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Abstract. The authors designed and implemented a sparse matrix package called Sparspak in
the late 1970s. One of the important features of that package is an interface which shields the user
from the complicated calling sequences common to most sparse matrix software. The implementation
of the package was challenging because the relatively primitive but widely available Fortran 66
language was used. Modern programming languages such as Fortran-90 and C++ have important
features which facilitate the design of flexible and “user-friendly” interfaces for software packages.
These features include dynamic storage allocation, function name overloading, user-defined data
types, and the ability to hide functions and data from the user. This article describes the redesign of
the Sparspak user interface using Fortran-90 and C++, outlining the reasons for its various features
and highlighting similarities and differences in the features and capabilities of the two languages.
The two new implementations of Sparspak have been named Sparspak-90 and Sparspak++.
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1. Introduction. Sparspak is a sparse matrix package that was designed and
implemented by the authors in the late 1970s.1 One of the important features of the
package is a user interface which shields the user from the complicated calling se-
quences common to most sparse matrix software available at that time. A description
of the interface together with motivation for its design can be found in [4].

This paper describes the design and some general implementation issues of the new
version of Sparspak. The software is being implemented in C++ and Fortran-90, and
the two implementations are referred to as Sparspak++ and Sparspak-90 throughout
this paper. An “object-oriented” approach to the design has been adopted, reflecting
widely accepted software engineering practice [1, 8].

Software for solving sparse systems of equations involves relatively complicated
data structures which are not provided as standard data types in the language in which
the software is implemented. Solving a sparse system of equations usually consists
of a number of individual steps typically involving different types of data structures;
sometimes data used at one step can be discarded at the end of it and the storage
released for later use. Sometimes the amount of storage required is not known until
at least some of the computation has been completed.

When Sparspak was implemented, Fortran 66 and its successor, Fortran 77, were
used almost exclusively for scientific computing. Neither language provides user-
defined data types nor dynamic storage allocation. Consequently, the subroutines
and functions implementing sparse matrix software tend to have long argument lists,
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954 ALAN GEORGE AND JOSEPH LIU

most of which have little or no relevance for the user of the software. One of the main
roles of the interface is to provide the user with simple subroutines whose argument
lists, to the extent possible, include only information specific to the problem; that
is, information that the user would inevitably know. The interface provides for the
allocation of storage and creation of data structures using the more primitive data
types available in the language. In addition, the interface ensures that its subroutines
are called in the correct order, provides uniform error message handling, and collects
timing and storage statistics.

There are several motivations for revisiting the interface design. First, Sparspak
has been in use for more than 15 years, and the users of the package have provided
useful feedback concerning both strong points and shortcomings of the interface. In
addition, Fortran has evolved substantially, so that the current standard, Fortran-90
[7], contains modern programming language features that make implementation of a
user interface far more convenient and effective. Collaterally, Fortran is no longer
the exclusive choice of scientific programmers; C [6] and C++ [11] are becoming
increasingly popular for implementing scientific software. Both of these languages
have features that are desirable in connection with implementing an interface for a
sparse matrix package. Finally, experience suggests that the package should cater
to a broader audience. When Sparspak was designed, it was assumed that its users
would be primarily engineers and scientists whose main interest would be solving
sparse problems arising in their applications. That is, it would serve as a utility in
various scientific applications and application packages. However, the package also
has been used extensively by researchers in sparse matrix computation. Thus, there
is a motivation to redesign it so that it can also serve as a research test bed for
experts in the field of sparse matrix computation. A corollary of this objective is
that the interface should be flexible enough to support techniques for dealing with
a wide spectrum of sparse matrix problems. The original package was restricted
to positive definite problems, and to least squares problems which could be solved
using techniques largely adapted from those used for positive definite problems. This
restriction simplified the design of the user interface.

An outline of the paper follows. Section 2 contains a brief review of the basic
steps that are performed in connection with solving large sparse systems of equations,
along with various contexts in which sparse systems are solved. This establishes
the capabilities that one would expect to find in a reasonably comprehensive sparse
matrix solver, regardless of whether it even has an interface. This in turn provides a
framework for identifying the features that we believe an ideal user interface should
possess in order that users, sophisticated and otherwise, are able to conveniently
exploit the capabilities of the package. Section 3 describes the basic elements of the
design of the package along with a description of the major objects that are integral
parts of it. Section 4 contains some examples of how the package might be used, with
particular focus on how users with varying levels of knowledge or sophistication can
use the package. This section provides a context in which to demonstrate how the
design objectives from section 2 are achieved, with comments about how the design,
together with various programming language features, promotes that objective. The
last section contains concluding comments about how various programming language
features aid in the implementation of the design, drawing attention to the similarities
and differences between C++ and Fortran-90, at least with respect to this application.

2. Design considerations. Loosely speaking, a user interface is something that
allows a user to access the capabilities of a system. In the present context, the interface
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AN OBJECT-ORIENTED USER INTERFACE 955

is simply a layer of software which shields the user from the complications associated
with sparse matrix software, yet allows one to use that software in a natural and
convenient way to solve sparse systems of equations. Naturally, the design of the
interface is conditioned by the capabilities of the underlying sparse matrix software,
so an essential first step is to describe what is assumed to be those capabilities.

For definiteness, the problem to be solved will be denoted by

Ax = b,

where A is an n×n sparse coefficient matrix, and the method to be used is Gaussian
elimination.2 A triangular factorization of the matrix is computed, followed by the
solution of two triangular systems in order to obtain the solution x.

There is no general “best method” for solving sparse systems of equations. Even
if one restricts the basic algorithm to Gaussian elimination, the way it is best im-
plemented often depends on the characteristics of the given sparse linear system.
Therefore, a sparse matrix package should accommodate a variety of methods and al-
low for convenient inclusion of methods yet to be developed. This should be possible
with minimal disruption to the interface.

Sparse systems arise in a variety of contexts. Sometimes many problems having
the same structure must be solved, and sometimes many problems differing only in
their right-hand sides must be solved. Also, the way in which their structure and
numerical values become available is highly variable. The package should be able to
handle these situations efficiently and the interface should make it convenient and
natural for the user to exploit that capability.

The discussion above suggests the capabilities that one would expect in a rea-
sonably comprehensive sparse matrix package. In particular, there would be software
available to handle sparse positive definite systems, sparse symmetric indefinite sys-
tems, and general sparse unsymmetric systems. These include software for ordering
algorithms, software for creating appropriate data structures, and software for imple-
menting the actual numerical routines. In what follows, we regard the software that
does all these tasks, together with the user interface, as the package.

In general terms, the interface should support the following objectives:
• Usability. The intellectual overhead in learning to use the package should be

low.
• Versatility. The package should be flexible; that is, it should be convenient

to use in a wide variety of situations.
• Layered accessibility. The package should serve users having different levels

of expertise in sparse matrix computation, ranging from the casual user to
the sparse matrix researcher.
• Extensibility. The package should be designed so that it can be extended

easily to new methods as they are developed and also to other classes of
problems, such as sparse least squares problems and sparse nonlinear systems
of equations. Ideally, such extensions should cause minimal or no disruption
to the basic structure of the interface.
• User control. The interface should provide useful feedback, and the amount

of such feedback should be under the control of the user.

2The authors’ ultimate objective is to provide a package which deals with more general problems,
such as over- and underdetermined systems. Solving such systems may involve algorithms other than
Gaussian elimination, such as orthogonal factorization. However, for purposes of presentation, we
restrict our attention to square systems, since their requirements are diverse enough that meeting
the needs of these problems also provides the flexibility required to deal with more general classes.
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956 ALAN GEORGE AND JOSEPH LIU

3. Basic elements of the design. This section describes some of the essential
ingredients of the package, with particular emphasis on its user interface. This pro-
vides a context in which to explain how many of the design objectives outlined in the
previous section have been achieved.

3.1. C++ and Fortran-90 classes. For illustration purposes, some Fortran-90
source codes are included with the description. However, C++ examples could have
as easily been included, and the discussion is largely language-independent.3 The
main features used to achieve the design objectives are available in both languages,
although the details differ somewhat.

One of the key features used is the ability to encapsulate data structures and
functions or subroutines that act upon them together as a single entity. In C++
these are classes and each class contains member variables and member functions.4

Fortran-90 does not really have an analogue of a C++ class. It supports the feature of
derived (user-defined) data types. However, unlike member functions in C++ classes,
there is no facility to explicitly bind functions or subroutines to a data type.

In Sparspak-90, modules are used to support features similar to classes in C++.
A Fortran-90 module can contain declarations of derived data types and procedures.
A programming style has been adopted in Sparspak-90 such that a module contains
a derived type together with routines that act on that data type. In other words, a
logical association of a set of routines and a derived type is provided through mem-
bership in a module. Furthermore, the binding of these routines with the derived
type can be achieved in a natural way by including an object of the derived type as
an argument in each of the routines. This organization allows one to treat (and think
about) Fortran-90 modules and C++ class definitions in the same way.

In what follows, the term “class” will be used. For C++ programmers, the
meaning will be immediate. For Fortran-90 programmers, this should be interpreted
as a module that defines a data type, together with a collection of routines that act
on instances of that data type.

Instances of a class are called objects. A program may have several objects of
the same class having different names. From the perspective of a typical user, use of
the package involves creating and using two types of objects: Problem objects and
Solver objects. These are described in the sections that follow.

3.2. The problem class. Regardless of the level of user sophistication, one
task is fundamental and ubiquitous: the user must communicate the sparse matrix
problem to the package, and the user interface should make this as convenient as
possible. The task is complicated by the variety of ways in which the problem may
materialize, as well as by transformations that the user might want to apply to the
input. The different ways include the following:

• The structure of the problem and its numerical values may become available
simultaneously or at differing times.
• There may be many systems to be solved, differing only in their numerical

values.
• There may be numerous problems that differ only in their right-hand sides;

these may be available all at once, or each may be the result of computations
involving previous right-hand side(s) in a sequence. The latter circumstance

3The corresponding C++ examples can be found online at http://www.cs.yorku.ca/∼joseph/.
4Member variables are sometimes referred to as instance variables, and member functions are

sometimes referred to as “methods.”
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AN OBJECT-ORIENTED USER INTERFACE 957

arises naturally if the package is being used in connection with solving a
system of nonlinear equations.
• Given the matrix A, it may be desirable to generate a right-hand side corre-

sponding to a given solution or, given the structure of A, it may be desirable
to assign numerical values giving A certain properties (random, symmetric,
positive definite, diagonally dominant, etc.). Such capabilities can be useful
in developing and testing software.

The list above is far from exhaustive but serves to illustrate the variety of sit-
uations which the package should be able to handle. With these considerations in
mind, it seems natural and compelling that the package should contain a class that
can be viewed as the “problem repository.” This class is given the name Problem,
since objects of this class contain the numerical values and structure of the coefficient
matrix, its right-hand side(s), corresponding solution vectors, and related information
pertaining to the problem.

The class Problem has various member routines which operate on its data.
Roughly speaking, these routines fall into four categories:

1. Procedures which provide for input of structural and numerical values, such
as InAij, InRow, InColumn, and InRhs.

2. Procedures which adjust the input, such as ReplaceAij, MakeGSymmet-
ric, and MakeASymmetric. (The latter two procedures make the problem
structurally and numerically symmetric, respectively.)

3. Procedures which retrieve and/or display information, such as GetRhs, Get-
Solution, and PrintSolution.

4. Procedures which provide information about the problem, such as IsASym-
metric, IsGSymmetric, and IsAijPresent. The first two procedures
determine whether the matrix is numerically and structurally symmetric,
respectively, while the latter two determine whether the ijth element of the
matrix is present.

An important aspect of the Problem class is its general purpose design. It can
represent sparse matrix problems with square or rectangular matrices, with symmetric
or unsymmetric structures, and with symmetric or unsymmetric numerical values.
The general nature of its design allows easy extension of the package in the future
to handle more general types of sparse problems, thus promoting one of the design
objectives, namely, that the package should be easily extendible.

In order to provide concreteness to the description above, Figure 1 contains a
Fortran-90 subroutine which generates an n × n tridiagonal matrix problem. The
example provides an initial opportunity to elaborate on several design features of
Sparspak++ and Sparspak-90. Extensive use is made of the programming language
feature known as function name overloading, which is available in both Fortran-90
and C++. That is, different routines are allowed to have the same names, provided
that their parameter lists (“signatures”) differ. The compiler detects which routines
should be called by matching up the types and number of parameters in the routines.
Thus, routines which perform essentially the same role, even though they may employ
different internal data structures or operate on different objects, can still have the same
name. This name overloading capability is an important way in which the intellectual
overhead in learning and using the package is reduced.

Referring to the example in Figure 1, an instance of the problem class is initialized
by calling the function Construct. All objects in the package are initialized by calling
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958 ALAN GEORGE AND JOSEPH LIU

subroutine MakeTriDiagProblem( p, n )

use Sparspak90

integer :: n, i

type (Problem) :: p

call Construct(p, "TriDiagProblem")

do i = 1, n-1

call InAij(p, i+1, i, -1D0); call InAij(p, i, i, 4D0)

call InAij(p, i, i+1, -1D0); call InRhs(p, i, 1D0)

end do

call InAij(p, n, n, 4D0); call InRhs(p, n, 1D0)

end subroutine MakeTriDiagProblem

Fig. 1. Tridiagonal test problem generator.

a function whose name is Construct.5 Of course, the routine that is actually executed
will depend on the type of the first member of the argument list (which the compiler
can determine). The key point is that the user has to remember only one function
name in connection with creating new objects, regardless of their type or class.

Another example demonstrating the convenience of overloading is illustrated by
the function InAij in the example in Figure 1. As noted in the previous section, the
structure and the numerical values of the system of equations can arrive at different
times and in different aggregations. If the user does not know the value of aij but
wishes to communicate the fact that the ijth element of A is nonzero, the function
InAij is still used but the last parameter is omitted.6 Analogously, overloaded input
routines InRow, InColumn, and InSubMatrix are available in the event that the
nonzeros (or perhaps only their positions in the matrix) become available by rows or
columns or as submatrices. Similar remarks apply to InRhs. The right-hand side
b can be input one element at a time, as shown in the example in Figure 1, or as
a subvector with an accompanying list of subscripts, or all at once. In all cases a
function with the same name is called. Thus, the user must remember only a small
number of function names to use Problem objects.

The call to the routine Construct in the example in Figure 1 illustrates another
design feature. All objects that are created during the use of Sparspak are given names
so that if they later generate error messages or other information, they can “identify
themselves.” Each class has a character string member variable called objectName,
and the printing of object information always includes its objectName for identifi-
cation. Since there may be numerous objects of the same type present in an executing
program, this self-identification is important in helping the user understand output
from his or her program. The explicit naming of each object created is optional; if the
user omits the parameter, a name for the object is created automatically. Each class
has a function ReName to make it possible for the user to change the name of an
object if that is desirable. The setup allows users to assign unique names to objects
for identification.

5This statement and the rest of the paragraph applies only to Sparspak-90. In C++, constructors,
which play the same role as Construct, are called automatically whenever an object of a class is
instantiated.

6Fortran-90 supports the notion of optional arguments, so this feature can be achieved in Fortran-
90 by using an optional argument rather than subroutine name overloading.
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AN OBJECT-ORIENTED USER INTERFACE 959

program SimpleExample

use Sparspak90

type (Problem) :: p

type (SparseSpdSolver) :: s

call MakeTriDiagProblem(p, 5) ! create test problem

call Construct(s, p) ! create solver object

call Solve (s, p) ! instruct s to solve p

call PrintSolution(p) ! print the solution

call Destruct(p); call Destruct(s) ! release storage

end program SimpleExample

Fig. 2. Simple use of the package.

Another noteworthy feature is that each class has standard member procedures
Save and Restore for saving and restoring the contents of an object to and from an
external file.

3.3. The solver class. The second major type of object that the typical user
of the package will employ is a “solver” object. Loosely speaking, a solver object
accepts a problem object as input and produces a solution to the problem. The
package contains numerous different “solvers” for sparse systems of equations. That
is, in addition to a class of type Problem in the package, there are solver classes,
each consisting of a particular data structure, ordering algorithm, and numerical
factorization and substitution routines; together, these implement a particular overall
approach to solving a sparse system. For example, for symmetric positive definite
systems, there are several effective algorithms for finding a low fill ordering; there are
several efficient methods for storing Cholesky factors; and there are several efficient
ways of implementing the factorization using the same data structure (left-looking,
right-looking, multifrontal [3, 5, 9]). Various solvers result from selecting different
combinations of these options.

The multitude of solvers is necessary because problems vary in several dimensions.
They may or may not be square; if square, they may or may not be structurally sym-
metric. If they are structurally symmetric, they may or may not be numerically
symmetric. Regardless of either shape or symmetry, row and/or column interchanges
may be necessary to ensure numerical stability. In addition, for any particular com-
bination of problem attributes above, there may be more than one approach that will
solve the problem. Of course, a solver that assumes no special features will cope with
them all but not as efficiently as one that exploits special features that a problem
may possess.

3.4. Coarse structure of Sparspak. At a low (coarse) level of resolution, the
package can be regarded as consisting of just two fundamental types of classes, namely,
Problem and xxxSolver, where xxx denotes one of the numerous possibilities men-
tioned above. For example, Sparspak contains a solver for symmetric positive definite
problems that reorders the problem to reduce fill. This solver class has the name
SparseSpdSolver, standing for Sparse Symmetric positive-definite Solver. A simple
example showing its use is given in Figure 2, where the subroutine in Figure 1 is used
to create a small symmetric positive definite tridiagonal problem.

The package also contains a solver for symmetric positive definite problems that
orders the problem so that it has a small envelope. This solver class has the name
EnvSpdSolver, which stands for Envelope-reducing Symmetric positive definite Solver.
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960 ALAN GEORGE AND JOSEPH LIU

Fig. 3. Coarse structure of Sparspak.

The only change necessary in the program in Figure 2 in order to use this solver would
be in line 4, where SparseSpdSolver would be changed to EnvSpdSolver. The use
of function name overloading for Solve and Destruct means that no other changes
are required; of course different procedures will be invoked. The compiler detects
which procedures should be called by matching up the types and numbers of param-
eters in the procedures.

“Behind the scenes,” Solve invokes subroutines which carry out the four standard
steps of solving a sparse positive definite system. These subroutine names are also
overloaded; they are invoked by the same names, regardless of the actual sparse
positive definite system solver class being used:

1. FindOrder: find an appropriate ordering;
2. SymbolicFactor: symbolic factorization;
3. Factor: numerical factorization;
4. Substitute: numerical forward and backward substitution.

Before numerical factorization, Solve will also invoke InMatrix to extract the nu-
merical matrix values from a given matrix Problem and place them into the internal
data structure. The subroutine name InMatrix is also overloaded, so that all Solve
subroutines use the same name, although the subroutine that it invokes depends on
the actual solver, since the data structures that store the Cholesky factor will generally
differ across solvers.

Thus, from the perspective of a typical user, Sparspak can be viewed as shown in
Figure 3. Two types of objects are involved in its use, namely, problem objects and
solver objects.

Figure 3 provides focus for an important point about the solver objects. As the
example in Figure 2 illustrates, a solver module can be used to solve a problem using
a single call to the subroutine Solve. That routine in turn invokes other subroutines
mentioned above to perform the various steps in solving a symmetric positive definite
system. These are the subroutines listed in the lower subbox in the box labeled
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AN OBJECT-ORIENTED USER INTERFACE 961

xxxSolver. However, these routines are also accessible directly by the user; a user
who wishes to control when various steps of the computation are performed, or wishes
to execute only some of the steps, can invoke these “second-level” procedures directly.
The solvers contain private state variables (not accessible by the user) that ensure
these subroutines are called in the correct order and that issue warnings or fatal error
messages if they are called out of sequence.

It was noted earlier that there is no need for a function Construct in C++
because constructors are automatically called whenever a new object is created. Sim-
ilarly, when objects disappear in C++ as a result of leaving the scope in which the
object was declared, destructors are automatically invoked. This is not the case in
Fortran-90, so Sparspak-90 has Destruct routines to explicitly release storage used
by objects when they are no longer needed.

4. Meeting the design objectives. Section 2 described a number of design
objectives, and section 3 provided a general description of the design of Sparspak. The
objective of this section is to provide some examples which illustrate how the design
of the previous section allows the objectives to be met. Throughout this section,
references will be made to the five objectives enumerated in section 2.

One objective of the redesign of Sparspak is that it be able to cater to the needs of
a wide variety of users, from the casual user who may know little about sparse matrix
technology to the sparse matrix researcher who might use the package as a “toolbox”
containing functionality useful in advancing the field. To that end, the examples in
this section illustrate how the package might be employed by users with varying levels
of sophistication or need.

At a very coarse level, usage of the package can be divided into two categories:
standard usage and research usage. The distinction is based on the objects the user
declares and manipulates. Of course this distinction is somewhat arbitrary, but it
is useful in understanding the design and usage of the package. Standard users are
those who are aware of the coarse structure of the package, as described in the previous
section. Of course, within this group of users there will still be substantial variation
in the level of sophistication, but the objects that are manipulated by the user will be
generally limited to Problem objects and Solver objects. Some will use only a few
of the interface routines available and make no use of options that might be available,
while others will make extensive use of them. Research users, on the other hand, will
declare and manipulate some or all of the more basic objects within the package, such
as graphs, orderings, and so on. These objects will be used as building blocks for the
researcher’s own software development efforts.

4.1. Standard usage of the package. A simple example of basic usage of the
package was introduced in Figure 2. The user instantiates an object of the Problem
class, “loads” it with a problem, creates a Solver object, and then uses it to solve the
problem. If the user does not know that the problem has any special characteristics
(or that it may not have any), then the solver chosen will be a general one that
assumes no special properties.

For purposes of this discussion, suppose the problem to be solved is symmetric
and positive definite and that an envelope method is to be used to solve the problem.
Also, suppose one step of iterative refinement is to be performed on the solution.
These computations would be performed as shown in Figure 4. Here a built-in test
problem generator MakeGridProblem is used. The package provides a number of
subroutines to generate standard problems for testing software.
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962 ALAN GEORGE AND JOSEPH LIU

program refine

use Sparspak90

type (Problem) :: p

type (EnvSpdSolver) :: s

real (double), dimension(36) :: x, res

call MakeGridProblem(p, 6, 6, "9pt") ! create test problem

call Construct(s, p) ! create solver object

call Solve(s, p) ! solve for initial solution

call ComputeResidual(p, res ) ! compute the residual

call PrintVector(res, "residual") ! print the residual

call Solve(s, res) ! solve for correction

call GetSolution(p, x); ! retrieve the solution

x = x + res ! compute improved solution

call PrintVector(x, "refined solution") ! print solution

call Destruct(s); call Destruct(p) ! release storage

end program refine

Fig. 4. Sample user program—one step of iterative refinement.

The function name Solve is overloaded within each solver. In the example, the
first call to it involves the solver and problem objects s and p, and the solution is put
in the problem object p. In the second call to Solve, its arguments are the solver and
a vector rhs containing the right-hand side; its contents are replaced by the solution.

Just as in the example in Figure 2, a change of only one text string in the program
(EnvSpdSolver) is all that is needed to change the solver being used. All other
function names would remain unchanged.

The second example in this section demonstrates how two different methods for
solving a problem might be compared in terms of storage requirements and execution
times. Such quantities are automatically captured within each solver. Suppose a
user wants to compare the performance of the envelope and sparse solvers applied
to a 50× 50 grid problem obtained using a nine-point difference operator. One such
program to do this is shown in Figure 5. Note again the use of name overloading:
Factor, PrintStats, and Destruct invoke different subroutines, depending on the
types of their parameters.

It was noted at the end of the previous section that interface routines for solver
objects can be invoked at two levels. The user may choose to invoke only the Solve
function; in that case, the appropriate routines will be called in the required order,
and a solution will be produced. However, a user may wish to select various options
that might be available within a solver and/or explicitly invoke some of the steps. An
example appears in Figure 6. A grid problem is generated, just as in the example in
Figure 5. Then the problem is factored using an envelope solver, where the default
ordering is overridden by a random ordering. (The function RandomOrdering is
a built-in function in Sparspak that generates a random ordering.) Then the same
problem is factored using a fill-reducing solver, but the default ordering subroutine is
overridden by a user-supplied subroutine called MyOrdering. To be able to imple-
ment such a subroutine, of course, the user must know the interface for such ordering
subroutines.

Thus, some users of Sparspak will at times use the solver objects at this next level
of resolution, explicitly invoking subroutines which execute the individual steps of the
solution process. Some will select various options that may be available to adjust the
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program compare

use Sparspak90

type (Problem) :: p

type (EnvSpdSolver) :: envSolver

type (SparseSpdSolver) :: sparseSolver

call MakeGridProblem(p, 50, 50, "9pt") ! test problem

call Construct(envSolver, p) ! create solver objects

call Construct(sparseSolver, p)

call Solve(envSolver, p) ! solve problem using each method

call Solve(sparseSolver, p)

call PrintStats(envSolver) ! print performance statistics

call PrintStats(sparseSolver)

call Destruct(p) ! release storage

call Destruct(envSolver); call Destruct(sparseSolver)

end program compare

Fig. 5. Sample user program—comparing two solvers.

program myorder

use Sparspak90

type (Problem) :: p

type (EnvSpdSolver) :: envSolver

type (SparseSpdSolver) :: sparseSolver

interface

subroutine MyOrdering( g, order)

use Sparspak90

type (Ordering) :: order

type (Graph) :: g

end subroutine MyOrdering

end interface

call MakeGridProblem(p, 25, 25, "9pt") ! test problem

call Construct(envSolver, p) ! create solver objects

call Construct(sparseSolver, p)

call Factor (envSolver, p, RandomOrdering)

call PrintStats(envSolver, "random ordering: envelope solver")

call Factor(sparseSolver, p, MyOrdering)

call PrintStats(sparseSolver, "My ordering: sparse solver")

call Destruct(p) ! release storage

call Destruct(envSolver); call Destruct(sparseSolver)

end program myorder

Fig. 6. Using options in the package.
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964 ALAN GEORGE AND JOSEPH LIU

program SimpleResearchUsage

use Sparspak90

type (Problem) :: p

type (Grid) :: grd

type (Graph) :: g

type (Ordering) :: rcmOrder, mmdOrder

call Construct(grd, 4, 4) ! create 4 by 4 grid object

call MakeGridProblem(p, grd, "9pt" )

call Construct(g, p) ! create graph object from p

call Picture(g) ! draw incidence matrix of the graph

call Print(g) ! print the adjacency lists of g

call RCM(g, rcmOrder) ! find RCM ordering of g

call Picture(g, rcmOrder)! draw incidence matrix:RCM-reordered graph

call MMD(g, mmdOrder) ! find MMD ordering of g

call Picture(g, mmdOrder)! draw incidence matrix:MMD-reordered graph

call Destruct(g); call Destruct(p); call Destruct(grd) ! release storage

call Destruct(rcmOrder); call Destruct(mmdOrder)

end program SimpleResearchUsage

Fig. 7. Simple research-level usage of the package.

behavior of the algorithms executed at each step. However, the basic objects that the
user manipulates remain the same, and the details of data structures and algorithms
are hidden from the user. The user needs only to be concerned with the “essential
ingredients” of the problem.

The example in Figure 6 illustrates another design feature of Sparspak. Heavy use
is made of optional arguments. Many of the subroutines allow the user to include a
text string as a parameter to aid in making output from the package understandable.
In the example, such a string is included in the calls to the subroutine PrintStats.

4.2. Research usage of the package. At this level of usage of the package, the
user will be aware of some or perhaps all of the major classes or modules, along with
the various routines that operate on objects from these classes. These include such
things as graphs, orderings, elimination trees, grids, and so on. A simple example of
usage at this level is given in Figure 7. The comments in the program in Figure 7
provide an explanation of what the program does.

The example in Figure 7 illustrates a number of additional features of Sparspak.
Essentially all objects have the capability of printing themselves; that is, there is a
subroutine called Print (heavily overloaded) that will print the contents of an object.
For example, if the argument is a graph, the adjacency lists of the graph will be
printed. If the object is a problem object, a listing of the nonzeros in the matrix and
their positions will be printed, and similarly for other objects. Solver objects print
detailed information about their data structures and orderings. These are mainly
useful to sparse matrix researchers and for instructional purposes.

Similarly, many objects are able to draw a “picture” of themselves. For example,
it is often useful to be able to see the structure of matrices and graphs, and there are
Picture routines which provide such pictures. Indeed, even the solvers in Sparspak
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AN OBJECT-ORIENTED USER INTERFACE 965

have Picture routines which provide pictures of the data structures used. Again,
such routines are useful for sparse matrix researchers as well as helpful in connection
with teaching about sparse matrix methods. As usual, the name is overloaded so
that the user needs only to remember one name, regardless of what object is being
pictured.

In cases where it makes sense to print or provide a picture of a permuted form
of the object, such as when the object is a graph or a problem, then an ordering
object can be (optionally) provided to the print and picture routines. This option is
used in the example in Figure 7, where a picture of the graph under the two different
orderings found is printed.

4.3. Low intellectual overhead. The examples in the previous subsections
make it evident that learning how to use the standard capabilities of the package is
relatively simple. Of course, if one wants to utilize the many options available, or use
the basic building blocks within the package, more must be learned. However, learning
to use the basic power and functionality of the software requires little intellectual
investment. This has been achieved through the following:

1. Simple structure. The typical user really needs to know about only two kinds
of objects, namely, problem objects that contain information about a sparse
system of equations, and solver objects which accept a problem as input and
produce a solution as output.

2. Name overloading. The user must remember only a few function names in
order to use the package. Functions which perform essentially the same task,
regardless of the underlying data structure and algorithms being used, are
invoked by the same name.

3. Information hiding. Intricate data structures used in storing sparse factors
and detailed implementation of numerical routines are hidden from the user.

4.4. Flexibility of the package. The examples presented above illustrate how
the package can cope with a wide variety of circumstances. The features that facilitate
its flexibility are as follows:

1. Object-oriented design, which allows multiple problem and solver objects to
be manipulated in one program.

2. There are a variety of methods available for solving a sparse system. The
various scenarios (multiple systems with the same structure, multiple systems
differing only in the right-hand side, etc.) can be handled in a natural way,
as illustrated by the example in Figure 4.

The example in Figure 6 illustrates how optional parameters allow the user to
replace the standard subroutines that find the ordering. Although only a modest
number of solution methods exist in the current package, the design allows the simple
extension of the package to include additional new methods.

4.5. Serving different users. One of the design objectives was to be able to
cater to the needs of users with varying levels of expertise. The examples in the
previous subsections demonstrate that the design allows this to occur in a more or
less seamless fashion.

At a basic level, the user creates one or more problem objects and one or more
solver objects. Depending on the context, relatively few member routines of those
objects might be invoked. An example of such usage is given in Figure 2.

On the other hand, the context might require slightly more functionality: One or
more of the second-level routines in the solver (FindOrder, SymbolicFactor, etc.)
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966 ALAN GEORGE AND JOSEPH LIU

might be invoked. An example of this somewhat more sophisticated use of the package
is given in Figure 4. Other examples of the usage of these second-level routines in a
solver are given in Figures 5 and 6.

Finally, the individual basic objects upon which the package is based can also be
employed by the user. This is illustrated by the example in Figure 7.

4.6. User-package communications. Messages from the package are grouped
into three categories: error messages, warning messages, and information messages.
The extent to which these messages are printed is under the control of the user through
the value of a messageLevel variable. If it is set to zero, all messages are suppressed.
Setting it to one allows fatal errors to be printed; setting it to two allows warning
messages to be printed as well; and setting it to three permits all messages to be
printed. The message level can be reset during execution.

Sparspak allows multiple objects of the same class in the same program. As noted
earlier, to provide clear association of messages with objects, each object has a string
variable objectName for its identification. All messages printed are accompanied by
the corresponding objectName. This allows the user to relate package messages to
the objects that printed them.

To facilitate the use of the package by researchers, a debugging facility has been
included in Sparspak, using ideas borrowed in part from a debugging facility provided
in the Nachos system [2]. The user can select one of four debugging levels which control
the amount of debugging information printed. Setting the level to zero will suppress all
debugging information, with levels one, two, and three specifying increasing amounts
of information. Additionally, debugging messages can be grouped into categories
through the use of debug flags. For example, if a researcher is developing a new
ordering subroutine, only messages associated with orderings and graphs may be
desired. By setting the debug flag to “og,” only messages with “o” (ordering) or “g”
(graph) in their argument list will be printed. In this way, a software developer can
choose to print only messages within specified categories as well as control the amount
of information through setting the debug level. These parameters can be reset at any
time in the user program so that the user can choose different types and levels of
debugging information at selective portions of his or her code.

In Sparspak++, “conditional include” has been used for all the debugging state-
ments. In a production environment, the user can simply choose to exclude all such
debugging statements in compiling the code. On the other hand, for research develop-
ment of new algorithms, the package should be compiled including these statements.

Unfortunately, Fortran-90 has no such conditional include facility, so a much less
elegant solution has been used. All statements associated with debugging have a
trailing comment of the form !DEBUG, so that a simple text stream processor can
strip out the debugging statements prior to compilation when a “production version”
of the package is desired.

5. C++ and Fortran-90: Concluding remarks. The development of the
Sparspak++ and Sparspak-90 versions of Sparspak is an ongoing project. This article
has described the objectives of the revision to Sparspak, which represent a substantial
broadening over those of the original Sparspak package. In particular, supporting a
much larger problem class and catering to the needs of a broad spectrum of users
are prime objectives. The previous sections have provided the essential features of
the design, along with a rationale for it. Also included was a collection of sample
programs and commentary about them illustrating the way the design, together with
various language features, allows the objectives enunciated in section 2 to be met.
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AN OBJECT-ORIENTED USER INTERFACE 967

Both C++ and Fortran-90 have a number of features that have been critical
in achieving the design objectives set for Sparspak. The ability to overload function
names is immensely helpful in keeping low the number of names a user must remember
and is also helpful in understanding the structure of the package.

Another important feature of both languages is the ability to create “objects.”
Although Fortran-90 is not as versatile as C++ in this respect, it is possible with
a simple programming protocol to have Fortran-90 modules and C++ classes serve
more or less identical roles in the implementations of Sparspak-90 and Sparspak++.
This feature is important in meeting one of the design goals, namely, the ability
to simultaneously have a number of sparse matrix problems in the process of being
solved.

In terms of providing a friendly and versatile interface to the user, one can easily
conclude that these two programming language features are among the most impor-
tant.

An important difference between the two languages that had a significant effect
on the ease of implementation was support of inheritance. Briefly, in C++ new classes
can be created from existing base classes by “subclassing” them. That is, one can de-
fine new classes as extensions of existing classes by declaring additional variables and
introducing additional member functions. The new class thus defined inherits all the
variables and functions from the base class. For example, the underlying structure of
Sparspak++ involves the definition of an SpdSolver class containing basic objects
and functions common to all symmetric positive definite direct solvers. Subclasses
of SpdSolver will inherit this set of member variables and member functions from
SpdSolver. Other functions and their interfaces may be declared in SpdSolver,
but the actual implementations of these member functions will depend on the so-
lution methods and will appear in subclasses of SpdSolver. There are currently
two subclasses of SpdSolver: EnvSpdSolver for the envelope solution method and
SparseSpdSolver for the sparse solution method. This feature has the important
and well-known advantage of promoting the reuse of software and making it more
manageable. Only one base class has to be maintained, even though it might be used
in numerous other classes.

Unfortunately, Fortran-90 does not support the notion of inheritance, so the ben-
efits of the strategy described above are less convenient to realize. There are modules
containing the user-defined data types and the subroutines that implement each basic
approach; these correspond to the subclasses of SpdSolver in the C++ implemen-
tation. For example, EnvSpdBase is one such Sparspak-90 “class” and another is
SparseSpdBase. The corresponding solver EnvSpdSolver is created in a mod-
ule with user-defined data type EnvSpdSolver having as one of its components
EnvSpdBase. Thus, EnvSpdBase can be viewed as a subclass of EnvSpdSolver
in the sense of C++. Similarly, a SparseSpdSolver is created in a module with user-
defined data type SparseSpdSolver having as one of its components SparseSpdBase.
This technique is known as composition in the software engineering literature.

At first glance, the advantage of software commonality appears to be lost, since
there are two “base classes,” namely, EnvSpdSolver and SparseSpdSolver. How-
ever, these solver classes are virtually identical. They differ only in the name of their
user-defined data type and in the name of one of its components. Name overloading
allows all subroutine calls to be otherwise identical. To change the EnvSpdSolver
module to the SparseSpdSolver solver requires only a simple global text change.
Thus, in reality only one solver module needs to be maintained. The use of makefiles
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968 ALAN GEORGE AND JOSEPH LIU

and stream editor scripts allows the various solvers to be generated automatically,
and effective reuse of common software is achieved.

The Sparspak++ implementation makes extensive use of a standard C++ library,
called the Standard Template Library (STL) [10]. This has been a very substantial aid
in implementing many of the fundamental classes in Sparspak++. For example, the
STL vector and list classes are used extensively in creating the Sparspak++ Graph
class.7 There does not appear to be anything similar available in Fortran-90; such a
library would be very valuable, although it is not obvious that the language supports
the generality required to allow such a library to be implemented.

Not surprisingly, Fortran-90 has some powerful features for numerical computa-
tion that are absent in C++. Perhaps the most notably useful are various array
operations. The so-called colon notation, allowing a subarray to be referenced, is
highly useful. Also, array-valued subscripts are extremely useful in gather-scatter
operations and in applying permutations to arrays.

There are several features within C++ and absent in Fortran-90 that are poten-
tially useful, although their utility has not been fully explored at the time of writing.
One is dynamic binding, that is, the ability to establish links to routines at execution
time. A need for this feature has not yet been encountered, but it may be in the future.
The other notable feature in C++ that is almost certain to be useful is the ability
to “throw” and “catch” exceptions, such as floating-point overflow, divide-by-zero,
etc. When such exceptions happen many levels down within the procedure hierarchy,
it is often necessary to pass such information up the hierarchy to a level where the
exception can be addressed. The throw-and-catch facility available in C++ obviates
the need to have error flags appear in the argument lists of the routines which either
raise the exception, service it, or simply transmit it from one call level to another.

Finally, there are some differences in the way function name overloading is done
in the two languages and in the way function parameters are handled. However, the
capabilities are comparable and did not lead to a real distinction between the two
languages in terms of ease of implementation.
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