
Structural bioinformatics

BioStructures.jl: read, write and manipulate

macromolecular structures in Julia

Joe G. Greener1,*, Joel Selvaraj2 and Ben J. Ward3

1Department of Computer Science, University College London, London WC1E 6BT, UK, 2School of Computer Science and Engineering,

Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India and 3The Earlham Institute, Norwich Research Park, Norwich NR4

7UZ, UK

*To whom correspondence should be addressed.

Associate Editor: Arne Elofsson

Received on March 5, 2020; revised on April 20, 2020; editorial decision on May 6, 2020; accepted on May 7, 2020

Abstract

Summary: Robust, flexible and fast software to read, write and manipulate macromolecular structures is a pre-
requisite for productively doing structural bioinformatics. We present BioStructures.jl, the first dedicated package in
the Julia programming language for dealing with macromolecular structures and the Protein Data Bank.
BioStructures.jl builds on the lessons learned with similar packages to provide a large feature set, a flexible object
representation and high performance.

Availability and implementation: BioStructures.jl is freely available under the MIT license. Source code and docu-
mentation are available at https://github.com/BioJulia/BioStructures.jl. BioStructures.jl is compatible with Julia ver-
sions 0.6 and later and is system-independent.

Contact: j.greener@ucl.ac.uk

1 Introduction

Open source software packages to parse files from the Protein Data
Bank (PDB) (Berman et al., 2000) and manipulate macromolecular
structures exist in many languages (Grant et al., 2006; Goto et al.,
2010; Hamelryck and Manderick, 2003; Lafita et al., 2019; Loriot
et al., 2010; Stajich et al., 2002). Such packages must strike a bal-
ance between a powerful and useful representation of molecules,
fast performance, easy integration with other tools and tolerance to
the ambiguities in PDB data.

Julia is a high-performance, dynamically-typed, open source pro-
gramming language (Bezanson et al., 2017). Since its first release in
2012 it has grown rapidly in popularity, particularly in the scientific
computing community, with version 1.0 being released in 2018. To date
it has over 13 million downloads and over 3000 packages registered for
community use. In particular, the ability to write performant code in a
high-level language means that Julia can solve the ‘two-language prob-
lem’ of having to prototype code in one language and then write a per-
formant version in another language. BioStructures.jl is a Julia package
to read, write and manipulate macromolecular structures. Whilst other
Julia packages have provided functionality related to structural bioinfor-
matics (Greener et al., 2017; Zea et al., 2017), BioStructures.jl is the first
dedicated package and contains all the main features that structural bio-
informaticians need to be productive in Julia. It is designed to be used
for standard structural analysis tasks, interactive data analysis and to act
as a platform on which others can build to create more specific tools.
BioStructures.jl is part of BioJulia, an organization that provides bio-
informatics infrastructure for the Julia language.

2 Features

BioStructures.jl has the following features:

• Read in PDB, mmCIF and MMTF (Bradley et al., 2017) files into

a hierarchical representation of structure. The parsers have been

tested on the whole PDB, only throwing errors on a small num-

ber of known ambiguous cases.
• Write out PDB, mmCIF and MMTF files. The ability to read and

write freely between these file formats is not available in many

similar packages.
• Read mmCIF and MMTF files into a dictionary, e.g. allowing ac-

cess to header information. MMTF files are decoded with the

related package MMTF.jl.
• Iterate over structures at various levels, e.g. iterate over atoms in

a residue or residues in a chain.
• Select various structural elements using pre-defined or custom

selectors, e.g. collect all Cb atoms (CA in the case of glycine)

from standard residues.
• Retrieve amino acid sequences and integrate with the broader

BioJulia ecosystem, e.g. allowing fast sequence alignments.
• Spatial calculations including distances, bond angles, dihedral

angles, contact maps and distance maps. Contact and distance

maps can be plotted.

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 4206

Bioinformatics, 36(14), 2020, 4206–4207

doi: 10.1093/bioinformatics/btaa502

Advance Access Publication Date: 14 May 2020

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/14/4206/5837108 by U
niversity C

ollege London, j.greener@
ucl.ac.uk on 27 D

ecem
ber 2020

https://github.com/BioJulia/BioStructures.jl
https://academic.oup.com/

• Superimposition of structures and calculation of the RMSD.
• Download files and data from the RCSB PDB including functions

to maintain a local copy of the PDB.
• Interoperability with the broader Julia ecosystem, e.g. exporting

to a data frame or creating a graph of contacting residues.
• Visualization of molecular structures in a pop-up window or

Jupyter notebook using the related package Bio3DView.jl

(https://github.com/jgreener64/Bio3DView.jl), which is a wrap-

per around 3Dmol.js (Rego and Koes, 2015).
• Easy installation with Julia’s package manager.
• Comprehensive test suite, continuous integration build testing

and a benchmark suite to test for performance regressions.
• Thorough online documentation and in-code docstrings.
• Fully open source with a permissive MIT license.
• Faster than similar packages at most tasks. Our benchmarks,

summarized in Figure 1 and described further at https://github.

com/jgreener64/pdb-benchmarks, indicate that the package has

competitive or superior performance to 14 other commonly used

packages from both interpreted and compiled languages. For ex-

ample, parsing the small PDB entry 1CRN takes 0.76 ms/1.9 ms/

1.1 ms in the PDB/mmCIF/MMTF formats after just-in-time

(JIT) compilation on a standard desktop computer. It does this

whilst using a hierarchical structure representation, allowing

variation between models in a structure, and accounting for al-

ternative locations at the atom and residue levels (see below).

These features take time to execute but increase the utility and

flexibility of the package.

3 Design considerations

BioStructures.jl is heavily influenced by the Bio.PDB module of
Biopython (Hamelryck and Manderick, 2003), the design of which has
proved effective. The structure object has a hierarchical type system
of the form ProteinStructure—Model—Chain—AbstractResidue—
AbstractAtom. Atoms with alternative locations are stored in a
DisorderedAtom container and residues with alternative locations (i.e.
point mutations with different residue names) are stored in a
DisorderedResidue container. Function calls fall back to the default
atom or residue, so alternative locations can be ignored if the user is
not interested in them, but building alternative locations into the type
system allows correct representation of many more aspects of the PDB.
Whilst BioStructures.jl retains the flexibility of Bio.PDB, its implemen-
tation in Julia allows it to have superior speed.

Acknowledgement

The authors would like to thank the BioJulia, Julia and Biopython commun-

ities for discussion, assistance and support.

Financial Support: none declared.

Conflict of Interest: none declared.

References

Bakan,A. et al. (2011) ProDy: protein dynamics inferred from theory and

experiments. Bioinformatics, 27, 1575–1577.

Berman,H.M. et al. (2000) The Protein Data Bank. Nucleic Acids Res., 28,

235–242.

Bezanson,J. et al. (2017) Julia: a fresh approach to numerical computing.

SIAM Rev., 59, 65–98.

Bradley,A.R. et al. (2017) MMTF—an efficient file format for the transmis-

sion, visualization, and analysis of macromolecular structures. PLoS

Comput. Biol., 13, e1005575.

Gajda,M.J. (2013) hPDB—Haskell library for processing atomic biomolecular

structures in Protein Data Bank format. BMC Res. Notes,6, 483, https://

bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-6-483.

Goto,N. et al. (2010) BioRuby: bioinformatics software for the Ruby

Programming Language. Bioinformatics, 26, 2617–2619.

Gowers,R. et al. (2016) MDAnalysis: a Python Package for the rapid analysis

of molecular dynamics simulations. In: Benthall,S. and Rostrup,S. (eds),

Proceedings of the 15th Python in Science Conference. pp. 102–109,

Austin, TX.

Grant,B.J. et al. (2006) Bio3d: an R package for the comparative analysis of

protein structures. Bioinformatics, 22, 2695–2696.

Greener,J.G. et al. (2017) Predicting protein dynamics and allostery using

multi-protein atomic distance constraints. Structure, 25, 546–558.

Hamelryck,T. and Manderick,B. (2003) PDB file Parser and structure class

implemented in Python. Bioinformatics, 19, 2308–2310.

Hirsh,L. et al. (2015) The Victor C Library for protein representation and

advanced manipulation. Bioinformatics, 31, 1138–1140.

Ireland,S.M. and Martin,A.C.R. (2020) Atomium–a Python Structure Parser.

Bioinformatics, 36, 2750–2754.

Kunzmann,P. and Hamacher,K. (2018) Biotite: a unifying open source compu-

tational biology framework in Python. BMC Bioinformatics, 19, 346.

Lafita,A. et al. (2019) BioJava 5: a community driven open-source bioinfor-

matics library. PLoS Comput. Biol., 15, e1006791.

Loriot,S. et al. (2010) ESBTL: efficient PDB Parser and data structure for the

structural and geometric analysis of biological macromolecules.

Bioinformatics, 26, 1127–1128.

Rego,N. and Koes,D. (2015) 3Dmol.js: molecular visualization with WebGL.

Bioinformatics, 31, 1322–1324.

Stajich,J.E. et al. (2002) The Bioperl Toolkit: Perl modules for the life sciences.

Genome Res., 12, 1611–1618.

Zea,D.J. et al. (2017) MIToS.jl: mutual information tools for protein sequence

analysis in the Julia language. Bioinformatics, 33, 564–565.

Fig. 1. Performance of structural bioinformatics tasks in 15 packages (Bakan et al.,

2011; Gowers et al., 2016; Grant et al., 2006; Goto et al., 2010; Hamelryck and

Manderick, 2003; Hirsh et al., 2015; Ireland and Martin, 2020; Kunzmann and

Hamacher, 2018; Lafita et al., 2019; Loriot et al., 2010; Stajich et al., 2002; Zea

et al., 2017) covering seven programming languages. Comparison should be treated

with caution since each package does something slightly different and may use a dif-

ferent object representation or do less error checking, e.g. MIToS does not read files

into a hierarchical representation of structure. The tasks are reading a small

(1CRN) and a large (1HTQ) PDB entry (Gajda, 2013) in the PDB, mmCIF and

MMTF formats; counting the number of alanine residues in adenylate kinase

(1AKE); calculating the distance between residues 50 and 60 of chain A in adenylate

kinase; and calculating the Ramachandran //w angles in adenylate kinase. In each

case, the mean time of the fastest implementation for each software that makes use

of the provided API is given. Tasks are not implemented in packages where there is

no obvious API for implementation. Times for Julia packages are measured after JIT

compilation. Packages are ordered by increasing time to parse PDB 1CRN, with

BioStructures first. See https://github.com/jgreener64/pdb-benchmarks for more

details. The version of the benchmarks presented here is archived at Zenodo with

doi:10.5281/zenodo.3753016

BioStructures.jl 4207

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/14/4206/5837108 by U
niversity C

ollege London, j.greener@
ucl.ac.uk on 27 D

ecem
ber 2020

https://github.com/jgreener64/Bio3DView.jl
https://github.com/jgreener64/pdb-benchmarks
https://github.com/jgreener64/pdb-benchmarks
https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-6-483
https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-6-483
https://github.com/jgreener64/pdb-benchmarks

