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Abstract

In this report we study the invariant prediction approach for identifying direct

causes of a target from a combination of observational and interventional data [Peters,

Bühlmann, and Meinshausen, 2016]. We briefly review the literature in causal discov-

ery. Then we will present the methodology of the paper and its theoretical guarantees.

The key technique is to conduct inference by aggregating pieces of information, each

of which corresponds to a set of variables that satisfy a conditional invariance condi-

tion, in a way that controls error. We provide a software package that implements

the algorithm and use it to study the performance of invariant prediction on simulated

data and two real-world datasets, including a large gene knockout experiment dataset.

Both theory and experiments highlight that invariant prediction guards against false

positive discoveries. Finally we discuss its strengths and weaknesses.

1 Introduction

Identifying causes for an outcome is of fundamental importance to many domains of appli-

cations. Building such a “causal model” is different from the classical notion of building a

regression model, and as addressed by Peters, Bühlmann, and Meinshausen [2016], an es-

sential difference is that the validity of prediction of a causal model should be invariant to

changes of the environment. In contrast, regression models tend to only work within the en-

vironment where training data was generated. Hence, a regression model can be considered

as a first-order approximation to a causal model when the environment is subject to little or

no change.
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To concretely illustrate such a difference, we consider the following motivating example

due to Peters [2015]. Suppose a biologist is interested in identifying the factors that influence

a certain phenotype, and she has found that the expression of the phenotype is positively

correlated with the expression level of gene A (Fig. 1). Then she wonders whether the

expression of the phenotype can be controlled by the level of gene A, or simply, if she can

suppress the phenotype by removing gene A (i.e., setting the expression level of gene A to

zero)? This question cannot be answered based on a regression model; instead, the answer

shall depend on the underlying causality. For example, when gene A is a direct cause of the

phenotype, removing the gene would likely suppress the phenotype (Fig. 2 left); however,

when there is another gene B that is a common cause of both the phenotype and gene A,

the phenotype would remain at its typical level even when gene A is removed (Fig. 2 right).

From this example, we shall expect that a valid causal model would correctly predict the

outcome under an active change of the environment (i.e., removal of gene A), which is called

an intervention in the context of causal inference.
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Figure 1: The expression of phenotype is found to be linearly correlated with the expression

level of Gene A.

There are mainly two theoretical frameworks to model causality (see Richardson and

Robins [2013] for a unified view). One is potential outcomes and counterfactuals, also known

as the Neyman-Rubin model [Neyman, 1923, Rubin, 1974, 2005], where causality can be

concluded by contrasting the outcomes under two (or more) scenarios. For example, in a

clinical trial, we want to contrast the outcome when one has taken the medication (Yi(Xi =
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Figure 2: The expression level phenotype when gene A is removed (arrow at 0). Left: when

gene A is a direct cause of phenotype; Right: when gene A is not a cause of phenotype.

1)) with the outcome when one has not taken the medication (Yi(Xi = 0)). The fundamental

problem is that only one of the two (or more) potential outcomes is observable, and hence the

causal effect (Yi(Xi = 1)− Yi(Xi = 0)) is not identifiable for each individual. Nevertheless,

under randomized assignment of Xi the average treatment effect E[Yi(Xi = 1) − Yi(Xi =

0)] is identifiable from data, and works in this framework are mainly concerned with the

identification and estimation of the effect under various settings.

The other framework, which the work of Peters, Bühlmann, and Meinshausen [2016]

builds upon, is structural equations [Bollen, 1983, Robins et al., 2000, Pearl, 2009] and

graphical models [Lauritzen and Spiegelhalter, 1988, Lauritzen, 1996, Spirtes et al., 2000].

A structural equation model (SEM) is specified with a set of structural equations and an

associated error distribution. For example, consider the following SEM with p = 5 variables

X1, X2, X3, X4, Y :

X4 = f4(ε4), X1 = f1(ε1), X2 = f2(X4, ε2), Y = fY (X1, X2, εY ), X3 = f3(Y, ε3),

εi ∼ Gi for i = 1, 2, 3, 4 and Y ∼ GY , all independently,
(1)

where fi’s and fY are deterministic functions. Here, Pa(·) denotes the set of parents of a

variable, which appear on the RHS of the corresponding equation and hence are interpreted

as direct causes of the LHS variable. By drawing a directed edge from each j ∈ Pa(i) to i,

we have a graphical representation of the SEM (see Fig. 3 left). We assume all the errors are

independent, which implies that εi ⊥⊥ Pa(i) for every i. For the purpose of this report, we
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assume the graph is a directed acyclic graph (DAG), and therefore we can directly simulate

(Y,X1, · · · , X4) from the observational distribution by following Equation (1) from top to

bottom in the graph, i.e., by the topological ordering. In other words, we can first sample

the errors, and then, starting from the variables without parents, iteratively substitute into

the RHS side of equations by following the arrows, until all the variables are generated.

The SEM also describes interventional distributions by replacing the equation governing

the intervened variables with its interventional condition, while leaving the other equations

unchanged. For example, a do-intervention [Pearl, 2009] of setting X2 to zero (Fig. 3 right)

amounts to swapping the equation X2 = f2(X4, ε2) with a new equation X2 = 0 in Eq. (1),

while keeping the other equations unchanged. Since X2 no longer depends on X4 upon

intervention, the edge stemming from its parent is removed. This is illustrated in the right

panel of Fig. 3, where we use a hammer to denote do-intervention. We will explain in more

details in Section 2.1.

X4

X1 X2

Y

X3

X4

X1 X2

Y

X3

X

Figure 3: Graphical model of the SEM corresponding to Equation (1) (left) and upon do-

intervention on X2 (right).

Causal Discovery In the context of unknown structural equations and graph structures,

we would want to identify from data, either fully or partially, the set of parents of a target

variable Y . This is known as the task of causal discovery. A common approach is based on

characterizing and estimating the Markov equivalence class of the graph [Spirtes et al., 2000,

Chickering, 2002, Kalisch and Bühlmann, 2007], and inferring the causal variables when

identifiable [Maathuis et al., 2009, VanderWeele and Robins, 2010]. These methods typically
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operate as a graph search algorithm and often adopt some greedy or approximation strategy

due to the size of the space. Among them, some are able to incorporate both observational

and interventional data, or datasets from different interventions [Hauser and Bühlmann,

2012, He and Geng, 2008], but they usually require specifying what variables are intervened.

In the following, we will firstly describe the invariant prediction method and its theoret-

ical guarantees in Section 2. In Section 3, we will examine the performance of the proposed

method relative to other methods on simulated datasets and two real-world datasets, in-

cluding a large gene knockout experiment dataset. Finally in Section 4, we will discuss its

strengths, weaknesses and potential future work.

2 Methods

2.1 Formulation and Assumptions

Suppose we want to perform causal discovery for a target variable Y of interest, which is

governed by the following equation in an SEM

Y = fY ({Xi : i ∈ Pa(Y )}, εY ), εY ∼ GY , εY ⊥⊥ Pa(Y ). (2)

Suppose Y ∈ R (generalizable to discrete outcomes) and fY : R|Pa(Y )|+1 → R is a determin-

istic function. Pa(Y ) is the set of direct causes of Y that we want to identify, either fully or

partially depending on the amount of information we have. In the following, we also use the

notation XS := {Xi : i ∈ S} for a set of indices S.

fY , GY and Pa(Y ) in Eq. (2) are unknown; we also do not know the equations and the set

of parents for other variables in the SEM. We would like to perform causal inference based

on the datasets

(X, Y )(e=1), (X, Y )(e=2), · · · , (X, Y )(e=|E|)

that come from a finite set of environments E . Suppose X := (X1, · · · , Xp)
T ∈ Rp denotes

all the covariates that are measured in the dataset, and we assume that all the direct causes

of Y are included inX. In other words, we make the following causal sufficiency assumption.

Assumption 1 (causal sufficiency). There is no unobserved direct cause of the target, namely

Pa(Y ) ⊆ {1, · · · , p}.
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Note that this assumption is not always testable and we discuss this issue in Section 4. We

will use superscript e to denote the environment that (X, Y ) come from. For example, e = 1

corresponds to observational data (e.g., Fig. 3 left), and e = 2, · · · , |E| each corresponds data

recorded under a different intervention (e.g., Fig. 3 right corresponds to e = 2). In general

(X, Y )(e=i) and (X, Y )(e=j) are defined on different probability spaces for i 6= j. Note that

sample sizes can differ across environments. We can stack all the datasets together as a table

X1 X2 · · · Xp Y e
...

...
...

... 1
...

... · · · ...
...

...
...

...
...

... |E|

,

where e groups the rows that come from the same data generating mechanism.

Here we define an environment as a “version” (or a “modified version”) of the SEM,

assuming that the equation governing the target stays the same across environments. In

other words, target Y is not intervened in all environments.

Assumption 2 (target is not intervened). For every environment e ∈ E it holds that

Y e = fY (Xe
Pa(Y ), ε

e
Y ), εeY ∼ GY and εeY ⊥⊥ Xe

Pa(Y ), (3)

where fY , GY and the set of indices Pa(Y ) do not depend on e.

Under such assumption, an environment e may correspond to one of the following.

1. Observational (the original SEM).

2. Do-intervention on one or several variables other than Y . When we perform a do-

intervention on variables De ⊂ {1, · · · , p} in environment e, we replace the equation

of j ∈ De to

Xe
j = dej , (4)

where dej is the value imposed on Xj. Upon do-intervention, Xe
j no longer depends on

Xe
Pa(Xj)

and hence the edges from its parents are removed (see Fig. 3 right).
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3. Noise (soft) intervention on one or several variables other than Y . For an inter-

vened variable j ∈ Be in environment e, we keep the function fj but replace the noise

distribution with Ge
j 6= Gj. The new equation becomes

Xe
j = fj(X

e
Pa(Xj)

, εej), εej ∼ Ge
j and εej ⊥⊥ Xe

Pa(Xj)
. (5)

For example, Ge
j can be specified as a scaling or a shift of Gj, namely εej =d s

e
jεj or

εej =d εj + δej . Contrary to do-interventions, here the edges from its parents are kept.

4. Observational data under “changed environment”. This subsumes other arbi-

trary changes made to the equations other than Equation (3).

Conceptually, Assumption 1 and Assumption 2 are the two main conditions; later we will

introduce another assumption on the linearity of fY due to technical difficulty. We also

remark that, compared to the causal sufficiency assumption, one usually have a better clue

on whether the target variable has been intervened or not.

2.2 Inference with Conditional Invariance

2.2.1 Conditional Invariance

For a set of covariates S ⊆ {1, · · · , p}, we say that S satisfies conditional invariance if for

every e 6= f ∈ E , the conditional probability measure satisfies

P (Y e|Xe
S = xS) =d P (Y f |Xf

S = xS) for all xS. (6)

It is immediate from Assumption 2 that S = Pa(Y ) satisfies conditional invariance. To be

more explicit, for every e ∈ E , and for any measurable A ⊆ R and any x ∈ R|Pa(Y )|, by

Eq. (3) we have

P e(Y e ∈ A|Xe
Pa(Y ) = x) = GY ({ε : fY (x, ε) ∈ A}), (7)

which does not depend on e. However, is S = Pa(Y ) the only set that satisfies conditional

invariance? Let us consider the following example.

Example 1. Consider the structural equation model under three environments as shown in

Fig. 4. We make the following observations on the invariance of P (Y e|Xe
S) for different S.
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1. S ∈ {∅, {1}, {2}} does not satisfy conditional invariance, because both X1 and X2 are

intervened in e = 2.

2. S = {1, 2} = Pa(Y ) satisfies conditional invariance.

3. S = {1, 2, 4} also satisfies conditional invariance because P (Y e|Xe
1 , X

e
2 , X

e
4) = P (Y e|Xe

1 , X
e
2)

by conditional independence. Then the invariance follows from the invariance of

P (Y e|Xe
1 , X

e
2).

4. S = {1, 2, 3} does not satisfy conditional invariance. In e ∈ {1, 2}, Y is not condition-

ally independent of X3 given X1 and X2; but in e = 3, Y is conditionally independent

of X3 given X1 and X2.

5. S = {1, 4} does not satisfy conditional invariance for e ∈ {1, 2, 3}, but does satisfy for

e ∈ {1, 3}.

e = 1

X4

X1 X2

Y

X3

e = 2

X4

X1 X2

Y

X3

e = 3

X4

X1 X2

Y

X3

Figure 4: Example of an SEM under |E| = 3 environments. The hammer symbol denotes a

do-intervention.

To summarize what we have learned so far:

1. S = Pa(Y ) always satisfies conditional invariance.

2. There might exist other sets S 6= Pa(Y ) that also satisfy conditional invariance.

3. In general, whether or not S satisfies conditional invariance depends on both S and

the environments E considered.
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4. It is not true that any S ⊃ Pa(Y ) satisfies conditional invariance.

It is worth mentioning that the conditional invariance of Pa(Y ) has been known as a direct

consequence of the local Markov property of SEMs [Pearl, 2009]; however, it has not been

previously exploited as a major tool for inference. Supposing we collect all the sets that

satisfy conditional invariance, then Pa(Y ) must be one of these sets although we cannot tell

which one it is. Essentially, the idea of Peters, Bühlmann, and Meinshausen [2016] is to

perform estimation by aggregation.

2.2.2 Estimation by Aggregation

For every subset of covariates S ⊆ {1, · · · , p}, consider testing

H0,S(E) : P (Y e|Xe
S) is invariant ∀e ∈ E , vs. H1,S : P (Y e|Xe

S) is not invariant. (8)

Suppose we can test H0,S(E) versus H1,S(E) from datasets {(X, Y )e : e ∈ E} at level α

uniformly for all S ⊆ {1, · · · , p}, namely

P0,S(H0,S(E) rejected) ≤ α for all S ⊆ {1, · · · , p}. (9)

And suppose we collect all the sets S such that H0,S(E) is not rejected. Can we aggregate

them usefully to partially (or fully) identify Pa(Y ), while controlling the error of making a

false discovery? It turns out “intersection” is such an aggregation operator.

We describe the following template of the invariant prediction algorithm.

Algorithm 1 Invariant Prediction at level α

for S ⊆ {1, · · · , p} do

Test H0,S : P (Y e|Xe
S) invariant for all e ∈ E at level α

if H0,S not rejected then

Construct (1-α)-level confidence set Γ̂S from data pooled from all the environments

end if

end for

return the set of estimated direct causes Ŝ(E) and the confidence set for direct causal

effects Γ̂(E), as defined in Eq. (10) and Eq. (11) respectively.
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Ŝ(E) =
⋂
{S : H0,S(E) not rejected}, (10)

Γ̂(E) =
⋃
{Γ̂S : H0,S(E) not rejected}. (11)

We will define direct causal effects in the next section, where we assume linearity on

fY ; and we will also leave the description of confidence sets to Section 2.2.4. For now, we

focus on the proposed estimator Ŝ(E). It is guaranteed with high probability to be (i) either

an empty set (no discovery) or (ii) a non-empty subset of Pa(Y ). We have the following

theorem.

Theorem 1 (family-wise error rate). Suppose that H0,S(E) is tested at level α uniformly for

all set of variables S ⊆ {2, · · · , p + 1} and set of environments E, under Assumption 2 we

have

P (Ŝ(E) ⊆ S∗) ≥ 1− α. (12)

Proof. By the definition of Ŝ(E) in Eq. (10), we know {H0,Pa(Y ) not rejected} implies Ŝ(E) ⊆

Pa(Y ). Hence, we have

P (Ŝ(E) ⊆ S∗) ≥ P (H0,Pa(Y )(E) not rejected) ≥ 1− α,

where the last inequality comes from the fact that H0,S is tested uniformly at level α.

Theorem 1 basically states that the family-wise error rate (FWER), namely the proba-

bility of making any false discovery, is bounded by α. We also have the following natural

result that as we collect data from more environments, we make no fewer discoveries.

Proposition 1 (monotonicity). Suppose {H0,S(E ′) not rejected} always implies {H0,S(E) not rejected}

for E ⊆ E ′. Then for E ⊆ E ′ we have Ŝ(E) ⊆ Ŝ(E ′) and Γ̂(E) ⊇ Γ̂(E ′).

Proof. For E ⊆ E ′, by the supposition we have

{S : H0,S(E) not rejected} ⊆ {S : H0,S(E ′) not rejected}.

Then the proposition follows from the definitions in Eqs. (10) and (11) in terms of intersection

and union.
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From this proposition, it is natural to postulate that Pa(Y ) can be eventually fully

discovered, i.e., Ŝ(E) = Pa(Y ), when the set of environments E becomes “sufficiently rich”.

However, we do not have a complete characterization of conditions for full discovery; Peters,

Bühlmann, and Meinshausen [2016] propose two sufficient conditions for full discovery under

Gaussian linear SEM. We list these results as Theorem 2 for completeness. Since these

conditions are hardly met in practice and irrelevant to the experiments performed, we will

omit the details and just focus on the case of S ⊆ Pa(Y ) for the rest of the report.

Theorem 2 (full discovery). For a linear Gaussian SEM and a set of environments E. We

have P (Ŝ(E) = Pa(Y ))→ 1 as mine∈E ne →∞ if any of the following is satisfied:

1. For each j ∈ {1, · · · , p}, there exists e ∈ E such that De = {j} and Xj is do-intervened

to dej 6= EXj (see Eq. (4)),

2. For each j ∈ {2, · · · , p + 1}, there exists e ∈ E such that Be = {j} and Xj is noise-

intervened with either scaling 1 6= (sej)
2 <∞ or shift δej 6= 0 (see Eq. (5)).

2.2.3 Testing Conditional Invariance

From the previous section, the problem is reduced to testing conditional invariance uniformly

at level α. However, it is in general difficult to test whether (Y e|Xe
S = xS) =d (Y f |Xf

S = xS)

holds for every xS ∈ R|S| when the underlying fY is nonlinear. To proceed, we circumvent

this technical difficulty by assuming Y as a linear combination of XPa(Y ) and the error term

εY . We strengthen Assumption 2 to the following linear form.

Assumption 3 (target is not intervened; linearity). For every environment e ∈ E it holds

that

Y e =

p∑
i=1

γ∗iX
e
i + εeY with γ∗i = 0 for i /∈ Pa(Y ), εeY ∼ GY , E εeY = 0 and εeY ⊥⊥ Xe

Pa(Y ), (13)

where {γ∗i : i = 1, · · · , p}, GY and the set of indices Pa(Y ) do not depend on e.

Note that without loss of generality, we assume Y is centered and intercept is suppressed.

Also, by Eq. (13) we only assume that, in the SEM, the equation governing Y is linear; we

do not make linear assumptions on the other equations. In Equation (13), the coefficients

γ∗i can be interpreted as the direct causal effect of Xi on Y .
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Non-Gaussian Noise Under Assumption 3, testing H0,S(E) becomes testing

H0,S(E) : ∃γS ∈ R|S| such that Y e − γ>SXe
S ⊥⊥ Xe

S for every e ∈ E ,

and Y e − γ>SXe
S =d Y

f − γ>SX
f
S for every e 6= f ∈ E .

(14)

Moreover, we can test Eq. (14) by (i) obtaining least square estimate γ̂S by regression Y

on XS with data pooled from all the environments and (ii) testing equality of distribution

of residuals (Y e − γ̂>SXe) across environments e ∈ E . Such a procedure is called “Method

II” in Peters, Bühlmann, and Meinshausen [2016]. Note that in step (ii), when the error is

non-Gaussian, we need to use nonparametric tests, such as Kolmogorov-Smirnov test or rank

test, for testing identical distribution of residuals. Also, in step (i) we rely on the consistency

of γ̂S and hence the resulting test has level α asymptotically.

Gaussian Noise When GY = N (0, σ2) in Eq. (13), we can perform exact level-α test of

H0,S for a pair of environments with the Chow test. The Chow test [Chow, 1960] is invented

in econometrics, and is commonly used to test the equality of regression coefficients under

Gaussian error with equal variances. Since we might have more than two environments,

for each e we can perform a Chow test between data from e and data from all the other

environments, and combine the p-values with Bonferroni correction [Bonferroni, 1936].
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Algorithm 2 Combined Chow test for H0,S(E) at level α

for e ∈ E do

Let (Xe
S,y

e) be the dataset for environment e with sample size ne.

Let (X−eS ,y−e) be the dataset combined from E \ {e}, with sample size n−e.

Let γ̂−eS be the least-square estimator and σ̂2 be the estimated error variance, both

from (X−eS ,y−e).

Compute p-value from the following F -distribution

pe = 1− F
(
DT

e Σ−1D De

σ̂2ne

;ne, n−e − |S| − 1

)
, (15)

where De = ye −Xe
Sγ̂
−e
S is the prediction residual on e, and ΣD is the covariance matrix

given by

ΣD = Ine +Xe
S(X−e>S X−eS )−1Xe>

S . (16)

Reject H0,S(E) if pe < α/|E|.

end for

The combined Chow test retains level α since (i) under H0,S(E), the regression coefficients

and error variances are the same across environments and (ii) Bonferroni correction controls

Type-I error via the union bound P0,S(
⋃

e∈E{pe < α/|E|}) ≤
∑

e∈E P (pe < α/|E|) = α.

2.2.4 Confidence Intervals

Algorithm 1 aggregates confidence sets by taking union of Γ̂S such that H0,S(E) is not rejected

(see Eq. (11)). For simplicity, we choose Γ̂S to be a rectangular confidence set for γ∗ at level

(1−α): (simultaneous) level-(1−α) confidence intervals for γ∗i : i ∈ S, and {0} for γ∗i : i /∈ S.

It holds that the aggregated confidence intervals (set) achieves coverage (1− 2α).

Theorem 3 (confidence intervals). Suppose that H0,S(E) is tested at level α uniformly for all

set of variables S ⊆ {2, · · · , p+ 1} and set of environments E. And suppose Γ̂S has coverage

(1− α) uniformly for all (γS, S) that satisfy Eq. (14). Under Assumption 3 we have

P (γ∗ ∈ Γ̂(E)) ≥ 1− 2α. (17)
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Proof. We have

P (γ∗ /∈ Γ̂(E)) = P
(
{γ∗ /∈ Γ̂(E)}

⋂
{H0,Pa(Y ) rejected}

)
+ P

(
{γ∗ /∈ Γ̂(E)}

⋂
{H0,Pa(Y ) not rejected}

)
,

where

P
(
{γ∗ /∈ Γ̂(E)}

⋂
{H0,Pa(Y ) rejected}

)
≤ P (H0,Pa(Y ) rejected) ≤ α

because H0,S is tested at level α uniformly. Also, by the definition in Eq. (11),

P
(
{γ∗ /∈ Γ̂(E)}

⋂
{H0,Pa(Y ) not rejected}

)
≤ P (γ∗ /∈ Γ̂Pa(Y )) ≤ α,

where the last inequality follows from the uniform (1 − α)-coverage of Γ̂S. Combining the

two, we have P (γ∗ ∈ Γ̂(E)) ≥ 1− 2α.

2.2.5 Computational Complexity and Screening

To ensure that the truth Pa(Y ) is aggregated in construction of Ŝ(E) and Γ̂(E), Algorithm 1

iterates over 2p subsets. Suppose we use the Chow test. Each call of Algorithm 2 costs

O(p2n−e) for least square and about O(n3
e) for matrix inversion in Eq. (15). Assuming ne is

the same for all e and ne � p, the worst case complexity is O(2p|E|n3
e). In practice, one can

test smaller subsets first in case of early termination when the running intersection becomes

empty. Besides, when it is not necessary to report confidence intervals, we can skip testing

supersets of the running intersection. These time-saving strategies are implemented in our

Julia package InvariantCausal (see Section 2.3).

Nevertheless, the computational complexity quickly becomes formidable as p grows. In

practice, we have to reduce p to around 10 for a reasonable running time. Peters, Bühlmann,

and Meinshausen [2016] suggest restricting to a small set of variables preselected by a screen-

ing algorithm, such as lasso [Tibshirani, 1996] and square-root lasso [Belloni et al., 2011].

We also make use of high-dimensional ordinary least square projections [Wang and Leng,

2016] for screening when p � n. However, in general it is not guaranteed that all variables

in Pa(Y ) are kept after screening; and when the screening algorithm fails to cover Pa(Y ),

guarantees of Ŝ(E) and Γ̂(E) are lost. We illustrate such a phenomenon in Section 3.1.
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2.3 Software Package

Accompanying this report, we provide a software package InvariantCausal1 implemented in

Julia [Bezanson et al., 2017]. Compared to the original R package InvariantCausalPrediction2

from the authors, our package offers the following features.

• Generally faster computation. Avoids testing supersets of the running intersection

when only variable selection is required (option selection only=true).

• More robust high dimensional screening with HOLP algorithm [Wang and Leng, 2016].

• Conditional invariance test for logistic regression with higher power [Perng and Littell,

1976]. See also Section 3.3.

3 Experimental Results

We study the performance of invariant prediction and compare it to relevant methods

with experiments on simulated data and real-world data. We will use our Julia package

InvariantCausal to run the proposed method.

3.1 Simulated Experiment

3.1.1 Settings

We generate data from random instances of Gaussian linear structural equation models

and test the performance of various causal discovery algorithms. In the following, each

random instance is called a setting, and we study the performance of algorithms on a setting

by replicating over 1,000 generated datasets within the setting. We generate 120 random

settings to cover a wide variety of scenarios. We firstly describe how a setting is generated.

Each setting consists of two environments: observational and interventional from an

SEM. To generate an SEM of p variables, we firstly generate a random acyclic graph by

choosing a random ordering and connect two nodes with probability k/(p− 1), which gives

1Available from https://github.com/richardkwo/InvariantCausal
2https://cran.r-project.org/package=InvariantCausalPrediction
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an average degree of k. Given the graph, we sample non-zero coefficients uniformly from

an interval [lbe=1, ube=2] bounded away from zero with a random sign. We choose noise

variances uniformly between σ2
min and σ2

max. Note that the model can be described as

X = BX + ε, (18)

where Bij denotes the coefficient from Xj to Xi, and ε ∼ N (0, diag(σ2
1, · · · , σ2

p)). The

random vector X can be simply simulated as X = (I −B)−1ε. We draw nobs samples as

the observational dataset (e = 1).

For the interventional dataset, we perform noise interventions and change of coefficients

on one or several variables, excluding the target variable Y that is picked uniformly at

random. Note that such a modification of the SEM does not change the equation and

associated error governing Y , and hence the working condition of invariant prediction is

satisfied (see item 4 following Assumption 2). We intervene either a single node or a fraction θ

of nodes, and the set of intervened nodes A is randomly picked. For an intervened node j ∈ A,

its noise variance is scaled by a factor aj that is uniformly drawn between amin and amin +

∆a; the interventional coefficients Bjs are either unchanged (with certain probability), or

regenerated as in the previous procedure with bounds lbe=2 and ube=2. Given the intervened

SEM, we draw nint samples as the interventional dataset (e = 2).

The parameters for generating a setting are chosen uniformly from the following options

(Table 1). Note that given a setting, the dataset (Xe=1, Xe=2) is replicated 1,000 times to

obtain the statistics on performance within a setting.

3.1.2 Algorithms in Comparison

We compare the performance of the following algorithms.

Invariant Causal Prediction (invariant) When there are more than 10 variables, we

use lasso (implemented in glmnet) [Friedman et al., 2010] to screen out 10 vari-

ables. To speed up the algorithm, we enable option selection only=true in package

InvariantCausal such that supersets of the running intersection will be skipped.

Greedy Equivalence Search (GES) From purely observational data, GES [Chickering,

2002] identifies the Markov equivalence class of the graph, i.e., by identifying the
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Table 1: Options for parameters of a randomly generated setting

Setting Parameter Options

sample size of observational dataset nobs 100, 200, 300, 400, 500

sample size of interventional dataset nint 100, 200, 300, 400, 500

number of variables p 5, 6, · · · , 40

average degree k of graph 1, 2, 3, 4

lower bound for coefficient lbe=1 0.1, 0.2, · · · , 2

∆e=1
b = ube=1 − lbe=1 0.1, 0.2 · · · , 1

bounds for error variances σmin, σmax (subject to σmin ≤ σmax) 0.1, 0.2, · · · , 2

lower bound for noise multiplier amin 0.1, 0.2, · · · , 4

∆a = amax − amin 0 (with prob. 1/3), otherwise

uniformly from 0.1, 0.2, · · · , 2

probability that intervened coefficients unchanged 2/3

bounds for intervened coefficients lbe=2, ube=2 (lbe=2 ≤ ube=2) 0.1, 0.2, · · · , 2

probability that only one variable is intervened 1/6

fraction of nodes intervened otherwise 1/1.1, 1/1.2, · · · , 1/3

skeleton and orient v-structures and some edges. However, some edges Xi—Y will still

remain ambiguous (meaning that there exist both instances of Xi → Y and Xi ← Y

in the Markov equivalence class). For this experiment, we treat the pooled dataset as

observational data, and treat oriented edges Xi → Y as stemming from direct causes.

We use the implementation from R package pcalg [Kalisch et al., 2012].

Greedy Interventional Equivalence Search with known Interventions (GIES.known)

GIES [Hauser and Bühlmann, 2012] is an extension of GES to a mix of observational

and interventional data. GIES require specification of intervened variables; for an in-

tervened variable j, it replaces p(Xj|XPa(j)) by a Gaussian distribution in Xj. GIES

achieves finer identification of Markov equivalence class compared to purely observa-

tional data. GIES works by maximizing an `0-penalized likelihood score and we use
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the implementation in pcalg.

Greedy Interventional Equivalence Search with unknown Interventions (GIES.unknown)

For fairness of comparison, we hide the information on intervened targets from GIES

and treat every variables as intervened in the second environment.

Linear non-Gaussian Acyclic Models (LiNGAM) When the errors are non-Gaussian, the

graph structure becomes identifiable from observational data [Shimizu et al., 2006].

To apply the method, we pool data from two environments. For example, consider

Xe=1
j =

∑
i∈Pa(j)BjiX

e=1
i + ε1 and Xe=2

j =
∑

i∈Pa(j)BjiX
e=2
i + ε2 when the coefficients

are the same. We can treat the pooled data as Xj =
∑

i∈Pa(j)BjiXi + ε̃, where ε̃ is

distributed as a mixture of two Gaussians and therefore non-Gaussian. However, note

that in general the assumptions of LiNGAM are violated since some coefficients are

changed in intervention, and the pooled noises are not independent. We ignore such

violations for this experiment. LiNGAM is based on independent component analysis

and we use its implementation in pcalg based on fastICA [Marchini et al., 2013].

Regression (reg) As a baseline method without guarantee, we run least square regression

on pooled data and let Ŝ be all variables significant at level α/p.

Marginal Correlation (marginal.corr) As another baseline method with no guarantee,

we let Ŝ be all variables with a correlation with the target significant at level α/p.

3.1.3 Results

Coverage We show the result on coverage Fig. 5. Here coverage is defined to be one

minus the family-wise error rate, namely P (Ŝ(E) ⊆ Pa(Y )). The experiment is performed at

α = 0.05 across 120 settings in Fig. 5 for different methods, where each setting is replicated

over 1,000 random datasets. We can observe that invariant is the only method that attains

nominal coverage of 95% (solid line); however, noticeably there are a few settings that are

obviously below the nominal coverage. A closer examination reveals that in these settings

the screening algorithm frequently fails to include all the true direct causes of the target

variable (the frequency of successful screening is coded by color), and hence the coverage
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guarantee (see Theorem 1) is lost. When we restrict ourselves to the cases when all the direct

causes are retained after/without screening, we can see that the proposed method achieves

nominal coverage in all settings (see Fig. 6).
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Figure 5: Coverage P (Ŝ(E) ⊆ Pa(Y )) of methods in comparison under α = 0.05. Each setting

corresponds to a dot and the line connects the same settings. Each setting is replicated

1, 000 times to obtain the error bars (95% confidence interval). The solid line marks nominal

coverage of 95%. Method invariant uses screening algorithm to reduce p to 8, and the

color corresponds to the probability that all direct causes are kept after/without screening.

Method invariant is the only method that achieves nominal coverage except for a few

settings where screening algorithm fails to include all the direct causes.

Additionally, we show the results on probability of full discovery P (Ŝ = Pa(Y )) in Fig. 7.

We observe that the invariant method is quite conservative and it rarely discovers all the

direct causes. In other words, the method has relatively low power. The running time is
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Figure 6: Coverage P (Ŝ(E) ⊆ Pa(Y )) of invariant prediction for cases when all true causes

are considered by the algorithm (successful screening).

plotted in Fig. 8.

3.2 Gene Knockout Experiments

We apply the invariant prediction method to a large dataset3 of gene knockout experiments on

yeast [Kemmeren et al., 2014]. The dataset comprises of expression levels of p = 6, 170 genes

under different conditions: (i) “wild-type” (observational) expression levels from nobs = 160

measurements and (ii) measurements from nint = 1, 479 interventions, where each interven-

tion corresponds to measurements after knocking out a single gene out of 1, 479 genes that

are selected by biologists. Note that each intervention is represented by one row of data. We

want to perform causal inference to discover direct causal relations among all pairs of genes.

3Dataset obtained from http://deleteome.holstegelab.nl/data/downloads/causal_inference/

Kemmeren.hdf5. See also Meinshausen et al. [2016].
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Figure 7: Probability of full discoverey P (Ŝ = Pa(Y )) of methods under α = 0.05. Each

setting is replicated 1, 000 times to obtain the error bars (95% confidence interval)

3.2.1 Separation into Environments and Validation Scheme

Since we have data from one observational condition and 1, 479 different interventional con-

ditions, we have a large number of environments. While it is appealing for strengthening

power, testing conditional invariance is difficult since each interventional condition only has

one measurement. Instead, we define two environments: observational and interventional,

the latter of which pools data from different single-gene knockout experiments.

Furthermore, we want to reserve some data from training for validating the causal vari-

ables found. We partition interventional data into 3 chunks: (i) when the target j is chosen

as one of the 1,479 genes, the chunk containing the intervention on the target is reserved for

validation; (ii) when the target j is chosen outside the 1,479 genes, we reserve one chunk in

a cross-validation fashion. For a causal relation i→ j found, we can only validate when the
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Figure 8: The running time (in seconds) for different methods across settings (error bar

denotes maximum and minimum time).

intervention on i happens to be available in the validation set. Since we do not have inter-

ventional data available for every gene, we can only validate around 7% of causal relations

found. We define the postulated causal relation i→ j as validated if the expression level of

gene j after removing gene i is at the 1% upper of lower tail of its observational distribution.

The upper or lower tail depends on whether gene i enhances or inhibits gene j.

3.2.2 Methods

We apply invariant prediction method at level α = 0.01. Due to p > n, we use the high

dimensional least square projection [Wang and Leng, 2016] algorithm (screen = "HOLP" in

the package) for screening out 10 variables. Since the linear model is often misspecified, we

want to only keep those where linear models seems a good fit. To this end, we only keep

findings where at least one linear model fitted has a p-value larger than 0.1 (see Fig. 9 for

why this is a reasonable choice).

For comparison, we use the IDA algorithm [Maathuis et al., 2009], one that is based on

parallelized PC algorithm from R package ParallelPC (see also Le et al. [2015], and Spirtes
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et al. [2000]), and ranking based on the magnitude of marginal correlation (i→ j and j → i

are ranked randomly), both of which only use the observational data. We also compare with

IDA based on GIES (with known intervention locations, see also Section 3.1.2) and marginal

correlation ranking that pools observational and interventional data. Besides, we compare

with random guessing that uses no data.
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Figure 9: All the causal relations i → j found by invariant prediction method that can be

validated in the yeast gene dataset (x-axis: maximum fitted p-value as a measure of goodness

of fit, y-axis: quantile of the expression level of gene j after removing gene i with respect to

the observation distribution of gene j’s expression level). The vertical line marks 0.1 as a

threshold for goodness of fit.

3.2.3 Results

The result is summarized in Table 2. The invariant prediction method found 150 causal

relations on 71 target genes, but only 11 of them can be validated. Out of the 11 findings,

9 of them are true positives (82% true discovery rate). Peters, Bühlmann, and Meinshausen

[2016] report 8 findings and 6 of them are true positives; we discover more findings since

we use our package InvariantCausal and can avoid some ad-hoc approximations. The

expression levels of two false positives and an example of true positive are plotted in Fig. 10.
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For comparison, we look at top-11 ranked findings from other methods that can be validated.

Based on the limited validations we have, Table 2 shows that the invariant prediction method

produces more true positives compared to other methods.
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Figure 10: Observational and interventional (knockout of gene i) expression levels of a pair

of genes i (x-axis) and j (y-axis), corresponding to verifiable causal relation i→ j found by

invariant prediction (left: a true positive; mid and right: the two false positive findings).

Table 2: Number of direct causal relations found and validated from yeast gene dataset. The

total number of findings is set to match that of invariant prediction.

invariant
IDA

(PC)

IDA

(GIES)

Corr.

(obs.)

Corr.

(pooled)

random

guess

Number of validated true

positive findings (out of 11)
9 3 3 2 2 1

99% confidence interval — — — [0, 5] [0, 4] [0, 3]

Total number of findings 150 — 278 — — —
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3.3 Educational Attainment

We extend the method to logistic regression and apply it to an educational attainment

dataset [Rouse, 1995] using instrumental variable. The dataset consists of 4,739 students

from 1,100 US high schools and 13 attributes are recorded, including their test scores, family

backgrounds (e.g., whether parents attended college and family income), and demographic

attributes (e.g., gender and ethnicity). We want to estimate the causal effect of these at-

tributes on the probability of obtaining a Bachelor degree, via a logistic regression model.

Additionally, the distance from home to the nearest college is recorded for each student and

used as an instrumental variable. The distance to nearest college is postulated to (i) have no

direct effect on the outcome and (ii) exogenous (not a descendent of the outcome variable).

Therefore, we can use the instrumental variable to divide data into environments. For this

case, we use data provided by Stock and Watson [2012] and divide the dataset into two

environments by comparing the distances to the population median.

For a level-α test of invariance, we test equal mean and variance of residuals (Yi− p̂(Yi =

1))/
√
p̂(Yi = 1)(1− p̂(Yi = 1)) for environments e and its complement E \ {e}, where the

predicted probability comes from fitting logistic regression on data pooled from all environ-

ments (see paragraph “non-Gaussian noise” under Section 2.2.3). Again, we use Bonferroni

correction to obtain a combined p-value. We use Sukhatme-Fisher test [Sukhatme, 1935,

Perng and Littell, 1976] for a two sample test of equal mean and variance, and this is im-

plemented as method="logistic-SF" in package InvariantCausal. We run the algorithm

with level α = 0.01. Out of 8,192 subsets of p = 13 variables, 1,317 are accepted and only

one variable ‘score’ is found to be a direct cause. In Figure 11, we show aggregated (blue,

see Eq. (11)) and individual (orange, obtained with option iterate all=true) confidence

intervals of regression coefficients, and only the aggregated confidence interval for variable

‘score’ does not contain zero.

4 Discussion

To conclude, we discuss the strengths and weaknesses of the invariant prediction method

and prospective future work.
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Figure 11: Confidence intervals (blue) aggregated (by Eq. (11)) from 1,317 accepted subsets

(orange) (8,192 subsets in total) from logistic regression model on the educational attainment

dataset. Distance from home to nearest college is treated as an instrumental variable and is

used to divide data into |E| = 2 environments.

Strengths Firstly, invariant prediction is a flexible framework. It uses both observational

and interventional data, and contrary to previous methods, it incorporates a wide range of

interventions and does not require specifying the location of interventions. Secondly, it is

designed to guard against false discoveries and is well-suited for applications where one wants

to infer an underlying “sparse” causal network, as commonly seen in biomedical sciences.

Weaknesses The computational complexity scales exponentially with p and hence, under

moderate or large p, a screening procedure is nececessary to reduce p to around 10 for a

reasonable running time. This is only valid when the underlying causal graph is “sparse”;

otherwise the method faces limitation when every variable has a direct causal effect on almost

every other variable (e.g., in some datasets from social sciences). Even when the causal graph

is sparse, the screening algorithm does not always cover all the direct causes, and all the
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guarantees will be lost upon such failures (as we have seen in Fig. 5). Essentially, the method

provides guarantee only when one is confident that all the direct causes are observed and

included in a small set of variables.

Nevertheless, it is worth mentioning that the causal sufficiency assumption (see Assump-

tion 1) is not entirely untestable this framework (nor is it entirely testable). When it does

not hold, H0,S might be rejected for every S ∈ {1, · · · , p}, and then the software will alert

the user to model rejection. And yet, model rejection can also occur when the linear model

in Eq. (13) is misspecified or the target is intervened.

Future work It is interesting to study how to perform causal discovery sequentially. For

example, in the gene knockout setting, we would like the algorithm to return “key-clue” genes,

by knocking out which we can glean the most information for uncovering the underlying

causal graph. In other words, we would want to perform causal discovery and experimental

design interactively. However, it might be difficult to develop such a procedure since a post-

selection inference problem surfaces, as we want to construct environments post-hoc based

on earlier inference.
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