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Abstra
t

Sparspak is a sparse matrix pa
kage that was implemented in the

late 1970's. One of the important features of that pa
kage is an in-

terfa
e whi
h shields the user from the 
ompli
ated 
alling sequen
es


ommon to most sparse matrix software. Modern programming lan-

guages su
h as Fortran 90 have important features that fa
ilitate the

design of 
exible and \user-friendly" interfa
es for software pa
kages.

These features in
lude dynami
 storage allo
ation, fun
tion name over-

loading, user-de�ned data types, and the ability to hide fun
tions and

data from the user. A new version of Sparspak 
alled Sparspak90

has been implemented in Fortran 90 . This guide des
ribed the inter-

fa
e and features of the new pa
kage and explains how to use it.
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1 Introdu
tion

It is assumed that the reader has a working knowledge of Fortran 90 . The

book by Met
alf and Reid [13℄ is a good referen
e for the language and its

use.

For de�niteness, the problem to be solved will be denoted by Ax = b;

where A is an n�n sparse 
oeÆ
ient matrix, and the method to be used is

Gaussian elimination.

Given a sparse linear system, reordering the matrix A may e�e
t a sub-

stantial redu
tion in the 
ost of fa
torization and forward and ba
kward

solution. Thus given A, one normally 
omputes a fa
torization of PAQ,

where P andQ are row and 
olumn permutation matri
es of the appropriate

sizes. So the new system be
omes (PAQ)(Q

�1

x) = Pb.

For purposes of explaining the stru
ture and features of Sparspak90 so

that the user 
an understand how to use it, it is suÆ
ient to restri
t the prob-

lems to be solved to sparse systems whose 
oeÆ
ient matri
es are positive

de�nite and stru
turally symmetri
, although they may not be numeri
ally

symmetri
. On
e an understanding of the basi
 stru
ture and features of

the pa
kage is established, it would be easy to extend this understanding

to in
lude other 
lasses of problems whi
h Sparspak90 
an handle. These

will be des
ribed in Se
tion13 in this guide.

With this restri
tion, it is possible to do symmetri
 reordering of A (i.e.,

Q = P

T

) without regard to numeri
al stability and before the numeri
al

fa
torization begins. In this way, the lo
ations where �ll will o

ur during

the fa
torization 
an be determined before any numeri
al fa
torization is

performed, and the data stru
tures used to store the lower triangular fa
tor

L and/or upper triangular fa
tor U 
an be set up prior to the numeri
al

fa
torization. This pro
ess is 
alled symboli
 fa
torization.

Hen
e, the pro
ess of solving su
h sparse linear systems 
onsists of a

number of steps:

1. Reordering of the matrix A

2. Symboli
 fa
torization of the (reordered) matrix A and the 
reation

of the data stru
tures for the fa
torization and forward and ba
kward

substitution

3. Putting numeri
al values of A into the data stru
tures

4. Numeri
al fa
torization of A

5. Forward and ba
kward substitution (triangular solution)
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There is no general \best method" for solving sparse systems of equa-

tions. Even if one restri
ts the basi
 algorithm to Gaussian elimination,

the way it is best implemented often depends on the 
hara
teristi
s of the

given sparse linear system. As a 
onsequen
e, this sparse matrix pa
kage

is designed to a

ommodate a variety of methods, and allow for 
onvenient

in
lusion of methods yet to be developed.

Sparse systems arise in a variety of 
ontexts. Sometimes many problems

having the same nonzero stru
ture must be solved, and sometimes many

problems di�ering only in their right hand sides must be solved. Also, the

way in whi
h their stru
ture and numeri
al values be
ome available is highly

variable. The pa
kage is able to handle these situations in a natural way.

2 Overall Stru
ture and Basi
 Use of Sparspak90

This se
tion des
ribes the high-level stru
ture of the pa
kage, with parti
ular

emphasis on its user interfa
e. Only the basi
 features of the various 
om-

ponents of the pa
kage will be dis
ussed in this se
tion. Dis
ussion of more

sophisti
ated use of the pa
kage and additional features of it is postponed

until later se
tions.

Use of the pa
kage is \obje
t-oriented". Users 
an adopt the view that

the pa
kage provides two basi
 types of \obje
ts" (user-de�ned data types

and subroutines whi
h a
t on them): \problem" obje
ts that 
ontain a

problem (A, b and eventually the solution x), and \solver" obje
ts that

a

ept as input a problem (in a problem obje
t) and produ
e a solution to

Ax = b. In the sequel, \obje
t" means an instan
e of a user-de�ned data

type together with subroutines that a
t upon it. An example appears in

Figure 1 to provide some 
on
reteness to this somewhat abstra
t des
ription.

In the example, the subroutineMakeTriDiagProblem generates a 5�5

symmetri
 positive de�nite tridiagonal system of equations. The subroutine

MakeTriDiagProblem is given in Figure 2 in the next subse
tion.

2.1 The Problem type

Regardless of the level of user sophisti
ation, one task is fundamental and

ubiquitous; the user must 
ommuni
ate the sparse matrix problem to the

pa
kage. The task is 
ompli
ated by the variety of ways in whi
h the problem

may materialize, as well as by transformations that the user might want to

apply to the input. The di�erent ways in
lude:

6



Figure 1 Example of simple use of the Sparspak90 pa
kage.

program SimpleExample

use Sparspak90 ! make pa
kage available

type (Problem) :: p ! de
lare problem obje
t

type (SparseSpdSolver) :: s ! de
lare solver obje
t


all MakeTriDiagProblem(p, 5) ! 
reate test problem


all Constru
t(s, p) ! 
reate solver obje
t


all Solve(s, p) ! solve problem


all PrintSolution(p) ! print solution


all Destru
t(p) ! release storage used by p


all Destru
t(s) ! release storage used by solver

end program SimpleExample

� the stru
ture of the problem and its numeri
al values may be
ome

available simultaneously or at di�ering times.

� there may be many systems to be solved, di�ering only in their nu-

meri
al values.

� there may be numerous problems that di�er only in their right hand

sides; these may be available all at on
e, or ea
h may be the result

of 
omputations involving previous right hand side(s) in a sequen
e.

The latter 
ir
umstan
e arises naturally if the pa
kage is being used

in 
onne
tion with solving a system of nonlinear equations.

� given the matrix A, for testing purposes it may be desirable to gener-

ate a right hand side 
orresponding to a given solution, or given the

stru
ture of A, it may be desirable to assign numeri
al values giving

A 
ertain properties (random, symmetri
, positive de�nite, diagonally

dominant, et
.). Su
h 
apabilities 
an be useful in developing and

testing software.

The list above is far from exhaustive, but serves to illustrate the variety

of situations whi
h the pa
kage 
an handle.

With these 
onsiderations in mind, it is natural that the pa
kage provides

a type that 
an be viewed as the \problem repository." This type is given

7



the name Problem sin
e instan
es of this type 
ontain the numeri
al values

and stru
ture of the 
oeÆ
ient matrix, its right hand side, 
orresponding

solution ve
tor, and related information pertaining to the problem.

The type Problem has asso
iated with it various subroutines whi
h op-

erate on its data. Roughly speaking, these routines fall into four 
ategories:

1. pro
edures whi
h provide for input of stru
tural and numeri
al values,

su
h as InAij, InRow, InColumn and InRhs.

2. pro
edures whi
h adjust the input su
h as Repla
eAij, ZeroMa-

trix, ZeroRhs, MakeStru
tureSymmetri
, and MakeSymmet-

ri
, (The last two pro
edures make the problem stru
turally and nu-

meri
ally symmetri
, respe
tively.)

3. pro
edures whi
h retrieve and/or display information, su
h asGetRhs,

GetSolution, and PrintSolution.

4. pro
edures whi
h provide information about the problem, su
h as Is-

Symmetri
, IsStru
tureSymmetri
, IsAijPresent. The �rst two

pro
edures determine whether the matrix is numeri
ally and stru
-

turally symmetri
, respe
tively, while the latter determines whether

the ij-th element of the matrix is present.

The Problem type 
an represent sparse matrix problems with square

or re
tangular matri
es, with symmetri
, unsymmetri
 or triangular stru
-

tures, and with symmetri
 or unsymmetri
 numeri
al values. However, it is

important to understand that the Problem type does not have any built-in

\intelligen
e". It is simply a repository for whatever the user presents to

it. It does not attempt to identify or exploit spe
ial features of the problem

that might be present, and does not maintain any su
h information.

Figure 2 
ontains a Fortran 90 subroutine whi
h generates an n � n

tri-diagonal matrix problem. The example provides an opportunity to elab-

orate on several design features of Sparspak90 . Extensive use is made

of the programming language feature known as fun
tion name overloading.

That is, di�erent routines are allowed to have the same names, provided

that their parameter lists (\signatures") di�er. The 
ompiler dete
ts whi
h

routines should be 
alled by mat
hing up the types and number of parame-

ters in the routines. Thus, routines whi
h perform essentially the same role,

even though they may employ di�erent internal data stru
tures or operate

on di�erent types, 
an still have the same name. This name overloading


apability helps to redu
e the intelle
tual overhead in learning to use the

pa
kage.
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Figure 2 Tridiagonal test problem generator.

subroutine MakeTriDiagProblem(p, n)

use Sparspak90

integer :: n, i

type (Problem) :: p


all Constru
t(p)

do i = 1, n-1


all InAij(p, i+1, i, -1D0); 
all InAij(p, i, i, 4D0)


all InAij(p, i, i+1, -1D0); 
all InRhs(p, i, 1D0)

end do


all InAij(p, n, n, 4D0); 
all InRhs(p, n, 1D0)

end subroutine MakeTriDiagProblem

In the the example in Figure 2, an instan
e of the Problem type is

initialized by 
alling the fun
tion Constru
t. All user-de�ned types in the

pa
kage are initialized by 
alling a fun
tion whose name is Constru
t. Of


ourse the routine that is a
tually exe
uted will depend on the type of the

�rst argument of the parameter list (whi
h the 
ompiler 
an dete
t). The key

point is that the user has to remember only one fun
tion name in 
onne
tion

with 
reating new instan
es of a type (obje
ts).

Another example demonstrating the 
onvenien
e of overloading is illus-

trated by the fun
tion InAij in the example in Figure 2. As noted in the

previous se
tion, the stru
ture and the numeri
al values of the system of

equations 
an arrive at di�erent times and in di�erent aggregations. If the

user does not know the value of a

ij

but wishes to 
ommuni
ate the fa
t that

the (i; j)-th element of A is present, the fun
tion InAij is still used, but

the last parameter is omitted. Analogously overloaded input routines, e.g.,

InRow, InColumn are available in the event that the nonzeros (or perhaps

only their positions in the matrix) be
ome available by rows or 
olumns (or

parts thereof). Similar remarks apply to InRhs. The right hand side b


an be input one element at a time, as shown in the example in Figure 2,

or as a sub-array with an a

ompanying list of subs
ripts, or all at on
e.

In all 
ases a fun
tion with the same name is 
alled. Thus, the user must

remember only a small number of fun
tion names to use Problem obje
ts.
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2.2 Solver obje
ts

The se
ond major type of obje
t that the typi
al user of the pa
kage will

employ is a \solver" obje
t. Loosely speaking, a Solver obje
t a

epts a

Problem obje
t as input and produ
es a solution to the problem. The

pa
kage 
ontains numerous di�erent \solvers" for sparse systems of equa-

tions. That is, in addition to a type Problem in the pa
kage, there are

solver types, ea
h 
onsisting of a parti
ular data stru
ture (or stru
tures)

with a default ordering algorithm and numeri
al fa
torization and triangu-

lar solution routines. Instan
es of these types 
an be regarded as \solver

obje
ts". The solver types implement a parti
ular overall approa
h to solv-

ing a sparse system. For example, for symmetri
 positive de�nite systems,

there are several e�e
tive algorithms for �nding a low �ll ordering, there

are several eÆ
ient methods for storing Cholesky fa
tors, and there are sev-

eral eÆ
ient ways of implementing the fa
torization using the same data

stru
ture (left-looking, right-looking, multifrontal) [1, 9, 14℄. Various solver

obje
ts result from sele
ting di�erent 
ombinations of these options.

The multitude of solvers is ne
essary be
ause problems vary in several

dimensions. They may or may not be square; if square, they may or may

not be stru
turally symmetri
. If they are stru
turally symmetri
, they may

or may not be numeri
ally symmetri
. Regardless of either shape or symme-

try, row and/or 
olumn inter
hanges may be ne
essary to ensure numeri
al

stability. In addition, for any parti
ular 
ombination of problem attributes

above, there may be more than one approa
h that will solve the problem.

Of 
ourse a solver that assumes no spe
ial features will 
ope with them all,

but generally not as eÆ
iently as one that exploits spe
ial features that a

problem may possess.

2.3 Coarse stru
ture of Sparspak90

At a basi
 level of resolution, the pa
kage 
an be regarded as providing just

two fundamental types of obje
ts, namely problem obje
ts and xxxSolver

obje
ts, where xxx denotes one of the numerous possibilities mentioned in

the previous subse
tion. For example, Sparspak90 
ontains a solver for

symmetri
 positive de�nite problems that reorders the problem to redu
e

�ll. This solver type has the name SparseSpdSolver, standing for (Sparse

Symmetri
 positive-de�nite Solver). A simple example showing its use is

displayed in Figure 1, where the subroutine in Figure 2 was used to 
reate

a small symmetri
 positive de�nite tri-diagonal problem.

The pa
kage also 
ontains a solver for symmetri
 positive de�nite prob-
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Figure 3 Example of simple use of the pa
kage involving a di�erent solver

type.

program SimpleExample

use Sparspak90

type (Problem) :: p ! de
lare problem

type (EnvSpdSolver) :: s ! de
lare solver


all MakeTriDiagProblem(p, 5) ! 
reate test problem


all Constru
t(s, p) ! 
reate solver obje
t


all Solve (s, p) ! instru
t s to solve p


all PrintSolution(p) ! print the solution


all Destru
t(p) ! release storage for p


all Destru
t(s) ! release storage for s

end program SimpleExample

lems that orders the problem so that it has a small envelope [9℄. This solver

type has the name EnvSpdSolver, whi
h stands for (Envelope-redu
ing

Symmetri
 positive-de�nite Solver). The only 
hange ne
essary in the pro-

gram in Figure 1 in order to use this solver would be in line 4, where Spars-

eSpdSolver would be 
hanged to EnvSpdSolver. The use of fun
tion

name overloading for Solve and Destru
t means that no other 
hanges

are required; of 
ourse di�erent pro
edures will be invoked. The 
ompiler

dete
ts whi
h pro
edures should be 
alled by mat
hing up the types and

numbers of parameters in the pro
edures. Thus, the new program would be

as shown in Figure 3.

Thus, from the perspe
tive of a typi
al user, Sparspak90 
an be viewed

as shown in Figure 4. Two types of obje
ts are involved in its use, namely

Problem obje
ts and solver obje
ts.

Typi
ally, a user would have a problem at hand. The �rst step is to 
reate

a Problem obje
t p by making a subroutine 
all, Constru
t(p), whi
h

sets up and initializes the data stru
tures for storing the problem matrix, the

right hand side and the solution. The Problem module provides subroutine

InAij(p, i, j, aij) for input of the entries in the matrix A to the Problem

obje
t. The routine 
ommuni
ates to p that there is a nonzero at row i and

11



Figure 4 Coarse stru
ture of Sparspak90

xxxSolver

Constru
t(s, p)

Solve(s, p)

Destru
t(s)

:

:

(other utilities)

(There will be many of these

solvers, but their interfa
e

fun
tion names are the same.)

Problem

Constru
t(p)

InAij(p, i, j, aij)

InRhs(p, i, bi)

PrintSolution(p)

Destru
t(p)

:

:

(many other utilities)


olumn j in A with the numeri
al value aij. The subroutine InRhs(p, i,

bi) allows the user to input a value bi to the i

th

entry in the right hand side

ve
tor b.

Important Notes If InAij(p, i, j, aij) is 
alled multiple times with the

same i and j, then the e�e
t is additive, meaning that ea
h time it is


alled the value aij is added to the value at position (i, j) if one already

exists.

To solve the problem, a 
all to subroutine Constru
t(s, p) would 
reate

a solver obje
t, s, of a type spe
i�ed by the user. Then a 
all to subroutine

Solve(s, p) would solve the system and the solution is stored in the Prob-

lem obje
t p. To see the solution, the user would 
all PrintSolution(p).

Then 
alling Destru
t(s) and Destru
t(p) would release the storage used

by s and p.

3 Additional Features

3.1 Other ways to input a problem

There are subroutines in the Problem module whi
h provide other ways of

inputting entries into either the matrix A or the right hand side b.
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Important Notes As mentioned before, with all input routines whi
h

input a value, the e�e
t of inputting to a lo
ation multiple times is


umulative. This means that the new value is added to the existing

value. Therefore, if a user wants to input a new matrixA or a new right

hand side b, then the user must 
all ZeroMatrix(p) or ZeroRhs(p)

�rst whi
h sets the relevant data stru
ture of the Problem obje
t p

to zero. Another point to note is that if a nonzero does not already

exist at a spe
i�ed lo
ation then it is inserted.

InRow (p, rNum, nElements, 
olSubs, values) Exe
ution of a 
all to

this routine lets the user add to the 
urrent values of nElements en-

tries in row rNum of the matrixA with 
olumn subs
ripts as spe
i�ed

in the array 
olSubs. The array values 
ontains the 
orresponding

numeri
al values for those entries. If the user wants to 
ommuni
ate to

the problem obje
t that some lo
ations in row rNum ofA are nonzero

but the numeri
al values for these lo
ations are not yet available, then

the last parameter values may be omitted.

InColumn(p, 
Num, nElements, rowSubs, values) is a 
olumn ana-

logue of InRow (p, rNum, nElements, 
olSubs, values).

InRhs(p, rhs) adds an array of values rhs to the existing values in the

right hand side of a Problem obje
t.

InRhs(p, nElements, rowSubs, values) adds to the 
urrent values of

nElements entries in the right hand side whose positions are spe
i�ed

in the array rowSubs. The values to be added are taken from the


orresponding values in the array values.

3.2 Retrieval of solution and problem data for use in further


omputation

GetSolution(p, x) in the Problem module allows the user to retrieve the

solution ve
tor and store it in an array x for use in further 
omputa-

tion.

GetRhs(p, rhs) retrieves the right hand side and stores it in an array rhs.

3.3 Reinitializing data stru
tures to zero

The Problem module o�ers the user the subroutines

13



� ZeroMatrix(p)

� ZeroRhs(p)

� ZeroSolution(p)

� ZeroDiagonal(p)

These routines set the relevant data stru
tures of the Problem obje
t p

to zero. This is helpful when solving systems with multiple right hand sides

or many problems with the same stru
ture but di�erent numeri
al values as

dis
ussed in later se
tions as well as for testing purposes.

3.4 Solving many problems with the same nonzero stru
ture

In 
ertain appli
ations, many problems whi
h have the same sparsity stru
-

ture but di�erent numeri
al values must be solved. In this 
ase, the stru
ture

input, ordering, and data stru
ture set-up need only be done on
e. The 
on-

trol sequen
e is depi
ted in Figure 5, where p is the Problem obje
t and s

is the solver obje
t.

To reuse the stru
ture and ordering of an existing problem, the user must


all the subroutine ZeroProblem(p) whi
h sets the values of A and b to

zero before inputting the new numeri
al values for A and b. After the new

numeri
al values for A and b have been input to p, the user need only 
all

Solve(s, p) again, reusing the same solver s. There is internal information

maintained by the solver whi
h makes it aware that this is a new problem

with new numeri
al values so that it would input the new values from A

to the existing data stru
ture, fa
tor A and do the triangular solve again.

However it would skip the step that �nds a reordering for the matrix A

and the symboli
 fa
torization part of the solution pro
ess. An example of

reusing the ordering and data stru
ture of a solver for two problems with

the same stru
ture is given in Figure 6.

Note that if su
h problems must be solved over an extended time period

(i.e., in di�erent runs), the user 
an use the Save and Restore fa
ility on

the problem p and s as detailed in a later se
tion and thus avoid the input

of the stru
ture of A and the ordering part of work in subsequent equation

solutions.

14



Figure 5 Control sequen
e for solving many problems with the same stru
-

ture.

Call Constru
t(p)

?

Input stru
ture and values of A and values of b

?

Call Constru
t(s, p)

?

Call Solve(s, p)

?

Call ZeroProblem(p)

?

Input new numeri
al values of A and b

�
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Figure 6 Example of solving two problems with the same stru
ture.

program tSameStru
ture02

use Sparspak90

impli
it none

type (Problem) :: p

type (SparseSpdSolver) :: s

integer :: size

size = 5


all MakeGridProblem(p, size, size, "5pt")

! 
reate a grid problem p


all MakeProblemRandom(p) ! make p numeri
ally random


all MakeSymmetri
(p) ! make p symmetri



all MakeDiagDominant(p) ! make p diagonally dominant


all MakeRhs(p) ! set the right hand side of p

! su
h that the solution ve
tor

! will be (1, 2, 3, ...)


all Constru
t(s, p) ! 
reate solver obje
t s


all Solve(s, p) ! instru
t s to solve p


all PrintSolution(p, 10) ! print part of the solution


all MakeProblemRandom(p) ! make p numeri
ally random


all MakeSymmetri
(p) ! make p symmetri



all MakeDiagDominant(p) ! make p diagonally dominant


all MakeRhs(p) ! set the right hand side of p

! su
h that the solution ve
tor

! will be (1, 2, 3, ...)


all Solve(s, p) ! instru
t s to solve p


all PrintSolution(p, 10) ! print part of the solution


all Destru
t(s) ! release storage for s


all Destru
t(p) ! release storage for p

end program tSameStru
ture02
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3.5 Solving many problems whi
h di�er only in their right

hand sides

In some appli
ations, numerous problems whi
h di�er only in their right

hand sides must be solved. In this 
ase, it is ne
essary to fa
tor A into

LU or LL

T

only on
e, and use the fa
tors repeatedly in the 
al
ulation of

x for ea
h di�erent b. Again, Sparspak90 
an handle this situation in a

straightforward manner, as illustrated by the 
ow
harts in Figure 7.

Both fa
torization and triangular solution are performed during the 
all

to Solve, with only the forward and ba
kward substitution part performed

in ea
h exe
ution of TriangularSolve. There are two versions of the sub-

routine TriangularSolve. For the version whi
h takes a Problem obje
t

as the se
ond parameter, the user must 
all ZeroRhs(p) �rst before putting

the new values for the right hand side in p and then 
alling Triangular-

Solve(s, p). For the version whi
h takes an array rhs as the se
ond pa-

rameter, the user need only put the new values of the right hand side in

rhs before 
alling TriangularSolve(s, rhs). The solution is returned in

the array rhs in this 
ase. Examples demonstrating the two ways of solving

problems whi
h di�er only in their right hand sides are shown in Figures 8

and 9.

3.6 Symmetri
 
oeÆ
ient matri
es: saving storage using the

parameter mType

In 
ertain 
ontexts the Problem obje
t p will be used to store a symmetri


matrix A. In order to 
onserve storage, the user may 
hoose to input only

the lower triangular part of A. Certain subroutines and fun
tions need to

know when a symmetri
 matrix is represented this way. The parameter used

to indi
ate this is 
alled mType. It may have one of two valid values. A

value of \L" or \l" indi
ates to the routine that only the lower triangular

part is present. Among others, the subroutines FindS
ales and Comput-

eResidual in the Problem module require the use of this parameter when

only the lower triangular part of a symmetri
 matrix A is stored in the

Problem obje
t p.

3.7 Solving A

T

x = b

For unsymmetri
 solvers, Sparspak90 provides subroutines for solvingA

T

x =

b. If the matrix A has already been fa
tored, then exe
uting the 
alling se-

quen
e

Call TransposeTriangularSolve (s; p)
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Figure 7 Control sequen
es for solving many problems whi
h di�er only in

their right hand sides

Call Constru
t(p)

?

Input stru
ture and values of A and values of b

?

Call Constru
t(s, p)

?

Call Solve(s, p)

?

Call ZeroRhs(p)

?

Input new values of b

?

Call TriangularSolve(s, p)

-

?

Put values of new b in rhs

?

Call TriangularSolve(s, rhs)

�
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Figure 8 Example of solving three problems whi
h di�er only in their right

hand sides by putting the new right hand sides into the problem obje
t �rst.

program tDiffRhs02

use Sparspak90

impli
it none

type (Problem) :: p

type (EnvSolver) :: s

integer :: i

real(double):: x(25)


all MakeGridProblem(p, 5, 5, '5pt') ! 
reate a grid problem p


all MakeStru
tureSymmetri
(p) ! make p stru
turally symmetri



all MakeProblemRandom(p) ! make p numeri
ally random


all MakeDiagDominant(p) ! make p diagonally dominant


all Makerhs(p) ! set the right hand side of p

! su
h that the solution ve
tor

! will be (1, 2, 3, ...)


all Constru
t(s, p) ! 
reate solver s from p


all Solve( s, p ) ! instru
t s to solve p


all PrintSolution(p, 10) ! print part of the solution

x = (/ ( 1, i = 1, 25 ) /)


all MakeRhs(p, x) ! set the right hand side of p

! su
h that the solution ve
tor

! will be equal to x


all TriangularSolve(s, p) ! instru
t s to do forward and

! ba
kward substitution using

! the fa
tors stored in s


all PrintSolution(p, 10) ! print part of the solution

x = (/ ( i*i, i = 1, 25 ) /) ! repeat the above with a new

! set of values for x


all MakeRhs(p, x)


all TriangularSolve(s, p)


all PrintSolution(p, 10)


all Destru
t(s) ! release storage for s


all Destru
t(p) ! release storage for p

end program tDiffRhs02
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Figure 9 Example of solving three problems whi
h di�er only in their right

hand sides using a separate array for the new right hand sides and solutions.

program tDiffRhs02a

use Sparspak90

impli
it none

type (Problem) :: p

type (EnvSolver) :: s

integer :: i

real(double):: x(25), rhs(25)


all MakeGridProblem(p, 5, 5, '5pt') ! 
reate a grid problem p


all MakeStru
tureSymmetri
(p) ! make p stru
turally symmetri



all MakeProblemRandom(p) ! make p numeri
ally random


all MakeDiagDominant(p) ! make p diagonally dominant


all Makerhs(p) ! set the right hand side of p

! su
h that the solution ve
tor

! will be (1, 2, 3, ...)


all Constru
t(s, p) ! 
reate solver s from p


all Solve( s, p ) ! instru
t s to solve p


all PrintSolution(p, 10) ! print part of the solution

x = (/ ( 1, i = 1, 25 ) /)


all MakeRhs(p, x) ! set the right hand side of p

! su
h that the solution ve
tor

! will be equal to x


all GetRhs(p, rhs) ! retrieve the right hand side

! of p and store in the array rhs


all TriangularSolve(s, rhs) ! instru
t s to do forward and

! ba
kward substitution using

! the fa
tors stored in s and

! the array rhs as the right

! hand side and store the

! solution ba
k in rhs.


all PrintVe
tor(10, rhs, 'Solution') ! print part of the solution

! stored in rhs

x = (/ ( i*i, i = 1, 25 ) /) ! repeat the above with a new

! set of values for x.


all MakeRhs(p, x)


all GetRhs(p, rhs)


all TriangularSolve(s, rhs)


all PrintVe
tor(10, rhs, 'Solution')


all Destru
t(s) ! release storage for s


all Destru
t(p) ! release storage for p

end program tDiffRhs02a
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will 
ompute the solution to the system A

T

x = b using the fa
tors stored in

the solver s. Here p is a problem obje
t. There is an another version of this

routine - TransposeTriangularSolve(s, rhs) where s is a solver obje
t

and rhs is an array in whi
h the right-hand side is stored as input and the

solution is returned as output.

Otherwise, exe
uting the statement

Call TransposeSolve (s; p)

will solve the transposed system from s
rat
h.

3.8 Other features

3.8.1 Matrix norms

Matrix norms are often useful in the analysis of matrix algorithms. The

subroutines OneNorm(p, mType) and In�nityNorm(p, mType) in

the Problem module 
ompute and return the one-norm and in�nity-norm

respe
tively of the problem matrix in the Problem obje
t p. Note that

the se
ond parameter mType is required when the matrix A is symmetri


and only the lower triangular half of it is stored. Refer to subse
tion 3.6 for

details.

3.8.2 Computing the residual

If the user has an approximate solution for the Problem obje
t p in the

array x, then the 
alling sequen
e

Call ComputeResidual (p; res; x; mType)


omputes the di�eren
e between the right hand side b of the given problem

p and \Ax" and stores it in the array res. Again note that mType is

required when the matrix A is symmetri
 and only the lower triangular half

of it is stored. See subse
tion 3.6 for details.

3.8.3 Matrix property inquiry

The Problem module o�ers the users the following fun
tions:

� IsStru
tureSymmetri


� IsLowerTriangular
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� IsUpperTriangular

� IsSymmetri


� IsDiagDominant

Their meaning is obvious from their names. Ea
h of these fun
tions

takes a single parameter p whi
h is a Problem obje
t and returns a logi
al

value. The fun
tion IsDiagDominant takes a se
ond optional parameter

mType. See the subse
tion 3.6 for an explanation for its role.

3.8.4 Modifying a matrix

Sometimes, the user may want to 
hange the numeri
al value of an entry

in the problem matrix A. The Problem module provides the following

subroutines for su
h purposes.

Repla
eAij(p, i, j, aij) A 
all to this routine sets the numeri
al value of

the (i; j)

th

entry in the matrix A to aij. If a nonzero did not exist at

this lo
ation before this routine is 
alled, then the value is inserted.

Repla
eColumn(p, 
Num, nElements, rowSubs, values) A 
all to this

subroutine sets the numeri
al values of nElements entries in the 
ol-

umn 
Num of matrix A in the Problem obje
t p. The user supplies

the row subs
ripts of the lo
ations in the array rowSubs and the 
or-

responding values in the array values. If a nonzero did not exist at a

lo
ation (as spe
i�ed by 
Num and rowSubs) before this routine is


alled, then the value is inserted at that lo
ation.

Repla
eRow(p, rNum, nElements, 
olSubs, values) is a row 
ounter-

part of Repla
eColumn(p, 
Num, nElements, rowSubs, val-

ues).

3.8.5 Inquiring whether a matrix entry is nonzero, and retrieving

its numeri
al value

AijPresent(p, rNum, 
Num) 
he
ks to see if the entry (rNum, 
Num)

is present. If it is, the routine returns .true.; otherwise, .false. is

returned.

GetAijProblem(p, rNum, 
Num) �nds p's matrix entry at (rNum, 
Num)

and returns it. If none exists, zero is returned.
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4 Obtaining Information from Sparspak90

4.1 Displaying information about a problem obje
t

The subroutine PrintStats(p) displays the number of rows, 
olumns, edges,

diagonal edges in the graph of the matrix, nonzeros, diagonal nonzeros in

the matrix and any string of des
ription or information (if any were provided

by the user) of the Problem obje
t. Note that the edges in the graph of

the matrix refers to the stru
tural nonzeros in the matrix A; diagonal edges

in the graph refers to the stru
tural nonzero diagonal elements in A. By


ontrast, the nonzeros in the matrix refers to the nonzero values in A and

the nonzero diagonal elements refers to the diagonal nonzero values in A.

4.2 Displaying information about a solver obje
t

At times, it may be useful to see the 
ontents of the data stru
tures of the

solver obje
t. Ea
h solver module provides a subroutine for this purpose.

To use it, one would 
all Print(s) where s is the relevant solver obje
t.

4.3 Displaying exe
ution times

The subroutine PrintTimes(s) in ea
h solver module displays the time

used for ordering, symboli
 fa
torization, entering the matrix A from the

Problem obje
t to the Solver obje
t, fa
torization, triangular solution and

iterative re�nement.

4.4 Messages produ
ed by Sparspak90

In the pa
kage, a variable msgLevel whi
h stands for \message level" is

provided. It governs the amount of information printed by Sparspak90 .

Its default value is 2, and for this value fatal errors, warnings and summary

information are printed. When msgLevel is set to 1 by the user, only

fatal error messages and summary information are printed. Setting the

value of msgLevel to 3 provides additional tra
e information about the


omputation.

In many 
ir
umstan
es, Sparspak90 will be embedded as a toolbox in

another \super pa
kage" whi
h models phenomena involving sparse matrix

problems. Messages printed by Sparspak90 may be useless or even 
on-

fusing to the ultimate users of the super pa
kage, or the super pa
kage may

wish to �eld the error 
onditions and perhaps take some 
orre
tive a
tion
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whi
h makes the error messages irrelevant. Thus, all of the printing by

Sparspak90 
an be prevented by setting msgLevel to 0.

To summarize, we have

msgLevel output messages

0 no output.

1 fatal errors, summary information.

2 fatal errors, warnings, summary information.

3 fatal errors, warnings, tra
e and summary information.

Notes By setting msgLevel to 3, tra
e information about major subrou-

tines is printed as they are entered and exited during the 
omputation.

4.5 Creating a log

If the user so 
hooses, it is possible to save the output printed by Sparspak90

to a log �le. A subroutine SetLogFile(�lename) is provided for the user to

supply a �lename for the log �le. On
e this routine is 
alled, all subsequent

output would be printed to the �le spe
i�ed in addition to being displayed

on the standard output unit.

5 Displaying Pi
tures of Obje
ts

5.1 Displaying a pi
ture of the nonzero stru
ture of the ma-

trix A

The subroutine Pi
ture(p) displays a pi
ture of the nonzero stru
ture of

the problem matrix A.

5.2 Displaying a pi
ture of the data stru
ture for the fa
tor

L

The subroutine Pi
ture(s) prints a \pi
ture" of the data stru
ture for the

fa
tor L in the solver obje
t s if symboli
 fa
torization has been done.

5.3 Creating Tex �les

Sparspak90 provides a fa
ility for the user to 
reate a �le 
ontaining a

LaTeX pi
ture environment of the matrixA 
ontained in a Problem obje
t
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p. To do that a user would exe
ute the statement

Call MakeTexFile (p; �lename)

where �lename is the name of the destination LaTeX �le.

6 S
aling

Sparspak90 provides s
aling fa
ilities to s
ale the matrix A so that the

norms of its 
olumns are all about one. Routines are also provided for

applying the appropriate s
alings and un-s
alings to the right hand side and

the solution. Typi
ally a user would �rst exe
ute the statement

Call FindS
ales (p; mType)

whi
h 
omputes the row and 
olumn s
ales. Refer to the subse
tion 3.6 for

the role served by the optional se
ond parameter.

Then exe
uting the statement

Call S
aleProblem (p)

would s
ale the matrix A and the right hand side b. After 
alling Solve(s,

p) to solve the s
aled problem, the user must exe
ute the statement

Call Uns
aleSolution (p)

in order to obtain the solution to the original problem. If for some reason

the user wants to get ba
k the original matrix A and the right hand side b,

he/she must exe
ute the statement

Call Uns
aleProblem (p)

whi
h undoes the s
aling of A and b.

An example showing the use of s
aling is given in Figure 10. Refer

to se
tion 10 for details on the subroutine HarwellBoeingRead used in the

example.

7 Iterative Re�nement of the Solution

Sometimes, 
omputed solutions may be improved by doing iterative re�ne-

ment. The pa
kage provides in ea
h solver a subroutine Re�ne whi
h does

extended pre
ision iterative improvement. To use it, the user 
alls Re�ne(s,

25



Figure 10 Example showing the use of s
aling

program tS
aling01

use Sparspak90

impli
it none

type (GPSolver) :: s

type (Problem) :: p


all MakeRandomProblem(p, 100, 100, 0.1_double)

! 
reate a random problem p


all MakeRHS(p) ! 
reate a right hand side for p su
h that

! the solution ve
tor is (1, 2, 3, ...)


all FindS
ales(p) ! find a s
aling for p


all S
aleProblem(p) ! s
ale p


all Constru
t(s, p); ! 
reate a solver s from p


all Solve(s, p) ! instru
t the solver to solve p


all Uns
aleSolution(p) ! uns
ale the solution


all PrintSolution(p, 10) ! print part of the solution


all Destru
t(s) ! release storage for the solver


all Destru
t(p) ! release storage for p

end program tS
aling01
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Figure 11 Example illustrating the use of the subroutine Re�ne.

program tRefine01_5pt

use Sparspak90

impli
it none

type (OneWaySpdSolver) :: s

type (Problem) :: p

integer :: n

n = 200


all MakeGridProblem(p, n, n, "5pt") ! 
reate a grid problem p


all Constru
t(s, p) ! 
reate a solver s from p


all Solve(s, p) ! instru
t s to solve p


all PrintSolution(p, 20) ! print part of the solution


all Refine(s, p, mType="L") ! do iterative refinement


all PrintSolution(p, 20) ! print part of the solution


all Destru
t(p) ! release storage for p


all Destru
t(s) ! release storage for s

end program tRefine01_5pt

p, mType, iter) where s is a solver obje
t, p is a Problem obje
t and,

iter (optional) is the maximum number of iterations to be performed. The

optional parameter mType is required when the matrix is symmetri
 and

only the lower triangular part of it is stored. See the subse
tion 3.6 for

details.

An example showing the use of the subroutine Re�ne is given in Fig-

ure 11.

8 Condition Number Estimation

For a square matrix A, Sparspak90 provides a subroutine CondEst whi
h


omputes an estimate of the one-norm 
ondition number of A. It should be

noted that fa
torization must be done before CondEst is 
alled. To use it,

exe
ute the statement

Call CondEst (s; estimate; p; mType)

where s is a solver obje
t, p is a problem obje
t and estimate is an estimate

of the 
ondition number. See Se
tion 3.6 for the role of mType.
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Notes For the KdeltaSolver type the estimated 
ondition number re-

turned by CondEst is that of the augmented matrix

�

ÆI A

A

T

�ÆI

�

:

Similarly, for the CLLSSolver type, the estimated 
ondition number

returned by CondEst is that of the augmented matrix

0

�

I O A

O �I C

A

T

C

T

�ÆI

1

A

:

For these two solver types, the use of the parameter mType is not

required.

9 Saving and Restoring Problems and Solvers

Sparspak90 provides subroutines Save and Restore whi
h allow the user

to stop the 
al
ulation at some point, save the results in an external se-

quential �le, and then resume the 
al
ulation at exa
tly that point some

time later. To save the results of the 
omputation done thus far, the user

exe
utes the statement

Call Save (s; �lename)

where �lename is the name of the external �le to whi
h the results are to

be written, along with other information needed to restart the 
omputation.

Here s is a solver obje
t. If exe
ution is then terminated, the state of the


omputation 
an be re-established by exe
uting the following statement.

Call Restore (s; �lename)

Note that exe
uting Save does not destroy any information; the 
ompu-

tation 
an pro
eed just as if Save were not exe
uted.

Similarly, exe
ution of the statements

Call Save (p; �lename)

and

Call Restore (p; �lename)
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Figure 12 Example showing how a problem obje
t and an envelope solver

are saved.

program tSaveEnvSolver01

use Sparspak90

impli
it none

type (Problem) :: p

type (EnvSolver) :: s

integer :: size

real(double) :: d

size = 200

d = 0.5_double


all MakeRandomProblem(p, size, size, d)

! 
reate a random problem p


all MakeStru
tureSymmetri
(p) ! make p stru
turally

! symmetri



all MakeProblemRandom(p) ! make p numeri
ally random


all MakeDiagDominant(p) ! make p diagonally dominant


all MakeRhs(p) ! set the right hand side

! su
h that the solution

! ve
tor is (1, 2, 3, ...)


all Save(p, 'tSaveEnvSolver01.Problem') ! save p to an external file


all Constru
t(s, p) ! 
reate solver obje
t s from

! p


all Print(s, 'EnvSolver before Save') ! print the solver obje
t


all Save(s, 'tSaveEnvSolver01.EnvSolver') ! save s to an external file


all Destru
t(s) ! release storage for s


all Destru
t(p) ! release storage for p

end program tSaveEnvSolver01

save and restore a Problem obje
t p to and from an external sequential

�le.

Examples showing how to save and restore a Problem obje
t and a

EnvSolver (envelope solver) obje
t are displayed in Figures 12 and 13.

10 Reading and Writing Harwell-Boeing Files

In Sparspak90 , a user 
an read in a problem stored in a �le in the Harwell-

Boeing format [4℄ by exe
uting the statement

Call HarwellBoeingRead (p; �leName)
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Figure 13 Example showing how a problem obje
t and an envelope solver

are restored.

program tRestoreEnvSolver01

use Sparspak90

impli
it none

type (Problem) :: p

type (EnvSolver) :: s


all Restore(p, 'tSaveEnvSolver01.Problem') ! restore problem obje
t p


all Restore(s, 'tSaveEnvSolver01.EnvSolver') ! restore solver obje
t s


all Print(s, 'EnvSolver after Restore') ! print data stru
tures of

! s


all Solve(s, p) ! instru
t s to solve p


all PrintSolution(p, 10) ! print part of the

! solution


all Destru
t(s) ! release storage for s


all Destru
t(p) ! release storage for p

end program tRestoreEnvSolver01

where �lename is the name of the �le where the problem data is stored and

p is the Problem obje
t 
reated to store the problem read.

Conversely, if the user has a Problem obje
t p whi
h he/she wants to

save and store in a �le in the Harwell-Boeing format, then

Call HarwellBoeingWrite (p; �leName; out�le; title)

would be the statement to 
all. Here �lename is the name of the output �le,

out�le is an optional unit number and title is an optional title to appear

at the top of the �le.

Important Notes There are restri
tions on the type of Harwell-Boeing

format �les whi
h Sparspak90 
an handle. Sparspak90 does not

handle �les whi
h store the problem matrix A in the elemental matrix

format. Also if there are multiple right-hand-sides, only the �rst one

is read in.

An example showing the use of the subroutine HarwellBoeingRead is

given in Figure 10.

30



11 Creating Test Problems

11.1 Test problem generation

The Problem module provides some fa
ilities for generating test problems.

MakeRandomProblem(p, nRows, nCols, density) generates a random

problem with nRows rows and nCols 
olumns and density density.

MakeSPDProblem(p, nRows, density) 
reates aProblem obje
t with

an nRows � nRows random matrix whi
h is both symmetri
 and

positive-de�nite.

MakeTridiagProblem(p, n) 
reates aProblem obje
t whi
h is tri-diagonal.

The right hand side b is set so that the solution x is all ones.

11.2 Right hand side generation

The Problem module has a subroutine MakeRhs(p, x, mType) whi
h


onstru
ts the right hand side of a problem given an x for the equation \Ax

= b". If x is not present, then a right hand side is 
onstru
ted so that

(a,the) solution is 1,2,3,...m. See the subse
tion 3.6 for details of the role of

the optional parametermType. This routine is useful for testing purposes.

11.3 Modi�
ation of a matrix so that it has 
ertain proper-

ties

The Problem module has a number of subroutines that allow the user to

modify the matrix A so that it has 
ertain desired properties. The following

subroutines are provided:

� MakeStru
tureSymmetri


This routine adds element positions (no numeri
al values) so that the

stru
ture of the problem is symmetri
.

� MakeSymmetri


This routine does the same as MakeStru
tureSymmetri
, and in

addition, makes the problem numeri
ally symmetri
.

� MakeDiagDominant

This routine make the matrix 
olumn-diagonally dominant. It takes

an optional se
ond parameter mType. See subse
tion 3.6 for details.
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� MakeSpd

This routine 
allsMakeSymmetri
 and thenMakeDiagDominant.

� MakeProblemRandom This routine sets the elements of the matrix

to random elements drawn from a uniform random distribution on

(0,1).

12 More Sophisti
ated Use of Sparspak90 : Look-

ing Inside

12.1 One step at a time

The pa
kage is designed for ease of use so that on
e the Problem obje
t

is 
onstru
ted and the matrix A and the right hand side b are entered,

then all that the user needs to do is to pi
k an appropriate solver type,


all Constru
t(s) and then 
all Solve(s, p) to solve the system of linear

equations.

Internally, the 
all to Solve(s, p) involves a sequen
e of steps. First the

matrixA is ordered. Then symboli
 fa
torization is done to �nd the nonzero

stru
ture of the fa
tor(s) and the relevant data stru
tures for the fa
tor(s)

are set up. Then the numeri
al values from the matrix A are input to the

data stru
tures. Finally, the matrix A is fa
tored followed by triangular

solution to �nd the solution 
orresponding to the right hand side.

In 
ertain 
ir
umstan
es, the user may want to 
all the individual steps

dire
tly instead of 
alling Solve. In that 
ase, the user must make sure that

these steps are 
alled in the right order although there are safeguards in the

pa
kage to prevent an improper pro
essing sequen
e.

The solver type is designed so that it has built-in awareness of the 
urrent

stage of the solution pro
ess. This enables the solver to enfor
e the 
orre
t

exe
ution sequen
e of the various interfa
e routines. Before the a
tual exe-


ution of ea
h interfa
e routine, a 
he
k is made to ensure that all previous

interfa
e modules have been su

essfully 
ompleted. This avoids produ
-

ing erroneous results due to an improper pro
essing sequen
e, or a

idental

omission of steps.

When an error o

urs during the exe
ution of a phase, the exe
ution of

all the subsequent phases is skipped, even if they are invoked by the user.

When Solve is 
alled, it would �nd a reordering of the matrix and/or per-

form symboli
 fa
torization only if they have not been done before. However

the other three steps (input of Problem matrix, fa
torization and substitu-

tion) are always exe
uted regardless of whether they have been done before.
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So if the matrix A remains the same and the fa
torization has already been

done on
e, it is mu
h more eÆ
ient to just 
all TriangularSolve (whi
h

only does the forward and ba
kward substitution) instead of 
alling Solve

again.

The names of the subroutines to 
all and the proper 
alling sequen
e are

as follows:

1. 
all FindOrder(s)

2. 
all Symboli
Fa
tor(s)

3. 
all InMatrix(s, p)

4. 
all Fa
tor(s)

5. 
all TriangularSolve(s, p)

An example demonstrating how to 
all the individual steps dire
tly to

solve a system is given in Figure 14.

12.2 User-supplied ordering fun
tions

Sparspak90 allows a user to provide his/her own ordering fun
tion; this is

a
hieved by 
alling the subroutine

FindOrder (s; OrderFun
tion =MyOrderRoutine)

dire
tly with a referen
e to the ordering fun
tion being passed in as the last

parameter. A module 
ontaining a user-de�ned ordering fun
tion is shown in

Fig 15 and an example demonstrating the use of this user-provided ordering

method is given in Fig 16

For the solver typesEnvSolver,EnvSpdSolver, SparseSolver, Spars-

eSpdSolver, GPSolver, KdeltaSolver, and CLLSSolver, a subroutine

FindOrder (s; perm)

where perm is a permutation ve
tor is also provided to allow a user to

supply an ordering permutation. An example showing how to order the

problem matrix by supplying a permutation ve
tor is given in Figure 17.

Important Notes The user should note that for the KdeltaSolver, and

CLLSSolver solver types, the ordering the user provides is applied

to the augmented matri
es as des
ribed in subse
tion 8.

After the ordering is done, the user may 
hoose to simply 
all Solve(s,

p) or to 
all the individual steps as previously des
ribed dire
tly to solve

the system.
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Figure 14 Example showing how a user may 
all the individual steps for

solution dire
tly.

program tRQTSolver05

use Sparspak90

impli
it none

type (Problem) :: p

type (RQTSolver) :: s

integer sze

sze = 200


all makeGridProblem(p, sze, sze, "9pt") ! 
reate a grid problem p


all MakeStru
tureSymmetri
(p) ! make p symmetri



all makeProblemRandom(p) ! make p numeri
ally random


all makeDiagDominant(p) ! make p diagonally dominant


all makeRhs(p) ! 
reate a right hand side

! so that the solution ve
tor

! is (1, 2, 3, ...)


all Constru
t(s, p) ! 
reate a solver s from p


all FindOrder(s) ! reorder the matrix


all Symboli
Fa
tor(s) ! do symboli
 fa
torization


all InMatrix(s, p) ! put the numeri
al values

! in the data stru
tures.


all Fa
tor(s) ! do numeri
al fa
torization


all TriangularSolve( s, p ) ! do forward and ba
kward

! substitution


all printsolution(p, 20) ! print part of the solution


all Destru
t(s) ! release storage for s


all Destru
t(p) ! release storage for p

end program tRQTSolver05
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Figure 15 Example of a module as a 
ontainer for a user-de�ned ordering

fun
tion

!! The purpose of this module is to demonstrate how to in
orporate a user-

!! supplied ordering when using Sparspak90.

!****************************************************************************

module SpkMyOrder

!****************************************************************************

use SpkGraph; use SpkOrdering

!****************************************************************************

!! Graph 
lass:

!! nV - the number of verti
es in the graph.

!! (xadj, adj) - array pair storing the adja
en
y lists of the verti
es.

!!

!! The adja
en
y lists of the graph are stored in 
onse
utive lo
ations

!! in the array adj. The adja
en
y list for the i-th vertex in the graph

!! is stored in positions adj(k), k = xadj(i), .... xadj(i+1)-1.

!! For 
onvenien
e in a

essing the lists, xadj is of length nV+1, with

!! xadj(nV+1) = nEdges+1.

!!

!! When the graph is symmetri
, if vertex i is in vertex j's adja
en
y

!! then vertex j is in vertex i's list. Using the representation above

!! ea
h edge in the graph is stored twi
e. There are no self-loops.

!! (No "diagonal elements".)

!****************************************************************************

!! Ordering 
lass:

!! nRows is the number of rows in the matrix

!! nCols is the number of 
olumns in the matrix

!!

!! Ordering obje
ts 
ontain two permutations and their inverses:

!! rPerm is a row permutation: rPerm(i)=k means that the new position of

!! row k is in position i in the new permutation.

!! rInvp is a row permutation satisfying rInvp(rPerm(i)) = i. Thus,

!! rInvp(k) provides the position in the new ordering of the original

!! row k.

!! 
Perm and 
Invp are analogous to rPerm and rInvp, ex
ept they apply

!! to 
olumn permutations of the matrix.

!****************************************************************************


ontains

!****************************************************************************

subroutine MyOrderRoutine ( g, order )

!****************************************************************************

type (Graph) :: g

type (Ordering) :: order

!****************************************************************************


all Constru
t(order, g%nV)

! This 
reates identity permutations of size g%nV.

! For purposes of illustration, the reverse ordering is used here.

order%rperm = (/ (i, i = g%nV, 1, -1) /)

order%
perm = order%rperm

order%rInvp(order%rPerm) = (/ (i, i = 1, g%nV) /)

order%
Invp = order%rInvp

end subroutine myOrderRoutine

!****************************************************************************

end module SpkMyOrder
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Figure 16 Example showing how a user may use their own ordering method

in solving a system.

program tMyOrder01

use Sparspak90

use SpkMyOrder

impli
it none

type (SparseSpdSolver) :: s, s1

type (Problem) :: p


all MakeGridProblem(p, 5, 5) ! 
reate a grid problem p


all Constru
t(s, p) ! 
reate solver obje
t from p


all FindOrder(s, OrderFun
tion=MyOrderRoutine)

! order the problem matrix

! using a user-suppplied

! fun
tion


all Print(s%slvr%order)


all Solve(s, p) ! instru
t s to solve p


all PrintSolution(p, 5) ! print part of the solution


all Constru
t(s1, p) ! 
reate another solver obje
t

! s1


all Solve(s1, p) ! instru
t s1 to solve p

! using the default ordering

! method


all PrintSolution(p, 5) ! print part of the solution


all Destru
t(p) ! release storage for p


all Destru
t(s) ! release storage for s


all Destru
t(s1) ! release storage for s1

end program tMyOrder01
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Figure 17 Example showing the use of a user-supplied permutation ve
tor

in ordering a problem.

program tFindOrderPerm02

use Sparspak90

impli
it none

type (Problem) :: p

type (EnvSolver) :: s

integer :: size, i

integer :: perm(16)

size = 4


all MakeGridProblem(p, size, size, "9pt")

! 
reate a grid problem p


all MakeStru
tureSymmetri
(p) ! make p stru
turally symmetri



all MakeProblemRandom(p) ! make p random numeri
ally


all MakeDiagDominant(p) ! make p diagonally dominant


all MakeRhs(p) ! 
reate a right hand side so

! that the solution is (1, 2, 3, ...)

! 
reate a random permutation of the right size.

perm(1:16) = (/ (i, i = 1, 16) /)


all RandomPermutation(16, perm)


all Constru
t(s, p) ! 
reate a solver s from p


all FindOrder(s, perm) ! order using random permutation


all Solve(s, p) ! instru
t s to solve p


all PrintSolution(p, 10) ! print part of the solution


all Destru
t(s) ! release storage for s


all Destru
t(p) ! release storage for p

end program tFindOrderPerm02
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13 Solvers and How to Choose them

13.1 Square Non-Singular Linear Systems

It is mentioned in Se
tion 1 that there are several solver types implement-

ing di�erent methods of solution. For square non-singular linear systems,

there are four basi
 solver types together with their unsymmetri
 
ounter-

parts; the only distin
tion between the former and the latter being that

the former assumes the 
oeÆ
ient matrix A is symmetri
, and the latter

assumes that A is unsymmetri
. Two of the four basi
 solver types (RQT-

SpdSolver and OneWaySpdSolver) di�er only in the ordering method

employed. Thus, for this problem 
lass, Sparspak90 only provides three

essentially distin
t methods, with ea
h one having a symmetri
 and unsym-

metri
 version. Hen
e, in this se
tion, the remarks will largely be 
on�ned

to the symmetri
 versions; 
omparative remarks about them will also apply

to their unsymmetri
 analogues.

The basi
 solver types are as follows; the remarks 
omparing them, and

the advi
e provided should be regarded as at best tentative. Chara
teristi
s

of sparse matri
es vary a great deal.
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Solver Types Basi
 Strategy and Referen
es

EnvSpdSolver The obje
tive of this method is to reorder A so it has a small

bandwidth or pro�le[12℄. The well-known reverse Cuthill-

M
Kee algorithm is used. For relatively small problems, say

n � 200, it is probably the best overall solver type to use.

OneWaySpdSolver The obje
tive of this method is to redu
e storage require-

ment, but the fa
torization time will usually be substantially

higher than the EnvSpdSolver or SparseSpdSolver methods.

Its storage requirement will usually be substantially less than

the SparseSpdSolver methods (unless n is very large). The

same remark is true about the relative solution times. Thus,

this method is often useful when storage is restri
ted, and/or

when many problems whi
h di�er only in the right hand side

must be solved (see Se
tion 3.5). This solver uses the one-

way disse
tion ordering method. It is spe
i�
ally tailored for

\�nite element problems", typi
al of those arising in stru
-

tural analysis and the numeri
al solution of partial di�erential

equations[6℄.

RQTSpdSolver The obje
tive of this method is to redu
e storage require-

ment, but the fa
torization time will usually be substantially

higher than the EnvSpdSolver or SparseSpdSolver methods.

Its storage requirement will usually be substantially less than

the SparseSpdsolver methods (unless n is very large). The

same remark is true about the relative solution times. Thus,

this method is often useful when storage is restri
ted, and/or

when many problems whi
h di�er only in the right hand side

must be solved (see Se
tion 3.5). This solver uses the re�ned

quotient-tree ordering[7℄ and is e�e
tive for problem less spe-


i�
 than the \�nite element problems" as mentioned above.

Continued on the next page.
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Solver Types Basi
 Strategy and Referen
es

SparseSpdSolver This method attempts to �nd orderings whi
h minimize �ll-

in, and it exploits all zeroes. Its ordering times are almost

always greater than those above, but for moderate-to-large

problems the redu
ed fa
torization times usually are more

than 
ompensatory. It uses a variant of the minimum de-

gree algorithm, and is suitable for all sparse problems[11℄.

For systems arising from \�nite element problems" as men-

tioned above, an alternative ordering methods is the nested

disse
tion ordering [8℄. This 
an be invoked by overriding

the default ordering routine by 
alling FindOrder(s, Or-

derFun
tion=ND) as mentioned in Subse
tion 12.2 sin
e

this ordering method is provided as part of Sparspak90 .

To summarize, our tentative advi
e and guidelines for 
hoosing a solver for

square non-singular linear systems are as follows:

1. For small problems, use the EnvSpdSolver.

2. For small to moderate size problems that have to be solved only on
e,

use the EnvSpdSolver if enough storage is available. If not, use the

OneWaySpdSolver or RQTSpdSolver. If the problem is quite large,

the SparseSpdSolver might be better.

3. For moderate to large problems, use either the OneWaySpdSolver,

RQTSpdSolver or SparseSpdSolver. If many problems di�ering only

in the right hand side must be solved, the OneWaySpdSolver or RQT-

SpdSolver may be the best. If the problem is quite large, and many

problems having the same stru
ture, but di�erent numeri
al values,

must be solved, then the SparseSpdSolver is probably the best. (See

Subse
tions 3.4 and 3.5.)

13.2 Linear Least Squares Problem Solvers

13.2.1 Regularized Least Square Problems

A matrix




K is symmetri
 quasi-de�nite if there exists a permutation matrix

P su
h that P




KP

T

has the form

K =

�

H A

A

T

�G

�

;
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where H 2 <

m�m

, G 2 <

n�n

and both are symmetri
 and positive de�nite.

An important property of symmetri
 quasi-de�nite matri
es K is that

PKP

T

always has an LDL

T

fa
torization for any permutation matrix P .

Su
h a fa
torization is also 
alled the Cholesky fa
torization of a quasi-

de�nite system.

The strong fa
torizability of symmetri
 quasi-de�nite matri
es makes

them attra
tive in solving a general linear system Ax = b, where the ma-

trix A does not have spe
ial properties (symmetri
, positive de�nite) or is

re
tangular. The \KKT" method, or regularized augmented system method,

is a parti
ular example. The key idea of the KKT method is to handle gen-

eral systems while enjoying the advantages of symmetri
 positive de�nite

systems.

For a small s
alar Æ > 0, 
onsider the augmented system

K

Æ

�

s

x

�

=

�

b

0

�

where K

Æ

=

�

ÆI A

A

T

�ÆI

�

: (1)

The matrixK

Æ

is symmetri
 quasi-de�nite. For any Æ > 0 and any symmet-

ri
 permutation, PK

Æ

P

T

always has an LDL

T

fa
torization. A solution

to (1) provides a solution to the regularized least squares problem

jjAx� bjj

2

+ jjÆxjj

2

:

If A is square and nonsingular or the system is re
tangular but 
ompatible,

the LDL

T

fa
torization of K

Æ


an be treated as an approximate fa
toriza-

tion of K

0

, where the matrix

K

0

=

�

O A

A

T

O

�

is obtained from K

Æ

by setting Æ = 0. Therefore, iterative re�nement 
an

be used on the system

K

0

�

s

x

�

=

�

b

0

�

to remove the e�e
t of Æ and get a better approximate solution to Ax = b.

Sparspak90 provides the KdeltaSolver type whi
h 
reates an aug-

mented matrix as in (1) from the given matrix A and solves the augmented

system for an approximate solution to the system Ax = b where A has no

spe
ial properties (positive de�nite, diagonally dominant) or is re
tangular.

It uses the SparseSpdSolver as an underlying solver.
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13.2.2 Constrained Least Square Problems

Consider

min

x

kAx� bk

2

where A 2 <

m�n

with m � n subje
t to

Cx = d

where C 2 <

p�n

with p � n.

For small s
alars Æ > 0 and � > 0, 
onsider the augmented system

K

�Æ

0

�

r

s

x

1

A

=

0

�

b

d

0

1

A

where K

�Æ

=

0

�

I O A

O �I C

A

T

C

T

�ÆI

1

A

: (2)

Analogous to the matrix K

Æ

in se
tion13.2.1, this matrix K

�Æ

is sym-

metri
 quasi-de�nite. Hen
e, for any Æ > 0, � > 0 and any symmetri


permutation, PK

�Æ

P

T

always has an LDL

T

fa
torization. Thus, (2) is

equivalent to the least squares problem

min

x



















0

�

p

�A

C

p

�ÆI

1

A

x�

0

�

p

�b

d

0

1

A



















2

2

:

A solution to (2) provides a solution to the 
onstrained least squares problem

min

x

kCx� dk

2

2

+ �kAx� bk

2

2

+ �Ækxk

2

2

The LDL

T

fa
torization of K

Æ


an be treated as an approximate fa
-

torization of K

�0

, where the matrix

K

0�

=

0

�

I O A

O �I C

A

T

C

T

O

1

A

:

is obtained from K

�Æ

by setting Æ = 0. Therefore, iterative re�nement 
an

be used on the system

K

�0

0

�

r

s

x

1

A

=

0

�

b

d

0

1

A

to remove the e�e
t of Æ and get a better solution to Ax � b subje
t to

Cx = d.

Sparspak90 provides the CLLSSolver type for solving 
onstrained

linear least squares problems using the method outlined above. As in the

KdeltaSolver type, it uses the SparseSpdSolver as an underlying solver.
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13.3 Square Non-Singular Linear Systems Whi
h Require

Pivoting

Let Ax = b be a large sparse nonsingular system to be solved via Gaussian

elimination. If A has no spe
ial properties (positive de�nite, diagonally

dominant), some form of row and/or 
olumn inter
hanges are ne
essary to

ensure numeri
al stability. Given A, one normally obtains a fa
torization

of PAQ, where P and Q are permutation matri
es of the appropriate size.

Thus, the pro
ess has two stages:

1. fa
tor PAQ into the produ
t of upper and lower triangular matri
es

LU .

2. 
ompute x using L;U ;P ;Q and b: solve Ly = Pb and Uz = y; and

then set x = Qz:

The 
oeÆ
ient matrix A normally su�ers some �ll; its fa
tors will gener-

ally have nonzeros in positions that are zero in PAQ. The 
hoi
e of the

permutations 
an dramati
ally a�e
t the amount of �ll that o

urs. Thus,

when A is sparse, one or both of the permutations above are determined

during the fa
torization by a 
ombination of (usually 
ompeting) numeri-


al stability and sparsity requirements. Di�erent matri
es, though they may

have the same nonzero pattern, will usually yield di�erent permutations and

therefore have fa
tors with di�erent sparsity patterns. In other words, for

general sparse matri
es, it normally is not possible to predi
t where �ll will

o

ur before the 
omputation begins. Thus, some form of dynami
 stor-

age s
heme is required whi
h allo
ates storage for �ll as the 
omputation

pro
eeds, whi
h makes eÆ
ient implementation of Gaussian elimination for

su
h systems diÆ
ult.

The 
onventional approa
h to implementation uses both row and 
ol-

umn inter
hanges during the fa
torization. The inter
hanges are 
hosen to

minimize the potential �ll at ea
h step, subje
t to the requirement that the

pivot element is above a 
ertain threshold value. Thus, P and Q are deter-

mined during the numeri
al fa
torization. For details on this approa
h, see

[2, 3, 5℄.

Gilbert and Peierls[10℄ were the �rst to provide an implementation of

sparse Gaussian elimination whose run time 
an be shown to be propor-

tional to the amount of 
oating-point arithmeti
 done. The implementation

uses partial pivoting (row inter
hanges) only; it 
omputes the fa
torization

PAQ = LU , for some permutation P that is 
hosen either in the normal

way, or by some form of threshold pivoting that sele
ts row inter
hanges that
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limit �ll while ensuring that the pivot element is not too small. The 
olumn

permutation Q is 
hosen in advan
e. This approa
h is referred to as the

G-P strategy.

Sparspak90 provides theGPSolver type for solving large sparse square

non-singular systems that has no spe
ial properties. The algorithm used is

based on the approa
h outlined above, whi
h is basi
ally Gaussian elimina-

tion with partial pivoting.
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