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1 CARTESIAN COORDINATES

1 Cartesian Coordinates

1.1 Position

Consider a less massive object, like a planet (hereafter the “secondary”) orbiting a more massive
object, like a star (hereafter the “primary”). The orbit of the secondary is an ellipse described by
the equation

r =
a(1− e2)

1 + e cos(ν)
. (1.1)

Here, a is the semi-major axis of the orbital ellipse, e is the eccentricity of the orbital ellipse, and
ν is the true anomaly of the secondary, which describes its angular position on the orbital ellipse.
For a complete derivation of this result, see Appendix B and Eq. (B.25).

Since Cartesian coordinates are related to polar coordinates by (x, y) = (r cos(ν), r sin(ν)), then in
the frame of the secondary, we have that

r =

r cos(ν)r sin(ν)
0

 . (1.2)

However, the frame of the secondary and the frame of an external observer are unlikely to be
coincident. Instead, the observer is often rotated with respect to the secondary. To translate from
the frame of the secondary to the frame of the observer, we introduce the following rotation angles:

• Argument of pericentre (ω): describes how the orbital ellipse is rotated in the orbital plane
relative to a reference direction selected by the observer.

• Inclination (i): describes how the orbital plane is tilted relate to a reference plane selected by
the observer.

• Longitude of ascending node (Ω): describes how the orbital ellipse is rotated in the reference
plane relative to a reference direction selected by the observer.

Figure 1 provides a visual demonstration of how these angles affect orbital orientation.

To transform between the orbital and external frames, we must apply the appropriate rotations by
ω, i, and Ω. We begin by applying a rotation on r due to ω. This constitutes a rotation about the
z-axis of the orbital plane, meaning we multiply r by Rz(ω), where Rz is the z-axis rotation matrix.
Doing so, we obtain

r′ = Rz(ω)r,

=

cos(ω) − sin(ω) 0
sin(ω) cos(ω) 0

0 0 1

r cos(ν)r sin(ν)
0

 ,

=

r cos(ν + ω)
r sin(ν + ω)

0

 . (1.3)
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1.1 Position 1 CARTESIAN COORDINATES

Figure 1: The effect of the angular orbital elements on the orientation of the orbital ellipse
(source: Wikipedia)

Next, we apply a rotation on r′ due to i. Care must be taken for this rotation, since the choice
of reference direction and the sign of the rotation angle affects subsequent calculations. We choose
to define the reference direction to align with the x-axis of the observer’s coordinate system. As
well, we choose to rotate by +i as opposed to −i. This causes the z-component of the secondary’s
velocity to increase as it moves away from the observer, matching the corresponding increase in the
redshift of the secondary’s spectrum.

Thus, we rotate r′ about the x-axis of the reference plane by i, meaning we multiply r′ by Rx(i),
where Rx is the x-axis rotation matrix. This yields

r′′ = Rx(i)r,

=

1 0 0
0 cos(i) − sin(i)
0 sin(i) cos(i)

r cos(ν + ω)
r sin(ν + ω)

0

 ,

=

 r cos(ν + ω)
r sin(ν + ω) cos(i)
r sin(ν + ω) sin(i)

 . (1.4)

Finally, to obtain the observed position vector, we apply a rotation on r′′ due to Ω. This constitutes
a rotation about the z-axis of the reference plane, meaning we multiply r by Rz(Ω). This gives us

robs = Rz(Ω)r
′′,

=

cos(Ω) − sin(Ω) 0
sin(Ω) cos(Ω) 0

0 0 1

 r cos(ν + ω)
r sin(ν + ω) cos(i)
r sin(ν + ω) sin(i)

 ,

=

r cos(ν + ω) cos(Ω)− r sin(ν + ω) cos(i) sin(Ω)
r cos(ν + ω) sin(Ω) + r sin(ν + ω) cos(i) cos(Ω)

r sin(ν + ω) sin(i)

 . (1.5)
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1.2 Velocity 1 CARTESIAN COORDINATES

Summary: the position of the secondary as measured by the observer is

xobs = r [cos(ν + ω) cos(Ω)− sin(ν + ω) cos(i) sin(Ω)] , (1.6)

yobs = r [cos(ν + ω) sin(Ω) + sin(ν + ω) cos(i) cos(Ω)] , (1.7)

zobs = r sin(ν + ω) sin(i), (1.8)

where r is given by Eq. (1.1).

1.2 Velocity

To determine the observed velocity components, we must compute ẋobs, ẏobs, and żobs. This pro-
cedure can be simplified by calculating some preliminary results. To begin, we compute rν̇. By
Kepler’s second law (combining Eqs. (C.1) and (C.2)), we have that

r2ν̇

2
=

πa2
√
1− e2

T
, (1.9)

where a is the semi-major axis, e is the eccentricity, and T is the orbital period of the secondary.
Rearranging this expression for rν̇ and employing Eq. (1.1), we obtain

rν̇ =
2πa

T

1 + e cos(ν)√
1− e2

. (1.10)

Next, we calculate ṙ. Differentiating Eq. (1.1) yields

ṙ =
rν̇e sin(ν)

1 + e cos(ν)
. (1.11)

Combining this with Eq. (1.10) produces

ṙ =
2πa

T

e sin(ν)√
1− e2

. (1.12)

Using ṙ and rν̇, we can now differentiate r sin(ν + ω) and r cos(ν + ω). For r sin(ν + ω), we get

d

dt
[r sin(ν + ω)] = ṙ sin(ν + ω) + rν̇ cos(ν + ω),

=
2πa

T

1√
1− e2

(cos(ν + ω) + e cos(ω)) . (1.13)

Next, for r cos(ν + ω),

d

dt
[r cos(ν + ω)] = ṙ cos(ν + ω)− rν̇ sin(ν + ω),

= −2πa

T

1√
1− e2

(sin(ν + ω) + e sin(ω)) . (1.14)

Finally, for convenience, we define

J ≡ 2πa

T

1√
1− e2

, (1.15)
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1.2 Velocity 1 CARTESIAN COORDINATES

allowing us to write

d

dt
[r sin(ν + ω)] = J (cos(ν + ω) + e cos(ω)) , (1.16)

d

dt
[r cos(ν + ω)] = −J (sin(ν + ω) + e sin(ω)) . (1.17)

Using these results, we can easily determine ẋobs, ẏobs, and żobs. First, for ẋobs, we get

ẋobs =
d

dt
[r [cos(ν + ω) cos(Ω)− sin(ν + ω) cos(i) sin(Ω)]] ,

= cos(Ω)
d

dt
[r cos(ν + ω)]− cos(i) sin(Ω)

d

dt
[r sin(ν + ω)] ,

= −J [cos(i) sin(Ω) (cos(ν + ω) + e cos(ω)) + cos(Ω) (sin(ν + ω) + e sin(ω))] . (1.18)

Next, for ẏobs, we get

ẏobs =
d

dt
[r [cos(ν + ω) sin(Ω) + sin(ν + ω) cos(i) cos(Ω)]] ,

= sin(Ω)
d

dt
[r cos(ν + ω)] + cos(i) cos(Ω)

d

dt
[r sin(ν + ω)],

= J [cos(i) cos(Ω) (cos(ν + ω) + e cos(ω))− sin(Ω) (sin(ν + ω) + e sin(ω))] . (1.19)

Finally, for żobs, we get

żobs =
d

dt
[r sin(ν + ω) sin(i)] ,

= J sin(i) (cos(ν + ω) + e cos(ω)) . (1.20)

To match radial velocity literature, we define the radial velocity semiamplitude K as

K ≡ J sin(i) =
2πa

T

sin(i)√
1− e2

, (1.21)

allowing us to write żobs as
żobs = K(cos(ν + ω) + e cos(ω)). (1.22)

Summary: the velocity of the secondary as measured by the observer is

ẋobs = −J [cos(i) sin(Ω) (cos(ν + ω) + e cos(ω)) + cos(Ω) (sin(ν + ω) + e sin(ω))] , (1.23)

ẏobs = J [cos(i) cos(Ω) (cos(ν + ω) + e cos(ω))− sin(Ω) (sin(ν + ω) + e sin(ω))] , (1.24)

żobs = K(cos(ν + ω) + e cos(ω)), (1.25)

where J and K are given by Eqs. (1.15) and (1.21), respectively.
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1.3 Acceleration 1 CARTESIAN COORDINATES

1.3 Acceleration

To determine the observed acceleration components, we must compute ẍobs, ÿobs, and z̈obs. Like
with the velocity, this procedure can be simplified by calculating some preliminary results. To begin,
we compute ν̇. Combining Eqs. (1.1) and (1.10), we obtain

ν̇ =
2π

T

(1 + e cos(ν))2

(1− e2)3/2
. (1.26)

Next, we differentiate J sin(ν + ω) and J cos(ν + ω). For J sin(ν + ω), we get

d

dt
[J sin(ν + ω)] = Jν̇ cos(ν + ω),

=
2π

T

J

(1− e2)3/2
(1 + e cos(ν))2 cos(ν + ω). (1.27)

Next, for J cos(ν + ω),

d

dt
[J cos(ν + ω)] = −Jν̇ sin(ν + ω),

= −2π

T

J

(1− e2)3/2
(1 + e cos(ν))2 sin(ν + ω). (1.28)

Finally, for convenience, we define

A ≡ 2π

T

J

(1− e2)3/2
=

4π2a

T 2

1

(1− e2)2
, , (1.29)

allowing us to write

d

dt
[J sin(ν + ω)] = A(1 + e cos(ν))2 cos(ν + ω), (1.30)

d

dt
[J cos(ν + ω)] = −A(1 + e cos(ν))2 sin(ν + ω). (1.31)

Using these results, we can easily determine ẍobs, ÿobs, and z̈obs. First, for ẍobs, we get

ẍobs =
d

dt
[−J [cos(i) sin(Ω) (cos(ν + ω) + e cos(ω)) + cos(Ω) (sin(ν + ω) + e sin(ω))]] ,

= − cos(i) sin(Ω)
d

dt
[J cos(ν + ω)]− cos(Ω)

d

dt
[J sin(ν + ω)] ,

= A(1 + e cos(ν))2 [cos(i) sin(Ω) sin(ν + ω)− cos(Ω) cos(ν + ω)] . (1.32)

Next, for ÿobs, we get

ÿobs =
d

dt
[J [cos(i) cos(Ω) (cos(ν + ω) + e cos(ω))− sin(Ω) (sin(ν + ω) + e sin(ω))]] ,

= cos(i) cos(Ω)
d

dt
[J cos(ν + ω)]− sin(Ω)

d

dt
[J sin(ν + ω)] ,

= −A(1 + e cos(ν))2 [cos(i) cos(Ω) sin(ν + ω) + sin(Ω) cos(ν + ω)] . (1.33)

5



1.3 Acceleration 1 CARTESIAN COORDINATES

Finally, recalling that K = J sin(i), for z̈obs we get

z̈obs =
d

dt
[K(cos(ν + ω) + e cos(ω))] ,

= sin(i)
d

dt
[J cos(ν + ω)] ,

= −A sin(i)(1 + e cos(ν))2 sin(ν + ω). (1.34)

We define the radial acceleration semiamplitude B as

B ≡ A sin(i) =
2π

T

J sin(i)

(1− e2)3/2
=

2π

T

K

(1− e2)3/2
=

4π2a

T 2

sin(i)

(1− e2)2
, (1.35)

allowing us to write z̈obs as

z̈obs = −B(1 + e cos(ν))2 sin(ν + ω). (1.36)

Summary: the acceleration of the secondary as measured by the observer is

ẍobs = A(1 + e cos(ν))2 [cos(i) sin(Ω) sin(ν + ω)− cos(Ω) cos(ν + ω)] , (1.37)

ÿobs = −A(1 + e cos(ν))2 [cos(i) cos(Ω) sin(ν + ω) + sin(Ω) cos(ν + ω)] , (1.38)

z̈obs = −B(1 + e cos(ν))2 sin(ν + ω), (1.39)

where A and B are given by Eqs. (1.29) and (1.35), respectively.
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2 CELESTIAL COORDINATES

2 Celestial Coordinates

2.1 Choice of Reference Frame

For this work, we choose the reference plane to be the plane orthogonal to the observer’s line of
site. As well, we choose the reference direction to be the celestial north pole. This means that, in
reference to the work done in the previous part, the positive x-axis points in the direction of positive
declination (upwards on the sky), while the positive y-axis points in the direction of positive right
ascension (left on the sky). This choice of coordinates is important to note, since it differs from the
right/up orientation of the x/y axes seen elsewhere.

2.2 Position

Although knowledge of xobs and yobs are useful theoretically, they are not as useful in practice, since
distances are challenging to measure in astronomy. Angular separation, however, is much easier to
measure, and therefore much more useful for observational applications.

Consider two objects a distance d away from an observer. If the observer measures that they are
separated by a distance r, then the angular separation of the two objects measured by the observer
is

∆θ = arctan
(r
d

)
. (2.1)

Note that for x ≪ 1, arctan(x) ≈ x. Thus, if r ≪ d, we can employ the small angle approximation,
which states that

∆θ ≈ r

d
. (2.2)

We want to use these results to determine the angular separation of a secondary from its primary.
Specifically, we want to know the right ascension offset ∆α and the declination offset ∆δ of the
secondary from its primary. Combining Eq. (2.1) with the coordinate conventions from 2.1, we see
that these offsets are given by

∆α = arctan
(yobs

d

)
and ∆δ = arctan

(xobs
d

)
. (2.3)

If xobs, yobs ≪ d, then we can apply the small angle approximation, giving us

∆α ≈ yobs
d

and ∆δ ≈ xobs
d

. (2.4)

Summary: the right ascension and declination offsets of the secondary from the primary as
measured by the observer are

∆α = arctan
(yobs

d

)
≈ yobs

d
if yobs ≪ d, (2.5)

∆δ = arctan
(xobs

d

)
≈ xobs

d
if xobs ≪ d. (2.6)

where d is the distance to the primary, and xobs and yobs are given by Eqs. (1.6) and (1.7),
respectively.
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2.3 Velocity 2 CELESTIAL COORDINATES

2.3 Velocity

To determine the right ascension and declination offset velocities of the secondary, we must first
derive a general expression for ∆θ̇. Differentiating Eq. (2.1), we get

∆θ̇ =
d

dt

[
arctan

(r
d

)]
,

=
ṙ

d

1

1 + (r/d)2
. (2.7)

To determine ∆θ̇ in the regime of the small angle approximation, differentiating Eq. (2.2) to obtain
∆θ̇ ≈ ṙ/d is the most straightforward approach. However, for confirmation, we also apply the
small angle approximation directly to Eq. (2.7). Note that if r ≪ d, then (r/d)2 ≪ 1, meaning
1/(1 + (r/d)2) ≈ 1. Thus, we are left with

∆θ̇ ≈ ṙ

d
, (2.8)

confirming the expected result. Since r = yobs for ∆α and r = xobs for ∆δ, then the right ascension
and declination offset velocities are given by

∆α̇ =
ẏobs
d

1

1 + (yobs/d)2
and ∆δ̇ =

ẋobs
d

1

1 + (xobs/d)2
. (2.9)

If xobs, yobs ≪ d, then we can apply the small angle approximation, giving us

∆α̇ ≈ ẏobs
d

and ∆δ̇ ≈ ẋobs
d

. (2.10)

Summary: the right ascension and declination offset velocities of the secondary as measured
by the observer are

∆α̇ =
ẏobs
d

1

1 + (yobs/d)2
≈ ẏobs

d
if yobs ≪ d, (2.11)

∆δ̇ =
ẋobs
d

1

1 + (xobs/d)2
≈ ẋobs

d
if xobs ≪ d, (2.12)

where d is the distance to the primary, xobs and yobs are given by Eqs. (1.6) and (1.7), and
ẋobs and ẏobs are given by Eqs. (1.23) and (1.24), respectively.

2.4 Acceleration

To determine the right ascension and declination offset accelerations of the secondary, we must first
derive a general expression for ∆θ̈. Differentiating Eq. (2.7), we get

∆θ̈ =
d

dt

[
ṙ

d

1

1 + (r/d)2

]
,

=
d[r̈(d2 + r2)− 2rṙ2]

(d2 + r2)2
. (2.13)
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2.5 Validity of the Small Angle Approximation 2 CELESTIAL COORDINATES

To determine ∆θ̈ in the regime of the small angle approximation, differetiating Eq. (2.2) twice to
obtain ∆θ̈ ≈ r̈/d is the most straightforward approach. However, for confirmation, we also apply
the small angle approximation directly to Eq. (2.13). We can rewrite this equation as

∆θ̈ =
(r̈/d) + [(r̈ − 2ṙ)/r](r/d)3

1 + 2(r/d)2 + (r/d)4
. (2.14)

Note that if r ≪ d, then (r/d)2, (r/d)3, and (r/d)4 are each much less than unity, meaning they
can be neglected. This leaves us with

∆θ̈ ≈ r̈

d
, (2.15)

confirming the expected result. Since r = yobs for ∆α and r = xobs for ∆δ, then the right ascension
and declination offset accelerations are given by

∆α̈ =
d[ÿobs(d

2 + y2obs)− 2yobsẏ
2
obs]

(d2 + y2obs)
2

and ∆δ̈ =
d[ẍobs(d

2 + x2obs)− 2xobsẋ
2
obs]

(d2 + x2obs)
2

. (2.16)

If xobs, yobs ≪ d, then we can apply the small angle approximation, giving us

∆α̈ ≈ ÿobs
d

and ∆δ̈ ≈ ẍobs
d

. (2.17)

Summary: the right ascension and declination offset accelerations of the secondary as mea-
sured by the observer are

∆α̈ =
d[ÿobs(d

2 + y2obs)− 2yobsẏ
2
obs]

(d2 + y2obs)
2

≈ ÿobs
d

if yobs ≪ d, (2.18)

∆δ̈ =
d[ẍobs(d

2 + x2obs)− 2xobsẋ
2
obs]

(d2 + x2obs)
2

≈ ẍobs
d

if xobs ≪ d, (2.19)

where d is the distance to the primary, xobs and yobs are given by Eqs. (1.6) and (1.7), ẋobs
and ẏobs are given by Eqs. (1.23) and (1.24), and ẍobs and ÿobs are given by Eqs. (1.37) and
(1.38) respectively.

2.5 Validity of the Small Angle Approximation

The validity of the small angle approximation, especially for the cross-derivative terms in the an-
gular acceleration equation, may seem questionable. It is therefore prudent to compare exact and
approximate results across a wide range of parameter values to ensure the small angle approximation
is applicable.

For exoplanetary systems, the semi-major axis to distance ratio a/d is at least 105, if not 106 or
more for most distant systems. We therefore choose to test the small angle approximation on the
interval a/d ∈ [105, 108]. For thoroughness, we test over all possible eccentricities, using the interval
e ∈ [0, 0.995]. For each combination of a/d and e, we compute the values of ∆θ, ∆θ̇, and ∆θ̈
over one orbit using the exact and small angle formulas. We then compute the maximum absolute
error between the exact and small angle results to quanity the performance of the small angle
approximation. The results of this exercise are shown in the following graphs.
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2.5 Validity of the Small Angle Approximation 2 CELESTIAL COORDINATES

Figure 2: Maximum absolute error in ∆θ

Figure 3: Maximum absolute error in ∆θ̇
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Figure 4: Maximum absolute error in ∆θ̈

As we can see in these figures, the error of the small angle approximation is on the order of 10−14 to
10−15. This error is so small it approaches machine precision, making the small angle approximation
essentially indistinguishable from the exact formulas. Thus, the small angle approximation is valid
when applied to exoplanetary systems.
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A ELLIPTICAL GEOMETRY

A Elliptical Geometry

As will be seen in the following section, all bounded, closed Keplerian orbits are ellipses. This makes
understanding elliptical geometry necessary for understanding Keplerian orbits.

Consider an ellipse of width 2a and height 2b centred at (x0, y0) (without loss of generality, we
assume that a ≥ b). The equation of such an ellipse in Cartesian coordinates is

(x− x0)
2

a2
+

(y − y0)
2

b2
= 1. (A.1)

This ellipse appears as follows:

The semi-major and semi-minor axes, a and b, are the distances from the centre to the vertex and
co-vertex, respectively. The two foci, F1 and F2, are located at (±c+ x0, y0), where c is given by

c =
√

a2 − b2. (A.2)

c is called the linear eccentricity, and is a measure of the ellipse’s elongation. A more common
measure of the ellipse’s elongation is the eccentricity e, which is given by

e =
c

a
=

√
1− b2

a2
. (A.3)

Note that if given the semi-major axis and eccentricity, the distance to each focus can then be
determined according to the equation

c = ea. (A.4)

Finally, the semi-latus rectum p is the vertical distance from either focus to the ellipse, and has the
value

p = a(1− e2). (A.5)

The quantities e, p, and c are used in the characterization of Keplerian orbits.
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B THE KEPLERIAN TWO-BODY PROBLEM

B The Keplerian Two-Body Problem

Consider two particles with masses m1 and m2 at positions r1 and r2 interacting only through
Newtonian gravity. The individual kinetic energies of these particles are

T1 =
1

2
m1∥ṙ1∥2 and T2 =

1

2
m2∥ṙ2∥2. (B.1)

As well, the gravitational potential energy between the particles is

V = − Gm1m2

∥r1 − r2∥
, (B.2)

where G is the gravitational constant. Therefore, the Lagrangian of this two-body system is

L =
1

2
m1∥r1∥2 +

1

2
m2∥r2∥2 +

Gm1m2

∥r1 − r2∥
. (B.3)

We now define the relative position r and centre of mass position R as

r ≡ r1 − r2, (B.4)

R ≡ m1r1 +m2r2
M

, (B.5)

where M ≡ M1 +M2 is the total mass. By inspection, we see that we can now write r1 and r2 as

r1 = R+
m2

M
r and r2 = R− m1

M
r. (B.6)

Substituting these relations into the Lagrangian (B.3), we obtain

L =
1

2
M∥Ṙ∥2 + 1

2
µ∥ṙ∥2 + Gm1m2

∥r∥
, (B.7)

where µ ≡ (m1m2)/M is the reduced mass. Notice that there are no r,R cross-terms, meaning
we can separate the total Lagrangian L into the centre of mass Lagrangian Lcom and the relative
Lagrangian Lrel. These are given by

Lcom =
1

2
M∥Ṙ∥2, (B.8)

Lrel =
1

2
µ∥ṙ∥2 + Gm1m2

∥r∥
. (B.9)

Applying the Euler-Lagrange equations to the centre of mass Lagrangian (B.8), we see that

∂Lcom

∂R
=

d

dt

∂Lcom

∂Ṙ
=⇒ MR̈ = 0. (B.10)

In other words, the centre of mass of the two-body system does not accelerate.

We now want to apply the Euler-Lagrange equations to the relative Lagrangian (B.9). Before
proceeding, we can reduce the dimensionality of the problem. Note that the angular momentum of
the two-body system is

L = r1 × (m1ṙ1) + r2 × (m2ṙ2) = µ(r× ṙ). (B.11)
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B THE KEPLERIAN TWO-BODY PROBLEM

Since angular momentum is conserved, L must be constant in time. Since µ is constant, then r× ṙ
must also be constant. This implies that the motion of the system is restricted to a plane, thus
reducing the problem from three dimensions to two dimensions. We can therefore express r in terms
of the polar coordinates (r, ν), where r is the separation between the two particles and ν is the angle
formed by r relative to some reference. This allows us to write Lrel as

Lrel =
1

2
µ(ṙ2 + r2ν̇2) +

Gm1m2

r
. (B.12)

Evaluating the Euler-Lagrange equation for ν yields

∂Lrel

∂ν
=

d

dt

∂Lrel

∂ν̇
=⇒ µr2ν̇ = const. (B.13)

Note that L ≡ ∥L∥ = µr2ν̇ is the (constant) system angular momentum, so

ν̇ =
L

µr2
. (B.14)

Evaluating the Euler-Lagrange equation for r and using the expression for ν̇, we obtain

∂Lrel

∂r
=

d

dt

∂Lrel

∂ṙ
=⇒ µr̈ =

L2

µr3
− Gm1m2

r2
. (B.15)

To simplify the evaluation of this differential equation, we let ρ = 1/r, and then solve the resulting
equation for ρ(ν), as opposed to ρ(t). Under these changes, we get the equation

− L2ρ2

µ

d2ρ

dν2
=

L2

µ
ρ3 −Gm1m2ρ

2 =⇒ d2ρ

dν2
+ ρ =

Gm1m2µ

L2
. (B.16)

The solution to this equation is

ρ(ν) = A cos(ν −B) +
Gm1m2µ

L2
, (B.17)

where A and B are constants of integration. Since B amounts to a phase angle, we can rotate our
coordinates and set B = 0 without loss of generality. Furthermore, if we define ξ = L2/(Gm1m2µ)
and χ = Aξ, we can write the solution as

ρ(ν) = ξ−1(1 + χ cos(ν)). (B.18)

Finally, since r = 1/ρ by definition, we see that

r =
ξ

1 + χ cos(ν)
. (B.19)

We have thus determined an equation for the separation r between the two particles as a function
of the angle ν. ξ is determined by the physical properties of the system, while χ is determined by
the initial conditions of the system.

We will now limit ourselves to the case of closed, bounded orbits, which is the case of interest for
planets and many other objects that orbit stars. By inspection, we see that Eq. (B.19) is closed
and bounded when 0 ≤ χ < 1, so we restrict the value of χ accordingly.
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B THE KEPLERIAN TWO-BODY PROBLEM

Note that we can transform between polar coordinates and Cartesian coordinates using

r =
√
x2 + y2 and cos(ν) =

x√
x2 + y2

. (B.20)

Substituting these conversions into Eq. (B.19) and rearranging (while assuming 0 ≤ χ < 1), we
obtain the expression

(x+ d)2

a2
+

y2

b2
= 1, (B.21)

where

a =
ξ

1− χ2
, b =

ξ√
1− χ2

, and d =
ξχ

1− χ2
= χa. (B.22)

Comparing Eqs. (B.21) and (A.1), we see that Eq. (B.21) is the equation for an ellipse with semi-
major axis a and semi-minor axis b, centred at (−d, 0). Thus, bounded and closed solutions to the
Keplerian two-body problem are ellipses.

Using the formula for eccentricity from Eq. (A.3) and the values of a and b from Eq. (B.22), we
get that the eccentricity of the orbital ellipse is

e =

√
1− b2

a2
= χ. (B.23)

Since χ = e, then from Eq. (A.5), the semi-latus rectum of the orbital ellipse is

p = a(1− χ2) = ξ, (B.24)

which means that ξ = a(1− e2). Therefore, closed, bounded Keplerian orbits are described by the
equation

r =
a(1− e2)

1 + e cos(ν)
, (B.25)

Furthermore,
d = χa = ea, (B.26)

and by Eq. (A.4) we know that c = ea. Thus, the centre of the orbital ellipse is at (−c, 0). This
implies that the F1 focus of the ellipse is at (0, 0), and so the centre of mass of the two-particle
system is located at the focus of the orbital ellipse.
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C KEPLER’S LAWS OF PLANETARY MOTION

C Kepler’s Laws of Planetary Motion

From Eq. (B.25), we can determine Kepler’s laws of planetary motion. These laws are:

(1) Every planetary orbit is an ellipse with the star-planet centre of mass at one of the two foci.
Note that most planets are significantly less massive than their stars, meaning the location of
the centre of mass is approximately the same as the centre of the star.

(2) A line joining a planet to its star will sweep out equal area in equal time. Specifically, the
change in swept area is related to the angular velocity of the planet by

dA

dt
=

r2

2

dν

dt
, (C.1)

from which we obtain
dA

dt
=

πab

T
=

πa2
√
1− e2

T
, (C.2)

where b = a
√
1− e2 is the semi-minor axis of the orbital ellipse (see Eq. (A.3)) and T is the

orbital period of the planet.

(3) The square of a planet’s orbital period is proportional to the cube of its semi-major axis.
Specifically, we have

T 2 =
4π2

G(M⋆ +Mp)
a3, (C.3)

where M⋆ is the mass of the star and Mp is the mass of the planet. Once again, most planets
are significantly less massive than their stars, giving us the approximate relation

T 2 ≈ 4π2

GM⋆
a3. (C.4)
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