
Hidden Markov Topic Model:

Variational Bayes Algorithm

Eric Proffitt

June 13, 2016

Notation:

ψ Digamma function.

diagm(·) Converts a vector to a diagonal matrix.

M Number of documents.

V Number of terms in the lexicon.

K Number of topics.

Nd Length of document d.

η α

π θ

z1 z2 · · · zn−1 zn

w1 w2 · · · wn−1
wn

β

N

M

1

As you can see, I changed your notation a bit. Basically I changed the latent
topic choice for each word from x to z, I changed your Dirichlet prior on π from
α to η, and I changed the Dirichlet prior on θ from γ to α (since I use γ as one
of my variational parameters).

Also, I don’t find much improvement in topic quality by putting a prior on β,
and it slows down the algorithm considerably, so β remains a hyper-parameter
as was done in David Blei’s original LDA paper. If for some reason one needs
non-zero probabilities across the entire lexicon then I just use Laplace smooth-
ing on β post-fit.

Since you say you’re not terribly familiar with VB, this paper doubles as a
shotgun treatise on variational Bayes. Our goal is to maximize the marginal
log-likelihood

log p(w|α, η, β) =

M∑
d=1

∫ ∫ ∑
zd

p(zd, θd, πd | wd, α, η, β) log
[p(wd, zd, θd, πd | α, η, β)

p(zd, θd, πd | wd, α, η, β)

]
dθddπd,

where this canonical equality follows by Bayes’ theorem and a little algebra.
Unfortunately the distribution over latent variables is intractable to com-

pute, thus we approximate it with a simpler distribution, usually by making
some extra independence assumptions. This technique is referred to as mean-
field approximation, and originated in statistical mechanics:

M∏
d=1

p(zd, θd, πd | wd, α, η, β) ≈
M∏
d=1

q(zd | φd, λd)q(θd | γd)q(πd | τd).

q(zd1 |λd) = Cat(λd)

q(zdn | zdn−1
, φd) =

[
φd
]
zdn ,zdn−1

q(θdi=1:K,l
| γdi=1:K,l

) = Dir(γdi=1:K,l
)

q(πd | τd) = Dir(τd)

It turns out that due to the fact that the KL-divergence is always positive,
making this approximation ensures that our new ”approximate marginal log-
likelihood” lower-bounds the true marginal log-likelihood. Furthermore, due
to the continuity of the KL-divergence, as our approximate distribution q gets
closer to the true distribution over the latent variables (with the KL-divergence
acting as our measure of similarity), our approximate marginal log-likelihood
gets closer to the true log-likelihood:

2

M∑
d=1

∫ ∫ ∑
zd

p(zd, θd, πd | wd, α, η, β) log
[p(wd, zd, θd, πd | α, η, β)

p(zd, θd, πd | wd, α, η, β)

]
dθddπd

≥
M∑
d=1

∫ ∫ ∑
zd

q(zd | φd, λd)q(θd | γd)q(πd | τd) log
[p(wd, zd, θd, πd | α, η, β)

q(zd | φd, λd)q(θd | γd)q(πd | τd)

]
dθddπd

= log p(w|α, η, β)−
M∑
d=1

DKL

(
q(zd | φd, λd)q(θd | γd)q(πd | τd) || p(zd, θd, πd | wd, α, η, β)

)
.

Note that since the KL-divergence is not symmetric, it’s actually the reverse
KL-divergence that we’re using, where q is acting as the true distribution of
the underlying random variable. Thus information theorists might take excep-
tion, but since we’re using the KL-divergence for its properties, and not for it’s
information theoretic interpretation, we’re generally ok with this.

Therefore by iterating back and forth between improving the approximate
latent-variable distribution q (by optimizing its own set of parameters φ, λ, γ, τ),
and optimizing the global hyper-parameters α, η, β, we have turned the problem
of fitting our model into an optimization problem.

Using the log function and the linearity property of sums and integrals to
break down the above expression, we obtain:

M∑
d=1

(
Eq[log p(πd | η)] +

K∑
l=1

Eq[log p(θd1:K,l
| α1:K,l)]

+ Eq[log p(zd1 | πd)] +

Nd∑
n=2

Eq[log p(zdn | zdn−1
, θd)]

+

Nd∑
n=1

Eq[log p(wdn | zdn , β)]− Eq[log q(πd | τd)]

−
K∑
l=1

Eq[log q(θd1:K,l
| γd1:K,l

)]− Eq[log q(zd1 | λd)]

−
Nd∑
n=2

Eq[log q(zdn | zdn−1
, φd)]

)
.

3

Next we compute analytic forms for all expectations:

L(λ, φ, τ, γ, η, α, β) =

M∑
d=1

(
log Γ

(K∑
i=1

ηi)−
K∑
i=1

log Γ(ηi) +

K∑
i=1

(ηi − 1)(ψ(τdi)− ψ
(K∑
p=1

τdp
)
)

+

K∑
l=1

(
log Γ

(K∑
i=1

αil
)
−

K∑
i=1

log Γ(αil) +

K∑
i=1

(αil − 1)(ψ(γdil)− ψ
(K∑
p=1

γdpl
)
)
)

+

K∑
i=1

λdi(ψ(τdi)− ψ
(K∑
p=1

τdp
)
)

+
K∑
l=1

(Nd∑
n=2

eTl φ
n−2
d λd

)(
− ψ

(K∑
p=1

γdpl
)

+

K∑
i=1

φdilψ(γdil)
)

+

Nd∑
n=1

(log β1:K,wdn
)Tφn−1

d λd

−
(

log Γ
(K∑
i=1

τdi
)
−

K∑
i=1

log Γ(τdi) +

K∑
i=1

(τdi − 1)(ψ(τdi)− ψ
(K∑
p=1

τdp
)
)
)

−
K∑
l=1

(
log Γ

(K∑
i=1

γdil
)
−

K∑
i=1

log Γ(γdil) +

K∑
i=1

(γdil − 1)(ψ(γdil − ψ
(K∑
p=1

γdpl
)
)
)

−
K∑
i=1

λdi log λdi −
K∑
l=1

(Nd∑
n=2

eTl φ
n−2
d λd

)(K∑
i=1

φdil log φdil
))
.

Thus our goal is now to maximize (via coordinate ascent) our objective
function L:

max
λ,φ,τ,γ,η,α,β

L(λ, φ, τ, γ, η, α, β).

Setting partial derivatives equal to zero and analytically solving for optimal
points suffices for parameters τ, γ and β:

τdi = ηi + λdi

γdil = αil + φdil ·
[Nd∑
n=2

φn−2
d λd

]
l

β̂j =

M∑
d=1

Nd∑
n=1

wjnφ
n−1
d λd

βij = β̂ij/

V∑
v=1

β̂iv

4

For optimizing parameters α and η we can use an interior point Newton
method, the computations for their respective gradients and inverse Hessians
proceed in a fashion very similar to that done for α in David Blei’s original
LDA paper (found on his website).

For λ we use Lagrange multipliers to form the objective function

Lλd
=
[[
ψ(τdl)− ψ

(K∑
p=1

τdp
)]T
l=1:K

+
[(
− ψ

(K∑
p=1

γdpl
)

+

K∑
i=1

φdilψ(γdil)
)
eTl

Nd∑
n=2

φn−2
d

]T
l=1:K

+
(Nd∑
n=1

(log β1:K,wdn
)Tφn−1

d

)
−
[(K∑

i=1

φdil log φdil
)
eTl

Nd∑
n=2

φn−2
d

]T
l=1:K

]
· λd

−
K∑
i=1

λdi log λdi + vd(1
Tλd − 1),

where the final piece involving vd is the Lagrange multiplier ensuring that λd
remains a unit vector. The piece inside the large square brackets is a length K
vector, denoting this vector by Cd, and then taking the derivative with respect
to λd, we obtain:

Lλd
= CTd λd −

K∑
i=1

λdi log λdi + vd(1
Tλd − 1).

∂Lλd

∂λd
= CTd − (log λd)

T − 1T + vd1
T = 0

Solving for λd, we obtain:

λd = exp(Cd + vd1− 1),

note that exp is acting coordinate-wise on the vector Cd + vd1 − 1. Now sub-
stituting this value back in to Lλd

and taking the derivative with respect to vd,
we have:

Gvd = CTd exp(Cd + vd1− 1)− (Cd + vd1− 1) exp(Cd + vd1− 1)

+ vd
(
1T exp(Cd + vd1− 1)− 1

)
∂Gvd
∂vd

= 1T exp(Cd + vd1− 1)− 1 = 0.

This equation can then be solved for vd using Newton’s method.

5

Finally, we come to the problem of optimizing φ. The objective function for
φ, for a particular document d, is given by:

Lφd
=
[
− ψ

(K∑
p=1

γdpl
)

+

K∑
i=1

φdil(ψ(γdil)− log φdil)
]
l=1:k

·
(Nd∑
n=2

φn−2
d

)
· λd

+

Nd∑
n=1

[log β1:K,wdn
]T · φn−1

d · λd

∂Lφd

∂φd
= [ψ(γdil)− log φdil − 1]i=1:K, l=1:K · diagm

((Nd∑
n=2

φn−2
d

)
· λd
)

+

Nd∑
n=3

n−3∑
r=0

(
(φrd)

T ·
[
− ψ

(K∑
i=1

γdij
)

+

K∑
i=1

φdil(ψ(γdij)− log γdij)
]T
j=1:K

· λTd · (φn−3−r
d)T

)
+

Nd∑
n=2

n−2∑
r=0

(φrd)
T · [log βin]i=1:K · λTd · (φn−2−r

d)T .

We have two important features of this optimization problem working in our
favor. First, the problem is low-dimensional, since φd is a matrix of size K×K,
where K is the number of topics in our topic model, which is almost always
< 100. Second, the gradient, as seen above, is analytically computable (just
barely, see formula (91) in the Matrix Cookbook).

Unfortunately, there are also a number of features which work against us.
First off, the optimization problem is constrained, φd is a left stochastic matrix
(all entries nonnegative with each column summing to 1). Thus we have the
(fortunately linear) constraints

φTd 1 = 1

φd ≥ 0.

However a possibly even more serious problem is the complexity of the gradi-
ent. Each evaluation of the gradient involves hundreds of matrix multiplications,
which means large step-number optimizations such as gradient ascent are pro-
hibitively expensive. If φ was a global hyper-parameter which only needed to
be optimized once for every pass through the corpus, then this might be ok, but
φ is a document-level variational parameter, which means we have a unique φd
attached to each document, meaning that any optimization procedure needs to
be fast, on the order of a few milliseconds per document.

I’ve tried a number of optimization methods including projected gradient
ascent along the manifold of stochastic matrices, various gradient ascent and
gradient-free methods, numerical hessian, numerical gradient and numerical
hessian. This was several months ago so I can’t exactly remember why these
methods all failed, most I think were too slow or the augmentation required to
keep it on the surface of stochastic matrices caused too much error and it didn’t

6

optimize at all, but I’d have to try some of them again to be sure. There might
be a way to leverage some statistical algorithm like the forward-backwards al-
gorithm, I tried one implementation of this for general HMMs in Julia, but it
was super slow.

I have everything else coded up and working. Basically if I just don’t opti-
mize the φ variables and leave them fixed, then the remaining variables optimize
fine and at a good speed. Also beware I wrote these notes up fairly quickly so
there might be some errors in the math, thus don’t hesitate to ask if you have
questions or if you find what you think is an error.

7

