juliacon

Effortless Bayesian Deep Learning in Julia through Laplace

Patrick Altmeyer!

'Delft University of Technology

ABSTRACT

Treating deep neural networks probabilistically comes with numer-
ous advantages including improved robustness and greater inter-
pretability. These factors are key to building Artificial Intelligence
(AJ) that is trustworthy. A drawback commonly associated with ex-
isting Bayesian methods is that they increase computational costs.
Recent work has shown that Bayesian deep learning can be done
efficiently through Laplace approximation. We propose a light-
weight Julia package, LaplaceRedux. j1 that implements this
novel approach for deep neural networks trained in Flux. j1.

Keywords

Julia, Probabilistic Machine Learning, Laplace Approximation,
Deep Learning, Artificial Intelligence

1. Background

Over the past decade, Deep Learning (DL) has arguably been one
of the dominating subdisciplines of Artificial Intelligence. Despite
the tremendous success of deep neural networks, practitioners and
researchers have also pointed to a vast number of pitfalls that have
so far inhibited the use of DL in safety-critical applications. Among
other things, these pitfalls include a lack of adversarial robustness
[6] and an inherent opaqueness of deep neural networks, often de-
scribed as the black-box problem.

In deep learning, the number of parameters relative to the size of
the available data is generally huge [14]: “[...] deep neural net-
works are typically very underspecified by the available data, and
[...] parameters [therefore] correspond to a diverse variety of com-
pelling explanations for the data.” A scenario like this very much
calls for treating model predictions probabilistically [14], to cap-
ture the inherent uncertainty in the model’s predictions. This has
been shown to improve robustness [4], inherent interpretability [8]
and post-hoc explainability [13}[1].

It is therefore not surprising that interest in Bayesian deep learn-
ing has grown in recent years as researchers have tackled the prob-
lem from a wide range of angles including MCMC (see [Turing.jl),
Mean Field Variational Inference [3]], Monte Carlo Dropout [5] and
Deep Ensembles [9]]. Laplace Redux [[7, /4] is one of the most recent
and promising approaches to Bayesian neural networks (BNN).

2. Laplace Approximation for Deep Learning

LetD = {z,y}_, denote our feature-label pairs and let f(x; 0) =
y denote some deep neural network specified by its parameters 6.
We are interested in estimating the posterior predictive distribution
given by the following Bayesian model average (BMA):

p(ylz, D) = / p(yle, 0)p(6D)d6 (1)

To do so we first need to compute the weight posterior p(8|D).
Laplace approximation (LA) relies on the fact that the second-order
Taylor expansion of this posterior amounts to a multivariate Gaus-

sian q(#) = N (j1,X) centred around the maximum a posteriori

(MAP) estimate {1 = 6 = arg maxy p(6|D) with covariance equal
to the negative inverse Hessian of our loss function evaluated at the
mode 3 = —(H|;) .

To apply LA in the context of deep learning, we can train our net-
work in the standard way by minimizing the negative log-likelihood
£(0) = —log p(y|z, D). To obtain the Gaussian LA weight poste-
rior we then only need to compute the Hessian evaluated at the
obtained MAP estimate.

Laplace approximation dates back to the 18th century but despite
its simplicity, it has not been widely adopted or studied by the deep
learning community until recently. One reason for this may be that
for large neural networks with many parameters, the exact Hessian
computation is prohibitive. One can rely on linearized approxima-
tions of the Hessian but those still scale quadratically in the number
of parameters. Recent work has shown that block-diagonal factor-
izations can help in this context [11].

Another more compelling reason why LA had been mostly ne-
glected until recently is that early attempts at using it for deep learn-
ing failed: simply sampling from the Laplace posterior to compute
the exact Bayesian neural network (BNN) posterior predictive dis-
tribution in Equation [I] does not work when using approximations
for the Hessian [10]. Instead, we can use a linear expansion of the
predictive around the mode as demonstrated by Immer et al. (2020)
[7]. Formally, we locally linearize our network,

fﬁn(:v; 0) = f(z;0) + J,(6 — 0) 2)
which turns the BNN into a Bayesian generalized linear model
(GLM) where 6 corresponds to the MAP estimate as before and

J; is the network Jacobian [7] evaluated at the mode. The corre-
sponding GLM predictive,

p(yle, D) = E [p(yl iy (@:0.)], 0 ~al0))

has a closed-form solution for regression problems. For classifica-
tion problems it can be approximated using (extended) probit ap-
proximation [4].

Immer et al. (2020) [[7]] provide a much more detailed exposition of
the above with a focus on theoretical underpinnings and intuition.
Daxberger et al. (2021) [4] introduce Laplace Redux from more of
an applied perspective and present a comprehensive Python imple-
mentation: laplace.

https://turing.ml/dev/tutorials/03-bayesian-neural-network/
https://aleximmer.github.io/Laplace/

Proceedings of JuliaCon

3. LaplaceRedux.jl — a Julia implementation

The LaplaceRedux.jl package makes this new methodological
framework available to the Julia community. It is interfaced with
the popular deep learning library, Flux. j1.

Using just a few lines of code the package enables users to com-
pute and apply LA to their pre-trained neural networks. A basic
usage example is shown in Code[T} the Laplace constructor takes
a pre-trained Flux neural network nn as its only positional argu-
ment. Since the underlying model is a classifier, we need to spec-
ify the likelihood accordingly using the corresponding keyword ar-
gument. Additional keyword arguments can be used to define the
Bayesian priors and select the backend used to approximate the
Hessian among other things. The returned instance is then fitted to
the data using the generic £it! method. Note that the £it! method
also accepts a Flux .DataLoader as its second positional argument
and mini-batch training is supported.

Code 1: Fitting a pre-trained neural network to data using Laplace
Redux.

la = Laplace(nn; likelihood=:classification)
fit!(la, data)

The 1a object is a mutable and callable struct that wraps the pre-
trained neural networks along with hyperparameters relevant to the
Laplace approximation. Simply calling the instance with new data
as in Code [2] will generate GLM predictions according to Equa-
tion El In the classification case, softmax outputs are returned by
default following the convention in the Python implementation, but
this can be changed using the predict_proba keyword argument.
Itis also possible to generate conventional plug-in predictions using
the original MAP estimate by setting the 1ink_approx keyword
argument to :plugin.

Code 2: Predictions using the fitted Laplace Redux instance.

la(X) # GLM predictions
la(X; predict_proba=false) # no softmax
la(X; link_approx=:plugin) # MAP predictions

Additional methods can be used to optimize the prior precision A
and to visualize the predictions (Code[3). The optimize_prior!
method optimizes the prior precision A through Empirical Bayes
[4]. The plot method visualizes the predictions of the fitted in-
stance using|Plots.jl. The method extension is provided through the
TaijaPlotting.jl meta package.

Code 3: Prior optimization and visualization of the predictive dis-
tribution.

optimize_prior! (la) # optimize A

using TaijaPlotting

plot (la, X, y) # plot predictions

Figure[T]shows an example involving a synthetic data set consisting
of two classes. Contours indicate the predicted probabilities using
the plugin estimator (left), untuned Laplace approximation (center)
and finally optimized LA (right). For the latter two, the respective
choices for the prior precision parameter A are indicated in the title.
Relying solely on the MAP estimate, the plugin estimator produces
overly confident predictions. Conversely, the GLM predictions ac-

1(1), 2022

LA - raw (A=1.0)

LA - tuned (A=0.04)

Fig. 1: Posterior predictive distribution for binary classifier: plugin estimate
(left), untuned LA (center) and optimized LA (right). The colour of the
contour indicates the predicted class probabilities: the more yellow a region,
the more confident the classifier that samples belong to the orange class.

© ytrain
50 F yhat

2.5

)
25523 g0 g
00 b y 4 ° U\Ebzp ° ;p?,?fg}ﬂu
Q%%WJ

=25 0.0 25 5.0 75 10.0 125
Fig. 2: Posterior predictive distribution for regressor: wide regions of the
confidence interval (shaded area) indicate high predictive uncertainty.

count for predictive uncertainty as captured by the Laplace poste-
rior.

Figure 2] presents a regression example with optimized LA. Wide
regions of the confidence interval (shaded area) indicate high pre-
dictive uncertainty. Intuitively, the estimated predictive uncertainty
increases significantly in regions characterized by high epistemic
uncertainty: epistemic uncertainty arises in regions of the domain
that have not been observed by the classifier, so regions that are free
of training samples.

4. Scaling Up

As mentioned in Section[2} Laplace Redux hinges on linear approx-
imations of the Hessian, which scale quadratically in the number of
network parameters [4]]. Our package currently supports two broad
approaches to address this issue: the first approach is to compute
LA over a subnetwork with explicit control over the number of pa-
rameters; the second approach is to use more scalable approxima-
tions of the Hessians. For the second approach, the package cur-
rently offers support for Kronecker-factored approximate curvature
(KFAC) estimation [12]. A third approach is to use sample-based
linearised Laplace [2], which is not yet supported.

5. Discussion and Outlook

Laplace Redux is an exciting and promising recent development in
Bayesian deep learning. The package LaplaceRedux.jl brings
this framework to the Julia ecosystem. Future developments are
planned and contributions are very much welcome. At the time of
writing, we are particularly interested in streamlining the package’s
interface to the larger Taija ecosystem and improving our support
for scalable LA.

https://fluxml.ai/
https://docs.juliaplots.org/stable/
https://github.com/JuliaTrustworthyAI/TaijaPlotting.jl
https://github.com/JuliaTrustworthyAI

Proceedings of JuliaCon

6. Acknowledgements

I am grateful to my PhD supervisors Cynthia C. S. Liem and Arie
van Deursen for being so supportive of my work on open-source
developments. Furthermore, I would like to thank the group of stu-
dents who contributed to this package through a course project:
Mark Ardman, Severin Bratus, Adelina Cazacu, Andrei Ionescu
and Ivan Makarov.

7. References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

Patrick Altmeyer, Mojtaba Farmanbar, Arie van Deursen,
and Cynthia C. S. Liem. Faithful model explanations
through energy-constrained conformal counterfactuals, 2023.
2312.10648.

Javier Antoran, Shreyas Padhy, Riccardo Barbano, Eric Nal-
isnick, David Janz, and José Miguel Herndndez-Lobato.
Sampling-based inference for large linear models, with ap-
plication to linearised laplace, 2023. 2210.04994.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and
Daan Wierstra. Weight uncertainty in neural network. In In-
ternational Conference on Machine Learning, pages 1613—
1622. PMLR.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa
Eschenhagen, Matthias Bauer, and Philipp Hennig. Laplace
Redux-Effortless Bayesian Deep Learning. 34.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep learn-
ing. In International Conference on Machine Learning, pages
1050-1059. PMLR.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial exam-
ples. arxiv:1412.6572,

Alexander Immer, Maciej Korzepa, and Matthias Bauer. Im-
proving predictions of bayesian neural networks via local lin-
earization. arxiv:2008.08400.

Jonathan Ish-Horowicz, Dana Udwin, Seth Flaxman, Sarah
Filippi, and Lorin Crawford. Interpreting deep neural net-
works through variable importance. arxivi1901.09839,

Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty estima-
tion using deep ensembles. arxivi1612.01474.

Neil David Lawrence. Variational inference in probabilistic
models.

James Martens and Roger Grosse. Optimizing neural net-
works with kronecker-factored approximate curvature. In In-
ternational conference on machine learning, pages 2408—
2417. PMLR, 2015.

James Martens and Roger Grosse. Optimizing neural net-
works with kronecker-factored approximate curvature, 2020.
1503.05671.

Lisa Schut, Oscar Key, Rory Mc Grath, Luca Costabello,
Bogdan Sacaleanu, Yarin Gal, et al. Generating Interpretable
Counterfactual Explanations By Implicit Minimisation of
Epistemic and Aleatoric Uncertainties. In International Con-
ference on Artificial Intelligence and Statistics, pages 1756—
1764. PMLR.

Andrew Gordon Wilson. The case for Bayesian deep learning.
arxiv:2001.10995.

1(1), 2022

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/2008.08400
http://arxiv.org/abs/1901.09839
http://arxiv.org/abs/1612.01474
http://arxiv.org/abs/2001.10995

	Background
	Laplace Approximation for Deep Learning
	LaplaceRedux.jl — a Julia implementation
	Scaling Up
	Discussion and Outlook
	Acknowledgements
	References

