
Background

Over the past decade, Deep Learning (DL) has arguably been one of the dominating subdis-
ciplines of Artificial Intelligence. Despite the tremendous success of deep neural networks,
practitioners and researchers have also pointed to a vast number of pitfalls that have so far
inhibited the use of DL in safety-critical applications. Among other things these pitfalls include
a lack of adversarial robustness [?] and an inherent opaqueness of deep neural networks, often
described as the black-box problem.

In deep learning, the number of parameters relative to the size of the available data is generally
huge:

[. . .] deep neural networks are typically very underspecified by the available data,
and [. . .] parameters [therefore] correspond to a diverse variety of compelling
explanations for the data. [?]

A scenario like this very much calls for treating model predictions probabilistically [?]. It
is therefore not surprising that interest in Bayesian deep learning has grown in recent years
as researchers have tackled the problem from a wide range of angles including MCMC (see
Turing), Mean Field Variational Inference [?], Monte Carlo Dropout [?] and Deep Ensembles
[?]. Laplace Redux ([?],[?]) is one of the most recent and promising approaches to Bayesian
neural networks (BNN).

Laplace Approximation for Deep Learning

Let D = {x, y}N
n=1 denote our feature-label pairs and let f(x; θ) = y denote some deep neural

network specified by its parameters θ. We are interested in estimating the posterior predictive
distribution given by the following Bayesian model average (BMA):

p(y|x, D) =
∫

p(y|x, θ)p(θ|D)dθ (1)

To do so we first need to compute the weight posterior p(θ|D). Laplace Approximation
(LA) relies on the fact that the second-order Taylor expansion of this posterior amounts to
a multivariate Gaussian q(θ) = N (µ̂, Σ̂) centred around the maximum a posteriori (MAP)
estimate µ̂ = θ̂ = arg maxθ p(θ|D) with covariance equal to the inverse Hessian of our loss
function evaluated at the mode Σ̂ = −(Ĥ|θ̂)−1.

To apply Laplace in the context of deep learning, we can train our network in the standard
way by minimizing the negative log-likelihood ℓ(θ) = − log p(y|x, D). To obtain Gaussian LA
weight posterior we then only need to compute the Hessian evaluated at the obtained MAP
estimate.

1

https://turing.ml/dev/tutorials/03-bayesian-neural-network/

Laplace Approximation itself dates back to the 18th century, but despite its simplicity, it
has not been widely used or studied by the deep learning community until recently. One
reason for this may be that for large neural networks with many parameters, the exact Hessian
computation is prohibitive. One can rely on linearized approximations of the Hessian, but
those still scale quadratically in the number of parameters. Fortunately, recent work has shown
that block-diagonal factorizations can be successfully applied in this context [?].

Another reason why LA may have been neglected in the past is that early attempts at using it
for deep learning failed: simply sampling from the Laplace posterior to compute the exact BNN
posterior predictive distribution in Equation ?? does not work when using approximations for
the Hessian [?]. Instead, we can use a linear expansion of the predictive around the mode as
demonstrated by Immer et al. (2020) [?]. Formally, we locally linearize our network,

f θ̂
lin(x; θ) = f(x; θ̂) + Jθ(θ − θ̂) (2)

which turns the BNN into a Bayesian generalized linear model (GLM) where θ̂ corresponds to
the MAP estimate as before. The corresponding GLM predictive,

p(y|x, D) = E
[
p(y|f θ̂

lin(x; θn))
]

, θn ∼ q(θ) (3)

has a closed-form solution for regression problems. For classification problems it can be
approximated using (extended) probit approximation [?].

Immer et al. (2020) [?] provide a much more detailed exposition of the above with a focus on
theoretical underpinnings and intuition. Daxberger et el. (2021) [?] introduce Laplace Redux
from more of an applied perspective and present a comprehensive Python implementation:
laplace.

LaplaceRedux.jl — a Julia implementation

The LaplaceRedux.jl package is intended to make this new methodological framework available
to the Julia community. It is interfaced with the popular deep learning library, Flux.jl.

Using just a few lines of code the package enables users to compute and apply Laplace Redux
to their pre-trained neural networks. A basic usage example is shown in listing ??: the Laplace
function simply wraps the Flux neural network nn. Here we have also provided two of the
optional key arguments that determine the prior precision λ and the subset of network layers
to be used. The returned instance can then be trained on data using the generic fit! method.
Calling the generic predict method on the fitted instance will generate GLM predictions
according to Equation ??.

2

https://aleximmer.github.io/Laplace/
https://fluxml.ai/

[language=Julia, escapechar=@, numbers=left, label=lst:laplace, caption=] la = Laplace(nn;
@λ = λ@, subsetofweights =: lastlayer)fit!(la, data)

?@fig-pred-mlp shows an example involving a synthetic data set consisting of two classes.
Contours indicate the predicted probabilities using the plugin estimator (left) and Laplace
approximation (right). Relying solely on the MAP estimate, the plugin estimator produces
overly confident predictions. Conversely, the GLM predictions account for predictive uncertainty
as captured by the Laplace posterior.

Figure 1: Binary classification: Plugin estimate (left), untuned LA (center) and optimized LA
(right).

Figure 2: Regression: wide regions of the confidence interval (shaded area) indicate high
predictive uncertainty.

The package is still in its infancy and its functionality is limited at the time of writing.
For example, it currently still works with full Hessian approximations, as opposed to the
less expensive (block-) diagonal variants. That being said, choices regarding the package
architecture were made with these future development opportunities in mind. This should
hopefully make the package attractive to other Julia developers interested in the topic.

Conclusions

Laplace Redux is arguably one of the most exciting and promising recent developments in
Bayesian deep learning. The goal of this project is to bring this framework to the attention of
the Julia machine-learning community. The package LaplaceRedux.jl offers a useful starting
ground for a full-fledged implementation in pure Julia. Future developments are planned and
contributions are very much welcome.

3

Acknowledgements

I am grateful to my PhD supervisors Cynthia C. S. Liem and Arie van Deursen for being so
supportive of my work on open-source developments. I am also grateful to the Julia community
for being so kind, welcoming and helpful.

4

	Background
	Laplace Approximation for Deep Learning
	LaplaceRedux.jl — a Julia implementation
	Conclusions
	Acknowledgements

