/draft.

6

https://github.com/TRACER-LULab/Hyperelastics.jl
https://doi.org/10.1137/141000671
https://github.com/adtzlr/matadi
https://github.com/adtzlr/matadi
https://github.com/adtzlr/matadi
https://doi.org/10.xxxxxx/draft

	Summary
	Statement of need
	Short Example with Code
	Availability
	Acknowledgements
	References

