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Notation 1. When A is a square matrix, we denote by |A| its determinant. If the inverse of A
exist, we denote it by A7

1 Distribution of the posterior of a finite basis expansion
with Gaussian coefficients
Lemma 2. Let X* = (X, :t € [0,T]) be an observation of
dX; = b(X;)dt + o(X,)dW,,

where 0 : R — Ryg is a measurable function, (W; : t € [0,T]) is a Brownian motion and b is
equipped with the prior distribution defined by

k
b=> 0;0;,
j=1

where {¢1, ..., ¢} is a linearly independent basis, and 6 = (b4, . .., 0k)" has multivariate normal
distribution N(u,X), with mean vector i and positive definite matriz 3. Then the posterior
distribution of 0 given X7 is N(j1,X), where

=S+ H M m+ot), S=(EG+2H7!

and the vector m = (my,...,my)" is defined by

/¢l 2dX,, 1=1,...,k

and the symmetric k x k-matrix S is given by

/ &1(Xy) Xt)
0'2 Xt

lyl/:]_’..-7k7 (1)
provided S + X1 is invertible. Moreover, the marginal likelihood is given by
[P 10010 = 5 b

Proof. Almost surely we have by Girsanov’s theorem (e.g. Steele, 2001, chapter 13 or Chung
and Williams, 1990 reprint 2014, section 9.4)
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with respect to the Wiener measure. So
1
logp(XT | b) = 0'm — 56”50 (3)
and the log of the distribution of § with respect to the Lebesgue measure on R* is given by

k 1 1 _
log p() = — 5 log(27) — S log [Z] = 5(6 — )= (0 — )
=Cy — %9219 1Ry,
with
k 1 1
= — Zlog(2m) — = log |X] — = 'S .
Cy 5 log(2m) — S log X — SpEu
So,
T t 1 t 1 -1 ty—1
log(p(X™ | 0)p(6)) =Cy + 0'm — 0'S0 — 20570+ 0'S '
1
=Ci +0'(m+X"p) — 5et(S +¥71
O+ (S + 57 ((5 Y m 4 z—lu))

- %ef(s + 310,

By the Bayes formula, the posterior density of # is proportional to p(XT | 8)p(0). It follows
that 6 | X7 is normally distributed with mean

p=(S+X) m+Ep).

and covariance matrix

Y= (S4+ 27
provided S + X! is invertible. Moreover

/ p(XT | 0)p(0)do
:/ecle9t2‘lﬂe—§9ti—led0
—(2m)F2| S| 2ea BT O

X /(Qw)—k/2|i|—1/260t2_1ﬂ6—%Gtﬁ)_lee—%[ﬁﬁ]—lﬂde
—(2m )k /25| 2z BT RO
=X IS 2e e S gy S

using that the integrant in the third last line is the density of a multivariate normal distribution
and therefore integrates to one. O

Usually we refer to S as the Girsanov matrix.



2 The marginal maximum likelihood estimator

Lemma 3. Let A > 0, i € R* and let & be a positive definite k x k-matriz. Consider the prior
0 ~ N(u,Xy), where ¥y = A\?Y and denote its density by px. Then

log [ pA(X" | 0)pa(0)do
/ (4)

1 1 1
=—3 log N2 + 1, | — 5,@—1# + 5(m F AT TS AT T m - AT ).

Proof. Tt follows from lemma 2 that
IS =0 (S 4+ 57 = hS + I = A2ES + T,
and

A =(m 4 S ) (S + ) TS + S + 530 T m 4 5 )
=m+ A28 (S + AT T (m 4+ ATEE T ).

So it follows from the same lemma that
10g/pA(XT | 0)pr(6)do
1 1 1
=-3 log [N*2S + 1, | — éA_zptE_lp + §(m F AT TS F AT T m - AT ).

OJ

So can we calculate (S +A72X71) 7! from (S +X71)7!'? What I found out: if A and B are
symmetric matrices that commute, then there is an orthonormal matrix @ so that Dy = QT AQ
and Dp = QT BQ are diagonal. In our set-up this happens when S and ¥~! commute. They
commute when ¥ is cI.

In de implementatie voor vaste o kun je pu'X71p en X714 opslaan en hoef je maar een keer
uit te rekenen.

Als p =0, dan is

1og/pA(XT | 6)px(0)do
1 2 L, —25—1\—1
=— §log|/\ ES+Hk¢|+§m (S+A7°27)"'m.
Verder hebben we
S+ A2t = )2n! ()\QZS + Ik) :
Dus
log/pA(XT | 6)p(0)do
1 f 1 ‘ .
-3 log [\22S + I | + 5)\2771t ()\ZZS + ]k,) "Ym.
Dus de laatste formule hangt niet af van X!, De vraag is dus, zijn er slimme snelle manieren
om de determinant en inverse van \>X.5+ I, uit te rekenen?  Conclusie van 3 dagen aan werken

is dat de determinant makkelijk uitgerekend kan worden met behulp van de eigenwaarden, maar
de inverse naar het schijnt niet zo makkelijk.



Lemma 4. If vy, ..., v, are the eigenvalues of BS + Iy, then N2vy — N2+ 1,..., X %y, — A2 + 1
are the eigenvalues of \>°2S + 1.

Proof. Note that

0=|v I} —(2S + 1)
=
0= NI —(A’8S + N 1)|
=|(Vy; = N+ 1)L, — (NS + 1)

So v; is an eigenvalue of X8 + I, if and only if A\2v; — A% + 1 is an eigenvalue of A2°XS +I,. [

Lemma 5. Ifvy, ..., v, are the eigenvalues of £, then N2vi+1, ..., \2v,+1 are the eigenvalues
of N?2S + 1.

Proof. Note that

v 1, =38 =0
=
0 =Ny Iy —A*ES|
=[(Nv; + 1)L, —(N°SS + L) |

Ul

So the cigenvalues of A>2S + I, are easily obtained from the eigenvalues of XS or .5 + I
Note that the determinant
3 Random scaling
Lemma 6. Let X7 = (X, :t € [0,T]) be an observation of
dX; = b(X})dt + o(X;)dW,,
where b is equipped with the prior distribution defined by

M\ ~Inverse Gamma(A, B) = IG(A, B)
0| A ~N(u, N°%)

k
bl1O=> 0;0;,
j=1
where {¢1, ..., ¢} is a linearly independent basis. Then
1
M0, X" ~ 16 (A +5/2,B+5(0 - ) — u)) :

Proof. Recall eq. (3), logp(X™ | b) = 6'm — 36"S0. The logarithm of the distribution of 6 given
\ with respect to the Lebesgue measure on R” is given by (proportionality w.r.t. A),

log p(6 | \) =Cy — klog A — %A2(0 _ W0 — ).



for some real constant ', depending on #, but not on .
In the following, oc means equal up to a multiplicative constant depending on 6 and X7,
but not on \. By the Bayes formula,

pN* [ 6, X7) op(XT [ A%, 0)p(A* | 0)

and
p(A* | 0) ocp(9 | A*)p(A?)

SO

PN [0, X7) ocp(XT | A%, 0)p(6 | X*)p(X?).
It follows that for some real constants C, C' depending on # and X7, but not on A, we have

logp(\2 | 0, XT)
=C+0'm — %QtSG

C (A4 1)log(A2) — %

L (A k24 1) log(?) — 23O WETO =

A2 ’

which is up to an additive constant the logarithm of the density of the inverse gamma distri-

bution with shape parameter A + k/2 and scale parameter B + (6 — p)'S71(6 — p).
Lemma 7. We have
log p(X™ | j, \*)
=— % log [N22S + 1, | — %Mtz—lu + %(m FATETHS F AT T m AT T ).
Proof. This follows from
P50 = [ DX 5.0, 3200067 |\

and lemma 3.

4 The sparsity of the Girsanov matrix with
Faber-Schauder functions

The Faber-Schauder basis functions 1, ¢; are defined as follows:

(1—22  when z € [0,1/2),
Yo(x) =49 2x —1 when x € [1/2,1],
L0 otherwise,
(22 when z € [0,1/2),
Alz) =¢2(1—x) when x € [1/2,1],
0 otherwise,

\



and
Vip(z) =A22 —k+1), j=0,1,....k=1,...,2,

see van der Meulen, Schauer, and van Waaij, 2018, p. 607. We say that ¢y and 9y are of
level zero, and the basis functions 9;1,...,; . are said to be of level j. The Girsanov matrix
S defined in eq. (1) with all basis function up to and including level .J is denoted by S”. Note
that S has 2 + ijl 2) = 27%1 rows and columns, and 2%/*2 entries.

Definition 8. Let M" be an n x n-matrix, and let nz(M"™) the number of non-zero entries of

M™. The level of sparsity of M" is the fraction of nonzero entries, m(n]\fn).

The definition of a sparse matrix is vague. Usually, we mean that the number of nonzero
entries grows at most linear with the number of rows. We will establish that for S™, the number
of nonzero entries grows at most like r logr with r the number of rows.

Recall the definition of S;y in lemma 3. Note that S;;, = 0 when SUPP(¢;) NSUPP(¢y/) has
Lebesgue measure zero. We say that 1; and ¢; have non-overlapping support when their sup-
ports are either disjoint or only share a boundary point; otherwise, we say they have overlapping
support.

Note that both functions of level zero, ¢, and 1y, have the same support [0, 1].

When j > 0,d > 0 and d + j > 1, there are 2¢ Faber functions of level j + d that have
overlapping support with 1;, 7 > 0. These are

¢j+d,(k—1)2d+1a 7vZJjer,(lc—l)szFQa s a¢j+d,k2d

For level 0, there are exactly two, and for level 1,...,j — 1 there is precisely one basis function
with overlapping support with ;.
So for 1y and 1y there are

J
2 + Z 2d — 2J+1
d=1
basis functions g, ¢ 4, 7° < J with overlapping support. For ;, 7 > 1, there are
J—j
24 —14) 27=j+2/7H
d=0
basis functions g, ¢y, 7° < J, with overlapping support. When we make use of lemma 11,
we see that S™ has at most
J
2277 43 "7 (j 427
j=1
—9. 2J+1 + (J o 1)2J+1 + 2 + J2J+1
=(2J +1)27t + 2
nonzero entries.

So the number of nonzero entries of S™ grows at most like rlog r with r the number of rows.
It has level of sparsity at most

(2J +1)27Tt + 2
22J+2

=(2J +1)277 7 427

which is of the order lofr.



5 Credible bands

Suppose we have a prior IT on 6, where 6 : R — R is a 1-periodic function. Let X7 = (X, : t €
[0,77]) be a sample path of dX; = 6(X;)dt + dW;. Consider the posterior II(- | XT).

Definition 9. A pointwise credible band of credible level 1 — a are two functions f7, :
R — R and fg : R — R so that for each t € R,

I{0: fo(t) <0(t) < fut)} | XT) 21— a.

A simultaneous credible band of credible level 1 — a are two functions f; : R — R and
fr : R — R so that

({6 : fu(t) < 6(t) < fu(t) ¥} | X7) 2 1 - a.

So
simultaneous credible band =— pointwise credible band.

The reverse does not hold necessarily.

5.1 How to construct credible bands
5.1.1 Exact pointwise credible bands

With Gaussian process priors you can construct exact pointwise credible bands. The posterior

is of the form
th

N
k=1 N

where m is the N-dimensional mean vector and V' is the N x N-covariance matrix.
The coefficients are multivariate normally distributed, so f(t) is, as a linear combination of
the coefficients, normally distributed with mean

E[f(t)] = Z [01] D% (2) ka¢k

and variance

ZCOV Ok, 00) Pr (1) e (t)

1 (=1

N
> Vieon(t)

1 ¢=1

tnﬂz

var(f(t)

k

M-

b
Il

Let &, be the quantile function of a standard normally distributed random variable Z, so
P(Z <¢&,) = p. The exact pointwise credible band (around the posterior mean) is

Jo@) =E[f()] — V/var(f(t))&1-a/2

and

fu(t) =E[f(O)] + v/ var(f (1)) 1-a2-



5.1.2 Simulated simultaneous credible bands

Here I describe a procedure to simulate a 1 —a-simultaneous credible band around the posterior
mean.

Algorithm 10. Given a prior Il on a space of drift functions, and data X* = (X, : t € [0,T)).
1. Calculate the posterior II(- | XT),

2. calculate the posterior mean 6 = [0dIL(0 | XT) (you may use the mean function in the
BayesianNonparametricStatistics.jl package),

3. simulate 04, ...,0y from the posterior,
4. for each i, calculate d; = sup {|0;(t) — 0(t)| : t € R}.

5. take the [(1 — o) - M| functions Oqy, ..., 00a—aym) from O1,...,00 for which d; is the
smallest.

6. Define fr and fy as

fL(t) =min {9(1)(t), e ,0(((1,04)]\4])(75)} and fH(t) = Imax {9(1)(t), e ,9(((1,04)]\4])(75)} .

A Lemma

Lemma 11. For each J € N,

Proof. Note that

<
I
-
i
o

=J27/%t — (27%1 — 9)
=(J —1)2"*" + 2.
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