
Basics

Set the Scene
The Scene object holds everything in a plot
Initializing: scene = Scene()

Basic plotting
You can put your mouse in the plot
window and scroll to zoom. Right click and
drag lets you pan around the scene, and left
click and drag lets you do selection zoom
(in 2D plots), or orbit around the scene
(in 3D plots).

It is worth noting initally that if you run a
Makie.jl example and nothing shows up, you
likely need to do display(scene) to render
the example on screen.

3

Scatter plot Line plot
using Makie

 x = rand(10)
 y = rand(10)
 colors = rand(10)
 scene = scatter
(x, y, color = colors)

using Makie

 x = range(0, stop = 2pi,
 length = 40)
 f(x) = sin.(x)
 y = f(x)
 scene = lines
(x, y, color = :blue)

Animation
Makie.jl saves to: .mkv, .mp4, .webm, .gif

using Makie
 scene = lines(rand(10); linewidth=10)
 record(scene, "line_changing_colour.mp4", 1:255;
 framerate = 60) do i
 scene.plots[2][:color] = RGBf0(i/255, (255 - i)/255, 0)
 # animate scene
 end

All you need to do is wrap your changes in the
record function.

Using time
time = Node(0.0)
lift is using to set up a pipeline to access
its value.
Whenever the Node time is updated
(e.g. when you push! to it), the plot will
also be updated.

push!(time, Base.time())

Animating in a loop
for loop:

for i = 1:length(r)
 s[:markersize] = r[i]
 sleep(1/24)
end

You don’t need to use
AbstractPlotting.force_update!() in a loop

If you want to animate a plot while interacting,
use async_latest

Appending data to a plot
If you're planning to append to a plot, like a
lines or scatter plot, you will want to pass an
Observable Array of Points to the plotting
function, instead of passing x, y as
separate Arrays. This will mean that you won't
run into dimension mismatch issues.

Interaction

Node interaction pipeline
A Node is a Julia structure that allows its value
to be updated interactively.

x = Node(0.0)

The value of the x can be changed simply
using push!
to_value to get the value of a Node

Nodes depending on other Nodes
You can create a node depending on another
node using lift:

f(a) = a^2
y = lift(a -> f(a), x)

Updating the value of x will also update the
value of y!

Event triggering
Often it is the case that you want an event to
be triggered each time a Node has its value
updated. This is done using the on-do block
from Observables.

on(x) do val
 println("x just got the value $val")
end
push!(x, 5.0);

Functions

text
text(string)
Plots a text.
meshscatter

meshscatter(positions)
meshscatter(x, y)
meshscatter(x, y, z)
Plots a mesh for each element (x, y, z), (x, y),
or positions. markersize is a scaling applied to
the primitive passed as marker.

scatter
scatter(positions)
scatter(x, y)
scatter(x, y, z)
Plots a marker for each element in (x, y, z),
(x, y), or positions.

mesh
mesh(x, y, z)
mesh(mesh_object)
mesh(x, y, z, faces)
mesh(xyz, faces)
Plots a 3D mesh.

lines
mesh(x, y, z)
mesh(mesh_object)
mesh(x, y, z, faces)
mesh(xyz, faces)
Creates a connected line plot for each
element in (x, y, z), (x, y) or positions.

volume
volume(volume_data)
Plots a volume.

image
image(x, y, image)
image(image)
Plots an image on range x, y

contour
contour(x, y, z)

Creates a contour plot of the plane spanning
x::Vector, y::Vector, z::Matrix

surface
surface(x, y, z)
Plots a surface, where (x, y) define a grid
whose heights are the entries in z.

Check Makie.jl docs for more informations

