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1 Introduction to Differential Forms

This course will be somewhat different from the course given by Prof Gary Gibbons in previous
years. We will plan to cover applications of differential geometry in general relativity, quantum
field theory, and string theory.

1.1 Vectors, Tensors and p-forms

Assume we have some kind of d-dimensional manifold, possibly representing spacetime, with a set
of co-ordinates z%, a=1,...,d.

In general relativity, typically one thinks of a vector as being represented by u®. But u® is really
the components of a vector in some particular basis. We need to think about basis-independent
expressions.

In d dimensions, there is always a set of d basis vectors

Eq,...,Ey, collectively E,. (1.1)

A vector is then

u= Zu“Ea, (1.2)

where u® are the components of u in the basis {E,}.

A one-form w is an object which is dual to a vector, i.e. given a vector u and a one-form w there
is a bracket operation (w,u) giving a real number.

This bracket is linear: If © = av 4+ Sw for arbitrary vectors v, w and real numbers «, G,

(w, v + pw) = a{w,v) + B{w, w). (1.3)

We can write a one-form as

w = ZwaEa’ (14)
a
where w, are numbers and E% are one-forms. Then the bracket can be defined as
(B, By) = 5%, (15)

such that the basis of one-forms are dual to the basis of vectors.
The bracket is also linear in w: If w = an 4+ GA for one-forms n, A and real numbers «, 5,

{am + BN, u) = an,u) + BN, u). (1.6)
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Consider now

(wyu) = Z(wa L ubEy) Zwa (E*, Ep) = Zwau“. (1.7)

a,b
The bracket corresponds to the usual scalar multiplication.
The next thing is to define the derivative of a function f(z), denoted by df - this is a one-form. It

should have the property
(df, X) = X f. (1.8)

We can pick a set of one forms and a basis of vectors to make it explicit. In a co-ordinate basis,

these basis vectors are and the one-forms are dz’. These are dual,

a 0
0

(5 dz?)y = &', (1.9)
which is consistent with the definition of df, since
(8ii,dxj> = %mﬂ (1.10)
This can also be done for an arbitrary vector X = X ] . From linearity,
(df, X) = <df,in> = in. : (1.11)
oxI OxJ

This is the directional derivative of f in the direction X.
This, roughly speaking, is what one-forms are. There is a simple geometrical consequence; suppose
that

(df, X) = 0. (1.12)

Then f is a constant in the direction of the vector X, which means that df is normal to surfaces of
f = constant.

We can put this into a bigger perspective: Functions f are often called 0-forms. Then df, the
derivative of f, is a one-form. We have defined an operator d turning O-forms into one-forms. In
general, d will turn p-forms into (p + 1)-forms. In terms of a co-ordinate basis,

(9f
aaﬂ

df = (1.13)

This is exactly as expected from the chain rule for a derivative.

A general tensor is of type (r,s); its components are 7% %, . We think of this as some-
thing which does not depend on a basis:

T=T%"%, 4 Ey ®F;, ®...0E, ® E"®...Q E. (1.14)

This is independent of the particular basis in question.
In general relativity, a tensor transforms in a particular way under a co-ordinate transformation.
But this is really just a change of basis:

E, — Ey = Xa’aEa, (115)



where y® represents a non-degenerate d X d matrix. Similarly, one could do a transformation on

the basis one-forms
E* — EY = & ,E% (1.16)

This could be a co-ordinate basis, but does not have to be. Looking at the bracket, we must have
5a’b, = <Ea,, Eb’> = <(balaEa7Xb/bEb> = (ba’axb,b(sab - (ba’axb,a7 (117)

thus y is the matrix inverse of ®. Under a change of basis, the tensor 7" must be invariant, thus

i

T = T %y yEy®E, ®.. 0F, @E"®...®E%
= Tall"'alrbll___b/s Xa’lal .. .Xa/TaT‘I)bllbl .. @bgbsEal &® Ea2 R...xQ E(M ® Ebl R...xQ Ebs
= T 5,Be ®FE ®...0 B, ® E" ©... © B”, (1.18)

so the components of T' transform as (expressing the old components in terms of the new)
Ty gy Xay™ o Xar Oy, L DYy =Ty (1.19)

exactly as expected from the co-ordinate formulation of general relativity.
A p-form is defined to be a tensor of type (0,p) whose components are totally antisymmetric (in
any basis):

1
T = Ta1...apEa1 ®...0 B% = Ta1...apE[a1 8.0 Bl = HTCU...ap (Eal ARERRA Eap) ) (1'20)

where we define the wedge product

E"A.AE" =Y w(o)E°) @ E7 ") g .. @ E7) (1.21)

oEG)

and the sum is over all permutations o of p elements with parity m(o) either +1 or —1, so there
are p! terms in the sum. A basically tells you to take the antisymmetric product:

E*ANE® = E*®E’—E’® E°,
E*NE*NE° = E°QFE'QE‘+E"®E°Q E*+ E°® E*® EY
~E*®@E°QFE’—E'® E*® E° — E°® E* ® E, (1.22)

etc. £ A ... A E% is antisymmetric under the interchange of any adjacent pair of indices. In d
dimensions, the number of linearly independent such objects is

dd—1)...(d—p+1) 4 (d
p! Copid—p)! <p>' (1.23)

This means one must have p < d, because one will get nothing otherwise.




1.2 Operations on Forms

The next thing is to look at a product of a p-form P and a g-form Q). A p-form P can in any basis
be written as

1
P=—P, o E"NE?N\.. . NE™, (1.24)
p! ?
similarly
1
Q= =Qu. b E" NE" N AE". (1.25)
q.

We already have a rule for defining the product of one-forms. We define the wedge product of a
p-form with a ¢-form to be

1
(»+q)!

PAQ = Par.ayQby. 0, B NE® A ... NE NE NEP? AN B (1.26)
You can think of this in a slightly different way. P A @Q is really equivalent to a tensor of type
(0,p + ¢) that is antisymmetric on all its p + ¢ indices. If you wanted to know its components, you
could write down a simple formula

P[al---aprl---bq]' (127)

That, of course, means that if you stare at this product, consequently
PAQ=(—)"QANP. (1.28)

We have discovered that differential forms have a Zo-grading:

QAP if either p or ¢ is even,

1.2
—Q AP if pand g are odd (1.29)

PAQ= {
You can think of P or @ as odd objects if p, ¢ are odd, and as even objects if p or ¢q are even.
(This is analogous to bosons which are described by even quantum fields, and fermions which are
described by odd quantum fields in quantum field theory.)
To avoid possible ambiguities, we write out explicitly what is meant by [-], namely antisymmetriza-
tion with weight one:

1
Xiay.ap) = o > 7(0) Xo(ar).ola): (1.30)
oEG)
so that
1
X[ab] = 5 (Xab - Xba) ’
1
X[abc} 6 (Xabc + Xbca + Xcab - Xacb - Xbac - cha) 5 (131)

etc. Similarly, (-) always means symmetrization with weight one.
The next thing is to define an exterior derivative d on p-forms. We look at a p-form in a
co-ordinate basis:
P = —~ Pay.oap dx™ Ndx™ AL ANdx"™. (1.32)
D ——" ~

set of 0—forms p—form
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We already know what d does on O-forms, and so we define

10Pay..a

ap — — L
p! Oxb

dzb A dz™ Adz® A ... A da. (1.33)
This is consistent with how d acts on a O-form to give a one-form. There is an alternative convention
where da? is put at the end which gives you unpleasant factors of (—)?, and which we will not use.
Because 1

dP =X = WX[GI---GPH]CLT(M AN dﬂ?aQ VANPIRAN diEap+l, (134)

we can write the components of X = dP in terms of the components of %—I;:

Xal...ap+1 - (_)p(p + 1)a[ap+1pa1...ap]7 (135)

where we write 0, for %. It is impossible to suppress all factors of (—)?; this one is a nuisance.
Properties of the operator d:

e d maps p-forms to (p + 1)-forms. To see this, you have to prove that dP is a tensor. Do the
calculation in a co-ordinate basis: Under a change of co-ordinates ¢ — z'* = z'® (z%), we

define
/ oz’ oz
Aa a — W, ala == (i)x/a’ . (136)
Then if P is a p-form,
Pal...ap — Pa’l...a; = Aa’l @ Aa/;m . Aa;appalmap. (1.37)
The components of dP transform as
8[1,]3@1.“%} — 8[b’Pa/1...a;,} = 8[17/ <Aa/1a1 AUL/QG2 e Aa;}appal__ap>
b
= (Ajoy™ A, - Ay " Py )
= AyPAy AL Ay P OpPy, . ay)
+A[b,‘b8b (A‘allal) Aaé@ e A%]%Palmap + .., (1.38)
with more similar terms. These all contain terms of the form
b 814@’1 “ _ ozt Oz s (1.39)
oz 9xb T 92" 9x'igxb 9% oxt '

antisymmetrized over a} and b'. Since partial derivatives commute, these terms all vanish.
What you end up with is what you expect for a tensorial object:

OpPay...ap) = A" Ay Ay ... Ay PO P, (1.40)

1.-Qp 1.--Gpl*

Components of dP transform tensorially under a co-ordinate transformation.



e d? = 0. This is most easily seen by looking at the components of d(dP).

components of P~ P, 4]
components of dP ~ 9P,

1..-Gp)

components of d(dP) ~ 0.0 Py,. a,)) = Py, ...a) = 0 (1.41)

Remember there was a Zs-grading. dP is a (p + 1)-form and so d changes the Zs-grading of
the form.
So morally, d had better be odd. Therefore dd = —dd = 0.

e The operator d is Leibnizian.

P = Py qdx"®...@dz"
dP = dPy . .4, Nd2" ®@...Q0dx" + ..., (1.42)
N’

8Pay..ap
21 %P gab
b

where all remaining terms contain some ddxr® and will vanish.

e d acting on the product of a p-form with a g-form:
The components of P A Q are

P[al...aprl...bq]- (143)

Then the components of d(P A @) will be proportional to

O (Pay...ap)Qvy..0g] + (Play...ap )06 Qby . b, (1.44)

Since X(a, . apbbr..by] = (=)’ X[bay...apbr..b,]» this shows that

d(PANQ)=dPANQ+ (—)PP A dQ. (1.45)

e All manipulations were in a co-ordinate basis but this is inessential. The action of d is

independent of a choice of co-ordinates.

This all looks like messing about, but it is easy to apply these things to electromagnetism, Yang-
Mills theory and general relativity. As of now, the word “metric” has not been mentioned. Forms,
their products and their exterior derivatives are all concepts which are independent of the metric.
We will need an object called the alternating tensor: This is an object €*'%¢ which is antisym-
metric under the interchange of any adjacent pair of indices. It has components

1 +1 (ay...aq) is an even permutation of (1,...,d)
gl = ——4¢ -1 (ay...aq) is an odd permutation of (1,...,d) (1.46)

i\,

Here g = det g,p for a metric gq,. These form the components of a rank d tensor (proof provided

otherwise.

later). One can also form
€ay...aq = Yaib1Yasby - - - gadbdeblmbd; (147)



this has components

+1 (ay...aq) is an even permutation of (1,...,d)
€ay..ay = (=) 1gl{ —1 (a1 ...aq) is an odd permutation of (1,...,d) (1.48)
0 otherwise.

Here ¢ is the number of timelike directions, which may be different depending on the type of
geometry one is studying.

Pure mathematicians study almost exclusively Riemannian geometry - this is based on the
axiom that if the distance [ ds, as defined by the metric

ds? = ggpda®da®, (1.49)

between two points is zero, then they are the same point.

This means that the metric g is positive definite, with only positive eigenvalues. The signature is
(+%). This type of geometry is known in the physics literature, quite confusingly, as “Euclidean”.
It corresponds to t = 0.

We contrast this with what happens in general relativity, where one studies pseudo-Riemannian
geometry. Here g is not positive-definite and ds = 0 defines how light rays propagate. Typically,
we have signature (+97',—), and t = 1. (The term spacetime means a manifold with such a
metric in the following.)

There is also Kleinian geometry, which is encountered in twistor theory (¢ ) or in the

=3
F-theory approach to string theory (¢ = 2). Here one has a general signature (+?, —!). One must

remember this when doing calculations with forms.

Now we prove that ¢ is indeed a tensor. That means that under a co-ordinate transformation

’ ’ ’ 827/(1/
2% — 2’ =2 (z%), A%, = B (1.50)
it must transform as
6a’b/c/... _ Aa/aAb’bAc’c o 6abc...
1 a'b'c a’ A gl 1 abc
—n o= AV AT QA L ——=nC, (1.51)
vard Vgl
where we defined the alternating symbol (not a tensor!)
+1 (ai...aq) is an even permutation of (1,...,d)
n*% =¢ —1 (ay...aq) is an odd permutation of (1,...,d) (1.52)

0 otherwise.

Because of the symmetry, there is really only one equation that has to be satisfied. We multiply

the equation by n“/blcl“' and sum over all indices:

1 ANV AN ! / / 1 ANV
Z nabc...nabc... _ Z A aAb bAccn__nabc...nabc... (153)

a/blcl... \/ |gl| G/lblcl... |g|
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The sum on the left-hand side gives d!, on the right-hand side we have

> AT A A g = e det A, (1.54)
a'b'c...
and the remaining summation over a, b, c, ... gives

D det A, (1.55)

1
(d!) = (d!
vard V19l
For that to be true we must have that under a co-ordinate transformation
9 = lgl(det A)~2. (1.56)
Since the metric is a tensor, it transforms as

, 0x® Oxb

Ga'vy = ngab = Aa’aAb’bgaba (157)

where A,® is the inverse of A. Take the determinant of this equation to get

det g’ = det(A™1 A7 g) = (det A) "2 det g. (1.58)
Putting this together leads to the conclusion that e really is tensorial. ¢ has the following useful
properties:
eademeabcd... = (_)td!; (1.59)
from that, you can derive other contractions, such as
gabc...de&.abcmdf _ (_)t(d o 1)!5ef7
e Cepy po= (=) 10180 .. 5%, (1.60)

Now we want to construct the dual of a differential form. We start off with a p-form P; its dual is
going to be %P, a (d — p)-form. We define this in terms of its components, in any basis: If

1
P = —'Pal___apdx“1 Ao AN dx, (1.61)
p!
we define 1
— al ad—
*P = =) (*P)ay..aq_,dx™ N ... AN dzti-r, (1.62)
where
1 b1..b
(*P)al---ad—p - ﬁgalmad_p ppbl...bp' (163)

Note that we contract the last p indices, this is conventional. We can construct the double dual of
P, and find that its components are

1 a a
(x % P)Cl---cz) mgq...cp b d7p€a1...ad_pb1“'prbL..bp
N mgal"'adfpclmcpg 1t pbt prbl...bP
[y 151 sbe by]
BT T Gt i CU R L
= (=)PEP()Py, (1.64)



and hence we obtain
w5 P = (—)Pld-pttp (1.65)

This means that if ¢ is even, then

—P if d even and p odd
P= 1.66
* { P otherwise; ( )

for odd t it is the other way around.

1.3 Electromagnetism and Yang-Mills Theory

Now we will find a use for forms. The simplest use for forms is Maxwell’s equations, where now
d=4,t =1. These are

Vil =0 & 0,Fpq =0; V F® = —j°. (1.67)
We can rewrite this in terms of forms, this will make life easier:
dF =0, xdxF =—j. (1.68)

We do this explicitly. F' is an antisymmetric tensor, the field strength. We can therefore construct
a two-form )
F= §Fabdm“ A da?; (1.69)

then (remember d? = 0)
1 a b
dFF = d §Fabdx Adx

1
= §dFab Adz® A dz®
10Fy,

= 5 B dz® A dx® A da®

1

5 (a[cFab]dxc A dz® A dmb) =0 (1.70)
reproduces the first set of equations. We need to define a current one-form for the other half of
Maxwell’s equations:

j = Jadx®. (1.71)
Now work out *d * F": 11
*F = 3 <§eadeFCddaca A dacb) . (1.72)

We will “cheat” by using Riemann normal co-ordinates. In these co-ordinates,
g~mn, I'~0, OI'#0. (1.73)
All quantities are tensorial, so the results will hold in general. In these co-ordinates de = 0; then
1
dxF = 1d <eadechdxa A dmb)

1
— Zg[adeae]chdxe A dz® A dzxb. (1.74)
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This is a three-form with components

(d* F)eap = ge[adeae]ch- (1.75)
Then the components of xd x F' are
(xdx F), = éepe“bge[abm@e]FCd
= igabpeaadeachd
= ol g9 Fyy
= —6g°0.F.qg = —0%Fpq = 0°Fy,. (1.76)

On the example sheet, you can do this with combinatorial factors and using Christoffel symbols for
a general metric.

The simplest example is a current flowing through a wire in the z-direction. In cylindrical co-
ordinates, the metric is

ds® = —dt* + dp?® + p*df? + dz?, (1.77)
so that det g = —p?. The current density only has a z component
e =16 (p), j =159 (p)dz. (1.78)

We need to figure out F. The only component of the electromagnetic field is By(p). That is

F,. = —F., = —DBy. (1.79)
The two-form will be
1 1
F = §Fabdxa A dz® = 3 (Fpodp Ndz — Fpdz A dp) = Fyodp Ndz = —Bydp A dz. (1.80)
Then automatically
0B,
dF = —dBy ANdp Adz = —a—edp/\dp/\dz =0. (1.81)
I
+F' has components
1 1
(*F)ab = §5adech = §5quchdgapgbqa (1'82)
the only component will be
1 tOpz t0zp 1 2
(*F)te = _(*F)Gt = 5 <5 szgttg% +e€ szgttg%) - —;sz(—l)p = _pBG- (1'83)
Then *F = —pBydt A df and
d(pB
dx F = —d(pByg)dt N\ df = —%dp Adt A db. (1.84)
1%
The only component of *d x F' is
0 10
d+F = dx F)"dz = pg?Pgtg® | —==(pBy) | = == (pBs)d 1.85
*a ok Expto(d* F)P7dz = pgg”y ap(ﬂ 0) pap(P 0)dz ( )

11
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Maxwell’s equations are

(0B = ~16% ) (1.56)

which gives the obvious result. So that is how you do electromagnetism.

Next consider a generalisation of electromagnetism, developed by Yang and Mills in 1954, and
earlier (1952) by R. Shaw of the University of Hull.
Normally, a one-form A is

A= Aydx® (1.87)

with functions A,. But there is no requirement that A, should be real-valued functions; they could
be elements of a Lie algebra.

Take some Lie group G. There will be a set of generators in the adjoint representation {7 }.

The Cartan metric on the Lie algebra of G is

Tlapg = —QTY(TaTﬁ). (188)

There will be compact and non-compact directions in general. Compact directions will be repre-
sented by anti-Hermitian generators for which 7,3 = +1; non-compact directions will be represented
by Hermitian generators for which 7,3 = —1. This might fit in more with the mathematics than
the physics literature, that is simply too bad. For physical Yang-Mills theories, G is compact as
required to make a unitary quantum field theory.

The metric can then be used to raise or lower indices in the Lie algebra.

The group can be specified by the commutation relations

[To, T3] = cap’Ty, (1.89)
where c,37 are structure constants of the Lie algebra. Then we define
Ay = AGTy, (1.90)

where AS are components of the gauge field in question, and A is a Lie algebra valued one-form.
This generalises the vector potential of electromagnetism. We need to find the analogue of the field
strength. In electromagnetism, the field strength is invariant under gauge transformations. This
requirement is too strong in Yang-Mills theory. We define

F=dA+gANA, (1.91)

which is now a Lie algebra valued two-form, and ¢ is a coupling constant that one introduces in
particle physics. In the mathematics literature, one sets ¢ = 1. In the field theory world, this is
written out in terms of components:

1
5 Fabdar® dabT, = d(AST,) A dz® + gAS ADdz® A da®T, Ty
1
= (dAG A de)T, + 5 gAL AP dx A da®[T,, Ts)
1

= 9,A%dx® A dzT, + 5 gAL AP dx A da®[T,, Ts)
1 1
5 (DaAf = pAT) da” N da"T, + SgAG A cay” (dma A dmb) T, (1.92)
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SO
o = 0, Ay — Op AL + gAT A e (1.93)

It is often simpler to do abstract calculations using forms.
In electromagnetism, since F' = dA, one has automatically dF' = 0. In Yang-Mills theory,

DaF =0, (1.94)
where D4 is a gauge covariant derivative defined by
DsF =dF + g[A, F], (1.95)

where the commutator of a p-form P and a g-form (@ is defined by

P,Q) = PAQ— QAP if either or both of P and () are even, (1.96)
Tl PAQ4+ QAP if Pand Q are both odd. i
Substitute this in ' = dA + gA A A to discover that D4 F = 0 (Bianchi identity):
DyF = d(dA4+gANA)+g(AN(dA+gANA)— (dA+gANA)NA)
gdANA — gANdA+ gANdA+ PANANA—gdANA—GPANANA
= 0. (1.97)
Let us generalise gauge transformations: In electromagnetism, these are
A— A+de, F —F. (1.98)
Here
A— A+ Dpe=A+de+ g[A, ¢ (1.99)

Then the infinitesimal change in F' is

OF = doA+glANA+gANSA
= d(de + gAe — geA) + g(de + gAe — geA) N A+ gA A (de + gAe — geA)
= gdAe —gANde —gde NA— gedA + gde N A+ g*Ae NA — g ANA+ gA N de
+g?ANAe — g?ANeA
= g(dA+gANA)e—ge(dA+gANA)
= g[F,€]. (1.100)
So F' transforms covariantly under gauge transformations, i.e. depends only on € and not de. That

should remind us of something, namely curvature.

In general relativity, under a co-ordinate transformation
Gab — Ga'b) = A/4a/0LA/4b/bgab7 Fabc — I e = A aAb/bAc/CPabc + ... y (1101)

where the remaining terms contain derivatives of A. The Riemann tensor R%.q contains derivatives
of I and squared I' terms, so one would expect second derivatives of A or squared first derivatives
to appear. But

R yoy = A" Ay Ao Ay Req (1.102)

13



with no such 9A,00A terms. F in Yang-Mills theory has the same property, that is not a coinci-
dence. In general relativity,

[VaVb = VValVe = Rape"Va. (1.103)

The curvature is the commutator of two covariant derivatives. The same is true in Yang-Mills
theory (see later).
We first go back to Maxwell’s equations; the other half of these equations is (in vacuum)

d*xF =0. (1.104)
The obvious generalisation of this is the Yang-Mills equation
DA (xF) =0, (1.105)

that is in components,

1
vaFaboz + égcﬁvaAgFJeedee =0. (1106)

Let us now calculate Dg4D X, where X is a p-form in the adjoint representation of G. Then
Y =DaX is a (p+ 1)-form, so we have

DAY =dY + gAAY +g(=)PY NA, Y =DsX =dX + gAANX +g(—=)PT'X ANA. (1.107)
Then

DsDsX = d(dX +gAANX + (=PI X ANA) +gAN (X +gANX + g(—)PTIX A A)
+g(=)P(dX + gANX + g(=)PTIX ANA) A A
= gdAANX —gANIX + g(=)PT VX NA—gX NdA+ gANIX + PANANX
+P()PHANX NA+g(—)PAX NA+ FP(=PANXNA—FPXNANA
= g(dA+gANA)AX —gX A(dA+ gANA)
= g[F, X] (1.108)

since F'is a two-form.

That is exactly what you would expect from a curvature. F' is often called the curvature form in
mathematics (or Yang-Mills field strength in physics). So F' must be the curvature of something,
so you should think of A as being a connection one-form (in the mathematics world).

2 Connections and General Relativity

2.1 Vielbein Formalism

You should wonder whether the same ideas work in general relativity. In general relativity, every-
thing involves just the metric tensor gu. All of the geometry of spacetime will be encoded into a
line element

ds® = ggpda®da®. (2.1)

14
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We try to extend this idea: g is a d-dimensional metric with ¢ timelike directions. That means in

practice that you can always construct normal co-ordinates such that
O\t (_\d—t 29
n~ (=) (=), (2.2)

One can only do this at a point. But as n describes the tangent space of the manifold, we can
rewrite the metric as

Gab = eauebynum Nuv = diag <(_)t7 (_)d_t> . (23)
The objects e,* are called vierbein or vielbein fields in general relativity, or frame fields in the

mathematics world. It is not entirely obvious that you can always do this construction. At each
point, g is a symmetric matrix, so can diagonalise it:

g=0TDO, D:ZAi(fi@)fi),fi:(O,..., 1 ,0,...,0). (2.4)

ith place

There will be d non-zero eigenvalues A;, of which ¢ will be negative and d — ¢ will be positive. Then
by rescaling the eigenvectors, it should be clear that one can get g to the above form.
But while g, has %d(d + 1) components, e,* has d?> components, so many more. But Lorentz

transformations

U T U (2.5)

preserve the Lorentz metric:
ATnA =n, A, AN 5N = Npo- (2.6)

In the general case, A € SO(d — t,t), and it is often useful to restrict attention to the component
connected to the identity. One would not call this a Lorentz transformation, but a generalised
rotation.

Under a (local) transformation of the frame fields,

et — et = ANy (z)e”, (2.7)
the metric is left invariant:
Gab — Gab = €a "€ V77,ul/ = Aup(x)eapAyo(x)ebamw = eapebanpa = Gab- (2-8)

You have found a new local invariance. We have enlarged the symmetry of general relativity (or
...) to be

a) general co-ordinate transformations,
b) local generalised rotations.

One needs the frame fields to describe fermions in general relativity. Greek indices u,v,... are
tangent space indices (Lorentz indices), Latin indices a, b, ¢, . .. are spacetime indices.
Gab, 9%° can raise and lower spacetime indices; N, M can raise and lower tangent space indices:

Cap = Nwea’, €' =n"ea, etc. (2.9)
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We can now write

Jab = €a''er” = eqM ey (2.10)

The objects e,/ can also be used to convert spacetime vectors (tensors) into tangent space vectors
(tensors):
VE = VE =V V*=e*,VH, (2.11)

and indeed
e VH = e eVl = 54Vl = Ve (2.12)

This works similarly for general tensors of type (r,s).
The next thing is some idea of a derivative: A covariant derivative is

Ve — VVe, (2.13)
such that under a co-ordinate transformation, if V¢ = A“laV“,
VoVe = Vy Ve = AylAY W,V (2.14)

with no derivatives of A, which are cancelled by the usual Christoffel symbols. What is the covariant
derivative of e,*? It should be a (0,2) spacetime tensor, and a Lorentz vector. Under a Lorentz

transformation e — eA, one will normally get de ~ (9e)A + edA, so we need to add an extra term:
Viea! = O — Tppect +wpt' yeq, (2.15)

where wp*, is the spin connection. The spin connection is needed to absorb the terms involving
OA if one performs a Lorentz transformation.
In Riemannian geometry and general relativity, one is accustomed to making a certain choice of
connection, such that

Vagbe = 0. (2.16)

One wants to make an analogous choice for frame fields, which is consistent with it. The simplest
way to arrange this is to make
Viea"' =0, Vanu =0. (2.17)

We can turn
Opeat — Tplpet +wptpe” =0 (2.18)

into an expression for the spin connection by multiplying by e®,:
wpt'y = wpt pe ey = —e et + Tpfhect e . (2.19)

We can regard this as a definition of the spin connection (almost). This definition of the spin
connection contains more information than I', so w and I' are not equivalent. Remember that a

metric connection consists of two pieces:
c c
I =T0",

+Tp°, (2.20)

) ]’
where the symmetric part is given by the Christoffel symbols and the antisymmetric part defines
the torsion:

Ty°, = 20p° . (2.21)

a]
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We have not yet looked at V7, = 0.
You can obtain an equation analogous to the one above by writing out Vye®, = 0:

Ope?y, + T e + wppee® = 0. (2.22)
Then multiply this by e, to get
W\ = _eaAabeau - ea)\]:wbmcecu- (2'23)

This definition is equivalent to the one above.
You see that calculations like these are rather messy. Cartan called this a “debauch of indices”.
The point of using forms is to get rid of the indices. We still need to look at

Vanuw = 0. (2.24)

This gives
!

0=Vanuw = 0w + Wap"Nov + War" Nuo = Wapr + Wavp- (2.25)
Hence a spin connection that is metric is antisymmetric on its Lorentz indices.
So this how a spin connection is defined, but you really do not want to do it this way in practice.
Let us start again, remembering that a conncetion can have torsion as well as curvature. We
demanded that

0= vagbc = UaGbc — I\adbgalc - I\adcgbd- (226)

For a symmetric connection, you can solve this in terms of I' and discover that a symmetric metric
connection is unique. No such luck for us!

Let us try to repeat the usual calculation with nonvanishing torsion. One starts with

0= Vagbe + Vgea — Vegab, (2.27)
which gives
OaGve + Ogeca — OcGar = Ta"sgac + Taegba + To%egaa + To%aged — Teagap — Te"p9ad
= 2r (adb)gdc + QF[adc}gbd + QF[de}gda
2F(adb)gdc + T[adc]gbd + T[bdc}gda- (2.28)

If the torsion vanishes, you can get what you are used to.
Let us recall a formula for the curvature:

R%ca = 0cl'a"y — 4Ly + T Ly — Lg% L% (2:29)
or equivalently, by commuting covariant derivatives
(VeVg — VaVe) Z% = R%egZ° — T.6 4V Z°. (2.30)
We have another connection which will have a curvature too:

(VeVa = ViV VE = Ve(0gVH +wi s V7) = Va(0VH +w ', V)
= 0.0,V 4+ (0cwd" )V 4+ wat' ;0. V7 — T8 q(0VHF 4+ weH V)
+Wc“)\(adv>\ + wd)\avg) - (C « d)a (231)
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we would like this to be a spin curvature and a torsion term. We look at the terms involving V

and no derivatives of V', and identify
Red" ;= 0cwd s — Oqwet's + we \wa'y — wa\we's (2.32)
as the curvature of the spin connection. The remaining terms are
(—Tq+ 0D (0 VH +wet Vo) = =T.4V VH. (2.33)

We obtain the same form as before. Manipulations on Lorentz indices are analogous to manipula-

tions on spacetime indices. Another fact which is almost miraculous is
Rabﬂy = ecﬂeduRabcah (234)

where the term on the left-hand side is the curvature from the spin connection, and the Riemann
tensor on the right-hand side is the curvature from the I" connection. This is true including torsion,
but not for a non-metric connection.

This is not entirely obvious. If you like, you can prove it explicitly using a metric connection.

2.2 Form Notation

Everybody who has ever calculated R3¢, explicitly knows that it is a nightmare. All these expres-
sions look much easier when written in terms of forms.
We start with a basis of (“pseudo-orthonormal”) one-forms

EH = e Fdx®. (2.35)
This is enough to specify the metric by
NuwE! @ EY = nyel'ep”dz® @ da®. (2.36)

Since {E*} form a basis, one can use them in any practical calculation. There is, in addition, a

connection one-form built from the spin connection

Wy = —Wyy = W da®. (2.37)
We can define a torsion two-form

1

™ = ea)‘inacdxb A dz®. (2.38)

Lastly, there is a curvature two-form
1 c d
v=— 5 ved . .
RH 2R“ dz® N\ dx (2.39)

These forms contain all the information you could possibly want. Now we will translate everything

into this language. No sane person, after they have seen this, will do calculations any other way.
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We discover that

dEF + WM, NEY = d(eg"dz?) + w, dz? A ey da
= (e M)dzb A dz® + wot e dz? A da®
1
5((%61,“ — Opea! + wat'vep” — wptel”)dx® A da?
1
= §(I’acbec“ —wetoer? —Thlet + wpt el +watvep” —wptLel” )dx® A da®

1
= 3 nCpectdr® A dxb = TH, (2.40)

where we have used

Opeay = ' pler — Whvo€a® - (2.41)

This is Cartan’s first equation of structure:
dEV +wh, NEY =TH. (2.42)

What about the curvature? You can substitute in the components to see that Cartan’s second
equation of structure holds:
duw 4+ W, AW =R, (2.43)

The second equation of structure is very similar to Yang-Mills theory, where F' = dA + A N A,
except that

{ F, A take values in the adjoint representation of a gauge group, (2.44)

R,w take values in the Lorentz group (or whatever stands in for it).

However, in Yang-Mills theory there is no analogue of torsion T or vielbeins E. This leads to
problems if you try to interpret general relativity as a Yang-Mills theory for the Lorentz group.
You could write something like

R = D,w, (2.45)

but we will not use this notation.
Let us look at Bianchi identites. The first identity is obtained by taking d of Cartan’s first
equation of structure:
dT* = d(dE* +w", NE")
dw", N E¥ —wt, NdE”
(RFYy —whpy ANwP ) NEY —why N(TY —w”s NE7)
= RMLOANEY —wWH, ATV, (2.46)

For vanishing torsion, as in general relativity, one has

R, AE" =0, (2.47)
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which corresponds to the usual R4 = 0.

There is a second Bianchi identity: Take d of the defintion of curvature.

RN, = ddw?, +wt)y Awry)
dw)‘p AWl — w)‘p A dw?,
(R, —why Aw”,)) AwPy —w ) A (R — wPy Aw”)y,)
= RYM AW, —w, AR, (2.48)
We could write this as
dR = [R,w], (2.49)

which is again very similar to Yang-Mills theory. In components, this is V[GR)“ ulbe] = 0.

2.3 Explicit Example

If one wants to evaluate the curvature and use it for something, then using this formalism is
relatively easy. In general relativity, the torsion vanishes, T# = 0 (typically). Then you can use

0=dEV'+w!', ANEY, wu =—wy, (2.50)

to find a metric connection w#, for a given (pseudo-)orthonormal basis of one-forms E*. You can
expand the two-form dE? as

1
dE* = icAMpEﬂ ANEP = —w*, NE* (2.51)
and invert this relation to get
1 A
wu,, = 5(_C>‘MV — CM)\V + Cy)\M)E . (252)

This defines the connection one-form. Then you can use the second equation of structure to find
the curvature.

Most of the time, you can actually find w by inspection, without using this formula.

Example: Spherically symmetric static spacetimes with line element

ds* = —V2(r)dt* + W(r)*dr® + r2d6? + r?sin® 0d¢* = n,, B" @ E” (2.53)
which defines an orthonormal basis of one-forms:
E°=V(r)dt, E'=W(r)dr, E*=rdf, E*=rsinfds. (2.54)

You can think of the coefficients in these expressions as e,*. This relates the basis {E*} to a
co-ordinate basis; it is useful to invert this:
E° El E? E3

vy TTwey YT YT e (2.55)
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The coefficients appearing here form the matrix e®,. The first equation of structure gives

dE® = d(V(r)dt)

= —V'(r)dt Ndr
V'(r) 0 1
= ———~——F'ANFE
V(r)W(r)
= —wol A B! — woz A E? — wog A Es, (2.56)
since w’) = —wgg = 0. This means that w% is proportional to E?, w5 is proportional to E? and
V'(r)
0 0 1
=——F E". 2.57
S vEwen” e (237
Similarly,
dE' = d(W(r)dr)
=0
= wlo/\EO —wlg A E? —wlg/\E?’. (2.58)
We use wlg = wig = —wp; = w?; to see there is no E' term and hence
V'(r)
0 0
=———F". 2.59
VW) (2.59)

wly is proportional to E? and w's is proportional to E3.

dE?* = d(rdf)
dr N\ df
1
= E' A E?
rW(r)
= w20/\EO —w21 AE! —w23/\E3. (260)
Using that w2y = wep = —wpz = w¥ and w?] = wo; = —wiz = —w'y, we now have
1
0 1 2
=0 = — 2.61
w2 w2 rW(r) ( )
Finally,
dE® = d(rsinfd¢)
= sinfdr A d¢ + rcos 6df A dp
1 1
= ——F'ANE*+ ——FE?AFE3
rW(r) + rtan 6
= wgo/\EO —w31 A E? —w32 A E2. (2.62)
Using w3y = w0, w?; = —w'3 and w3y = —w?3 we obtain
1 1
0 1 3 2 3
=0 = _ E = — E°. 2.63
wamh o W rWi(r) "’ v rtan 6 (2:63)

We can summarise this in a table:
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There are always %d(d— 1) nontrivial components of w. Compare this with I',*., which has %dQ (d+1)

w”p b=0 =1 b=2 b=3
a=0 0 i E° 0 0
a=1| v B 0 —wa? | —wn
a 0 rVVl(r) E? 0 B rt;ne °
a=3 0 7"VVl(7") E? rtan9E3 0

components for a symmetric connection.

Now we will calculate the curvature two-form using

RH

in the basis of two-forms given by E° A E?, where

Since

R*,

v =dwh, + Wk, AWy,

1
- §RMVPOEP AN EU.

Ruw =

we again only need to calculate six components:

RO,

dw®; + woﬂ A why

dw01 + UJOQ AN w21 + o.)03 AN w31

_Ruu,

(X%%fwgﬁam‘&g%g>”Aw+V%%ﬁﬁp
( T Y§%>+§%%8)”Aﬂ—v£§%w
i (v v ) E A E
RY% = dw’ + w1 Awls 4+ w3 Aws
= o (™)
- _W(Z),g/L(T)EO N
RY% = dw’s + W’ Awls+ w5 Aw?s

V') o (L1 s

wmmeA<rme>
V()

—WEOAE?’.

22

(2.64)
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E'AE!

(2.67)

(2.68)

(2.69)
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'ng = dwlg + u)lo VAN wOQ + wlg AN w32

- <‘rwl<r>E2> * <‘%E3> : (rcclvwE?’)

/
:< . —i—W(T))dr/\Ez— )

r2W(r)  rW?2(r) rW(r)
= e (2 wy) BB g B A
— TWV/V;fZ:) E' A E2. (2.70)
Rly = dw's+wlonw’s +wls Aw?s
= d <_H/I}(r) E3> * H/Vl(r) ‘ rt;nﬁEQ NE?
= (e * swvaes) 2 = s (v ™ 1
rtan@Ez " E3> * r2W (r tan9E2 AE?
= iy (7 73 B~ s B
- TWW//,:EZ,?) E' A B3, (2.71)
R2%3 = dw?s +w?o Aw's +w? Aw's
o2 tznﬂdr AE 7 sin? Gde NE = rtan 6 (TVVl(T)El NE rt an9E2 " E3>
—WEQ A E?

1 1 1 1 1
= - E' N E? - - E* N E?
<7“2W(7°) tan6  r2W(r)tan 9) * <r2 sin?@  r2tan?6  r2W2(r) )

= 712 (1 - W%r)) E% A B3, (2.72)

Now in practice you want to calculate solutions of Einstein’s equations. For this you need to
calculate the Ricci tensor, defined by

Ruu;w = Ryo. (273)
We can read off the components R¥,,,, from the expressions above, e.g.
0 1 Vi(r) | VI(r)W'(r)
R0 = = - + ;
w2(r) \ V(r)  V(r)W(r)

noticing that they are only non-vanishing if v = o, which is a consequence of the symmetry of the

(2.74)

problem. It follows that we must have

Ry =0, v#o. (2.75)



The diagonal components are

Ry = Rloi0+ R%p20 + R’o30
B S I G I e
W2(r) \ V(r) V(r)W(r) W2(r)yrV(r)  W?2(r)rV(r)
B 1 V')  V'(r)W'(r) V'(r)
= iy (761~ Vo 2
Rii = R% + R%*121 + R*3
_ 1 <_ V'"(r) V' (r)W'(r) Lo W'(r)
W2(r) Vi(r) V(r)W(r) rW(r)
Rys = R%p + Rlo1a + R330
B 1 Viiry  W'(r) 1
- WE) ( V) W) ;3>‘*F?

and R33 = Rgy (exercise). For vacuum solutions, we need R, =0, so

2 Vi(ry  W'(r)
7wwm<vwf*wv0’

0= Ry + R11 =

and hence

).

log V(r)W (r) = constant, V(r)W (r) = constant.

If we demand that spacetime is flat as r — oo, it is natural to set

1
W(r) = Vi
Then V/( ) . )
= V2 RPN —
R = V() ( rV(r) r? r2
and so we have to solve
Vi(ir) 1 1 1-V3(r)

Vi)~ r TR T v

This is an ordinary differential equation that you can easily solve:

/ 2V (r)dvV [ dr V) =1 constant.

1-V2(r) r’ r

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

We have rediscovered the Schwarzschild solution. This is the easiest way to find solutions to

Einstein’s equations.

24



3 Integration

You have learned in general relativity that if we want to integrate a scalar ¢ over a d-dimensional
domain D (with boundary 0D), then

I= / A%z \/g p(x) (3.1)
D
is independent of the choice of co-ordinates, where

g = | det gap| (3.2)

and [ d?z is interpreted as a Riemann integral.
Now suppose that ¢ = V,V%, then (Gauss’ theorem)

I:/ vava:/ ds, Ve, (3.3)
D oD

where d¥, = ng-(volume element of 9D) for an outward unit normal n,. The metric on 0D is
hab = Gab + g My, (34)

where there is a plus if n is timelike and a minus if n is spacelike.
We will now replace the covariant volume element d%z /g in the above formulation by a volume

form, the d-form

e=E'NE?A...NEX, (3.5)
where { E*} are a basis of orthonormal one-forms. Remember the alternating symbol (in the tangent
space)

+1 (pv...7) is an even permutation of (1,...,d)
T =4q -1 (uv...7)is an odd permutation of (1,...,d) (3.6)

0 otherwise.
Nuw...~ is found by lowering with the Lorentz metric (or more generally, the tangent space metric).
Hence,

nuu...'r — (_)tnﬂl/...ﬂ'. (3.7)

(Normally you should not write equations like this one.) In terms of components, we then have

1

€= a(—)tn,w,j EFNEYAN...NE. (3.8)
Expressing this in a co-ordinate basis, using E* = e *dz?,
1
€ = E(_)tnw--f el'ey” . efTdx N de® AL AN dat
1
— E(—)tnlm_f eler” ... eanabc"'fdaU1 N
= (—)Y(det e)dx. (3.9)

det e is almost the same as |/g:

gab = €al'er’ = detg = det(e?n) = £(dete)?. (3.10)
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Hence |dete| = /|det g| = \/g. What you discover is that e reproduces the previous expression
for the volume element. So we define integration over a d-dimensional region to be

/D¢d(voz)z/D¢e. (3.11)

One always integrates a d-form over a space of dimension d. Alternatively,

/D ¢ d(Vol) = /D % . (3.12)

The first and most imporant result for integrals over forms is Stokes’ theorem. We prove a
pedestrian version, where the region D is bounded by two surfaces which can be taken as A = 0
and A = 1. We can then choose co-ordinates in D such that the metric is

ds® = d\? + ds? | (3.13)

such that gy = 1 and g); = 0 (these are Gaussian normal co-ordinates, see GR course). The
volume form on D is d\ A d(Vol)4—1, where d(Vol)4—1 is a volume form on surfaces A = constant.
Now take a (d — 1)-form which is proportional to d(Vol), written as f(\,z*)d(Vol), and integrate

/D Mde(von :/

o : df (N, z') Ad(Vol) = / d(f(\z") Ad(Vol)), (3.14)

D
since (0f /0x%)dz’ A d(Vol) = 0 and dd(Vol)/OX = 0. As a one-dimensional integral over A this is

/D Mde(m) :/

15) aD(=1) f(l, ml)d(Vol) — / f(o’ CUZ)d(VOl), (315)

8D (A\=0)

which is an integral over the boundary. So in this case we have

/de:/aDw. (3.16)

This is by far the easiest version of Stokes’ theorem. A corollary of this is

O:/ ddg:/ dg:/ g (3.17)
D oD 00D

for any (d — 2)-form g. So the boundary of a boundary is empty.

3.1 Action for General Relativity

We want to give an action for general relativity in d = 4. You are probably used to the Einstein-
Hilbert action

/ d%z \/g R; (3.18)

from this you derive R, = 0 in vacuum, but under various assumptions on the connection. There
is an alternative formulation which makes the requirements on the connection appear more natural:

I= / (R (w) NEP NE ) uype = / ((dw‘”‘ + wh A wy)‘) A EP A E") Nuvpo - (3.19)
D D
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This action contains two types of fields: the vielbein fields and the connection w. We require
I to be stationary under arbitrary variation of both E and w. Note that in this action, 7,0
projects out the symmetric part of w. We only need to consider the antisymmetric part of w, so
one automatically has a metric connection.

Vary E

o1 = / (RM (w) A SEP N E” + RM(w) A EP A SE” i = / DR () ASEP A B Vippers (3.20)
D D

if this is supposed to vanish for arbitrary 0 E”, we must have

RM N EPnyype = 0. (3.21)
In components, this is
1
§ij)\’rE)\ NET A Epn,ul/po - 0, (322)
or
Ruy[)\rnp}uua =0. (323)

Contract this with 7777 which does not annihilate any information in the equation:

0 = RW)\TUWVJUMPH
= 2R [8,50,0057 + 0,00,705% 4 8,76,75,” (3.24)
- 9 <R/@>\>\T50’r + RAT)\T(SO'H + RT}@)ﬂ_ég)x)
— 2(—2R*, + R8,"),

which you recognise as the vacuum Einstein equations. Contraction gives
R, =0, (3.25)

so the Ricei tensor of the connection w vanishes.
Now we try to vary w:

51 = / (6™ + 6 A+ N 6,) A BP A E? )t (3.26)
D
This should vanish for arbitrary w. Use the identity for a one-form X and a two-form Y

/ X/\Y:/d(X/\Y):/dX/\Y—X/\dY. (3.27)
oD D D

When varying something, you always have to worry about boundary conditions. Here we put
dw*” = 0 on the boundary. One could do this more generally, and consider boundary terms in the
action as well (see Black Holes course).

Setting the boundary term to zero, we can turn (ddw) A E A E into dw A d(E A E):

5T = / {5qu A(dE? A E7 — EP NdE?) + 2 (6w") Aw, > A EP A EU} Nupo
D

= / oW A ((dEp AN E° — E? NAE?) Nypo + 2w, A EP A E"nﬂ)\po) . (3.28)
D
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This should vanish for arbitrary w*”, so we get
(dE” NE° — B NdE”) wpe + 2w, A E? A En0p0 = 0. (3.29)
Recall Cartan’s first equation of structure and replace dEP = TP — w? N E7:
(TP —wPr NET)NE? — EP AT — w7 A ET)) Nuwpo + 20,8 ANEP AN E7ny5,, = 0. (3.30)
Now use

20, N EP N Enyppe + (—wPr AETANET + EP Aw” 2 A ET) Nupo
= 2w, ANE? AE a0 — 203 A EX A B pe
= 2 (Wrp s — @ ns ) BT AP N EC
= 2 <—wT)‘[V77M]/\pU — wT)‘anAU> ET NEP ANE”, (3.31)
.

where we expanded w,* = w,, E7 etc. Take the components of this three-form and multiply by
1n7P?", which is taking the Hodge dual:

A Tpo A TPo
2 <_WT ) Apa ] por — Wr pNluracT g H)

pPOTK pPOTK OTPK

= _WTAynpauAn + WTA,unpauAn + 2wT>\an;,LV>\77
w0, 70" — w00, 700" — 12w 00,76, 65"

A K A K A K
= AW, 08" — dwp” 00" — 1207, Oy

m

A A A A A A
= 2 <wﬂ'€y —w = wa 0+ wy M&,,“ —w,", — w2\ —wy M(SVR + w6 Fwr 0, + w,,“u)

= 2(—w S +ws) =0, (3.32)

Hence all terms involving the connection cancel, and we finally obtain

(T? A E°) poyu = 0. (3.33)

We claim that it follows from
T"ANE*=0 (3.34)

that the torsion two-form has to vanish identically. To show this, we expand in a basis of one-forms:

1
T7 = ST apE* A EP. (3.35)

Then we have
TTosE* NEP A EY = 0. (3.36)

We multiply this three-form by 7,5, and take its components:
TT[ozﬁmTP\}pa =0. (337)

More explicitly,
TTozﬁnT)\pa + TT)\oz'r/Tﬁpa + TTﬂ)\T]Tapo = 0. (338)
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Now we contract with n**7*

0 = T7aslonpo + T 3xalr 80" + T galirapen "
= 61750, — 2 (5)55“ - 55&5;@) T ye — 2 (5)56;6 — 5&5;6) T7 5
= 6% — 2(TTra0s" — T ga) — 2 (T 00" — T" 5a)
= U5 — 2T 005" — 2T7 56" (3.39)

Contract k in this equation with § to find
27" e + 8T or — 217 o7 = 0. (3.40)
Therefore we have T",, = 0 and consequently
T".3=0. (3.41)
We have discovered that the action

1B, 0] = / R¥ (@) A EP A E% o, (3.42)

when F and w are independently varied, gives implicitly a metric conection and explicitly vanishing
torsion and the vacuum Einstein equations. In this sense, the action is superior to the Einstein-
Hilbert action.

3.2 Yang-Mills Action

Yang-Mills theory in four dimensions can be defined by the action
1
I= §/TT(F/\*F), (3.43)

where the gauge group G is compact. (If you do not make this assumption, the quantum theory
will violate unitarity.) For a set of generators {1, } of G,

1

I=3 / Te(FYT, A xFTp), (3.44)
and we can use the Cartan metric Tr(T,T3) = —3703 = 30ap (since G is compact) to rewrite this

as 1
I=3 / F A +FP To(T,Tp) = / F(A) A xFy(A), (3.45)

where explicitly
1

= dA” + ig%mﬁ AAY. (3.46)

We take G to be compact and semi-simple, so that ¢ is totally antisymmetric in all indices. If you
think about it, the components of G A *F', where G and F are two-forms, are proportional to

G  Npgrr, (3.47)
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and so the thing that is integrated is

Guquo—T/pU)\TT/MVAT' (348)
But this is the same as you get for *G A F. Hence, under variation of A one gets two identical
terms:
1
ol = 1 /5FO‘(A) A xFy(A) + FY(A) A %0F,(A)
1
= 5/5F0‘(A) A xFy(A)
1 « 1 a AL
= 3 0 dA” + 598y AP NAY ) A xF(A)
1 « 1 as AB 1 a AL
= 3 0dA™ + 59667 0AP NAY + 59667 AP NOAT ) A xFy(A)
1
= 3 / <5dAa + gcﬁ7a5A6 A A'Y> A xFy(A) (3.49)
Again, we use
/ 6A/\>kF:/d(6A/\>kF):/(d&A/\*F—(SA/\d*F) (3.50)
oM M M
and set the boundary term to zero to obtain
1
o1 =3 / SA% A <d % Fo + geag AP A *Fy> (3.51)
which should vanish for all A%. One obtains the Yang-Mills equations
d* Fy + gcag AP N ¥F, =0, (3.52)
or alternatively
d* F + g[A,«xF] = 0. (3.53)
Conventionally one rescales the fields to remove g from the definition of F"
A 1
A— —, F=dA+gANA— —(dA+ ANA). (3.54)
g g
Since the action is homogeneous of degree two in F', g can be taken outside the integral:
1
I= 12 Tr(FAxF), F=dA+ ANA. (3.55)
g

Notice that this is just a way of rescaling the fields which is not a change of physics.

4 Topologically Non-Trivial Field Configurations

These are things which you can not see in perturbation theory in quantum field theory, but are
nevertheless important. The simplest example is a domain wall in scalar field theory, where we
take the potential to be

V(9) = M¢” - a*)%. (4.1)
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This is a renormalizable sensible field theory. The action for this theory in four-dimensional space-
time is )
1= [ o ya (~jo0000" - V() (42)

where we take spacetime to be Minkowski space. The potential has minima at ¢ = +a:

V(o)

There are two different choices of vacuum state.

Perturbation theory describes small fluctuations around one of the minima. We might be interested,
instead of doing this, in domain walls. These are configurations where the field takes two different
asymptotic values in different regions of space.

Fluctuations around a minimum can be described as having some kind of mass. For an ordinary

massive particle,

1
V(g) = ym” (4.3)
Hence we can define
m? = V" (vacuum). (4.4)

This describes the curvature at the minimum. For our V(¢),
V(9) = M¢” —a®)?, V'(¢) = 4Ag(¢” — a®), V"(¢) =4A(¢° — a®) + 8)¢? (4.5)
and hence
m? = V" (+a) = 8\a>. (4.6)

The potential has coupling constant A and describes particles of mass v8\a. A and m desribe the
physical variables in this problem. The equations of motion (the analogue of the Klein-Gordon
equation) are

O¢ — V'(¢) = 0. (4.7)

We look for solutions that are static and have planar symmetry. This turns it into a one-dimensional
problem: If ¢ = ¢(z), the Klein-Gordon equation becomes

d*¢
— = Da(¢? —a?). (4.8)
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Multiply this equation by ¢'(z) and integrate over z:
¢"(2)¢(2) = 4Ad(2)¢(2)(9(2)* — a?)
—(¢(2))? = Mo(2)? — a*)? + constant. (4.9)

A long way away from the domain wall, we assume that ¢ — ¢4 and ¢'(z) — 0. This means the
constant is set to zero. Now integrate again:

() = £V2\(¢(2)? —d?)
d¢ /5y
1 ¢
aArtanhE = £V2\(z — 20). (4.10)
Choosing the positive sign, we have found a kink solution
¢(z) = atanh (\/ 2 a(z — ZO)) . (4.11)

The solution interpolates between two vacua. z = 2 is a domain wall which separates one vacuum
from a different vacuum.

The energy of the field is in the region around z = z3. To calculate the energy-momentum tensor,
take the covariant Lagrangian

1= [ y5 (~j0000" - V(&) (4.12)

then the energy-momentum tensor is given by

2 61
Top=——F7- (4.13)
V9 9g°
This gives
1
Ty = 0u0h — 590 (9100046 + V (6)) (4.14)
You want to calculate the energy per unit area in the domain wall, which is
/dZ TO(]- (415)
We put 2z = 0 for simplicity. Then
V2Xa?
z) = atanh(v2\az), "(2) = ————++, 4.16
() (V2Xaz), ¢'(2) cosh?(v2az) (4.16)
1 12 2\2
Too = 5 <¢ + A(¢” — a”) >
1
= = + Aa*(tanh?(vV2Xaz) — 1 2>
2 (Cosh4 (V2Xhaz) ( ( ) )
o (v * o)
= =Xa
2 cosh*(v/2\az) cosh4( 2X\az)
3\at
= ) 4.17
2 cosh?(v2\az) (4.17)
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The energy per unit area is then

(e 9]

3\a* 1
dzTop = dz ————
/ o 2 / cosh?(v/2\az)

3\a* 7d 1 tanh?(v/2\az2)
= Z p—
2 cosh?(v2Xaz)  cosh?(v2Xaz)
3t [ 1 1 3 o
= — [m tanh(v2Xaz) — 3vra tanh” (v 2)\az)} .
3a* 1 4 1 m?
— Z =V = — 2= 4.1
2 Vs VP T (4.18)

where we used a = m/v/8\. The important result is that this is proportional to A7
For static configurations, the action is energy times a time interval. The path integral will be

7 ~ / D[¢le~ 1], (4.19)
The amplitude with any process that contains a domain wall will be
Z ~ el (4.20)

up to numerical factors. This has an essential singularity at A = 0.
The key point is that you can never find this process in perturbation theory in A. Therefore
one has to do things which are inherently non-perturbative in nature. The amplitudes involving

topologically non-trivial configurations always involve inverse powers of the coupling constants.

5 Kaluza-Klein Theory

This, in its simplest form, is just general relativity in five dimensions instead of four. Your first
reaction will be that this makes absolutely no sense.

Imagine that one dimension out of the five is wrapped up in the form of a very small circle. We
would like 2° to be wrapped up with radius R, so we identify

2 with 2° + 27 R. (5.1)

You could argue that this is a special class of solutions which are irrelevant. But this is nothing
unusual, this is simply what one does to make life easy - compare with isotropic and homogeneous

solutions in cosmology. We assume there is a Killing vector associated with translations in 2,
0 0
— =K . 5.2
Ox® dxa (52)
Then, the five-metric can be written as not to depend explicitly on x°. We write this as
955 ; 95;
= ) 5.3
Jab 95 | 9 (53)
|
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where the indices 4, j run from 0 to 3.

From a four-dimensional point of view, gs; looks like a vector field, gs5 looks like a scalar field.
That is indicative of what you should expect.

We can write the five-metric in the following form, which is cunningly chosen to make life easy:

ds? = 2P0, datdad + 29 (dz® + Aidwi)2 , (5.4)

where we interpret 7;; as a four-dimensional metric, A; as a vector field under four-dimensional co-
ordinate transformations and ¢ as a scalar field under four-dimensional co-ordinate transformations.
Now draw your attention to what happens under an infinitesimal co-ordinate transformation that
does involve 2. Suppose that

A; — A; + O;A, (5.5)
then the one-form dx® + A;dz? is invariant if
25 — x5 — A, (5.6)

If this were to describe electromagnetism, a gauge transformation is the same as a co-ordinate
transformation. The simplest thing to do is to calculate the Ricci scalar, because this is what
appears in the action

1 1
= 7(5)/d5x Vg O R = 7(5)/d4x/dx5 eWitae ~ GIR, (5.7)
167Gy, 167Gy : ,
=27R

(Note that det g = e(83+20)9 det ~.)

The calculation of ®)R is half messy and half straightforward. You should do the straightforward
part yourself. The messy part is an application of the technology of forms.

Step 1 Find an orthonormal basis in d = 5: Define

EP = e(da® + A), A= Aidd’, (5.8)

and regard ds‘(lQ) = ~,;jdz'dz? as four-dimensional line element which defines an orthonormal basis
of one-forms e, such that
Yijdr'de? = e' @ eIy, (5.9)

where we now use spacetime and tangent space indices interchangably. Then the five-dimensional
one-forms are defined by
E' = &%t (5.10)

and the five-metric is
ds® = F° @ E° + n;; E' ® FY. (5.11)

Step 2 Calculate the connection one-forms, setting torsion to zero:

dE' = Bdpe’® Ael + ePde
= ﬂdgbeﬂqb/\ei—eﬁ(bd)ij/\ej, (5.12)
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where we use Cartan’s first equation of structure de* = —&" jAe’ for the four-dimensional connection

w, and
dES = adp A e (da® + A) + e dA. (5.13)
Thinking of electromagnetism, we write dA as F', with
1 4 1 S
F = §Fl'j62 ANel = 5 (OZAJ — a]AZ) e’ Nel (514)
We can rewrite this in terms of the big E’s with extreme ease:
dE' = Be P9, B9 NE — &' j A EY, (5.15)
, 1 A .
dE® = ae P?0;¢ I NEP + 56(04—26%? (F;E' A EY), (5.16)

where 9;¢ relates to the components of d¢ = (9;¢) ¢’ (not written in terms of E7)!
From Cartan’s first equation of structure, we obtain the connection components (note that the

connection must be antisymmetric)

1 .
W = adipe PPES + §e(a_26)¢FijE], (5.17)
. 4 . . 1 .
Wi = &= e (0GB — 0j0E") — el B, (5.18)
where we get the first from dE® = —w®; A E?, and the second from
dE' = 'y NEY — WIS NES = —wij A BT+ §e(a_26)¢szE] A EP. (5.19)

In slightly more general terms, we could do a reduction from (d + 1) dimensions to d dimensions,
where the metric is written as

ds?® = 625¢’Vijd$id$j + e20¢ (dz + Aidaci)z (5.20)

and the z direction is taken to be curled up. Of course, the calculations go through as before.
You can now calculate the two-form from this. This is rather messy and there are lots of terms you
will get. We will not write the calculation out explicitly.

You will find that the result is

1 ,
R = e~ 289 <Oé(Oé — 26)6@8@ + a(?j@igb + ’I’}ijaﬁak(ﬁak(ﬁ — Zez(a—ﬁkaiji) EI N FE?
(o380 (1 Qi Fl; — - Db Fr — 200 Fos + B Fend'é )| BF A B9
+e (@ = B)0ipFij — 5 (@ = B)OydFj; — 50w Ly + 5 8mipFrd ¢ A
—%e@**?ﬁ)d’ (B A" + Fypad i A BY) + adjge B N, (5.21)
. A A 1 . 1 . .
R, = 7' 4 E* A EFela=30)9 <(a = B)F' 0+ 50k — 5 (0 = B) (00 Fy — F'i0;0)
1 j j - i i
+58 (anqspnjm + lealqsnjk)) + EF A E'eT0 (8 (0;0,06" — 00’ dmy;)  (5.22)
1 — 7 % 7 ) 7
—162(“ A6 (F'Fyy + F' i Fyy) + 82 (0 90)0my; — OpddP ¢y — 0;60)5,60 z}))

4 . 1 . 4
+BeP9 <3k¢EZ NG — OF gt A Ej) — el (Fk]w W A B — Fioh A E) ,

35

Lect.
12



where rij = do* i+ O Ak j is the d-dimensional Riemann tensor.
This, as you can gather, is an unpleasant calculation to do. If we look at the action

1

[—_ -
167TG§\C;+1)

/ d e \/gR, (5.23)

we will find that this can be brought in to an extremely simple form. From the expressions for Rij,
discover that

R = 2R°. +R/’
= 2¢720¢ <a(—a +26)(V$)? — aO¢p — d - af(V)? + 262(0‘_5)¢F2> + 200, pe PP
e 0% 4 2072 4 907207 (ﬁ(—d +1)0¢ — ie%a*ﬁ)d’%ﬁ + B3 (V¢)*(d - 1)
—%(Vqﬁ)Q(d - 1)d> +26e7P¢(d — 1), pe’™ ;
= e 2P0 — 2e72P0(V )2 <a2 +(d—2)aB + %(d —2)(d - 1)ﬁ2> —2e720¢(a + B(d — 1))
—|—%e(20‘_4ﬁ)¢F2 + 2606 i+ B(d — 1)). (5.24)
The offending term involving the connection components can be set to zero by choosing

a=-pd-1). (5.25)

Then
1
R=¢29r — ¢720%(d — 1)(d + 2)3*(V¢)? + Ze@a—%w?. (5.26)

If we recall that det g = e2(®T49)9 det~, we obtain

_ 1
VER = v3e (1) + qe SR - (9. (5.27)
The result could also be (choosing o = —(3(d — 2), but then where are the connection terms?)
1 _op5q- 1
VER =7 (1) - e BV - 2. (5.28)

You can do the integral over z in the action which just gives a constant 27 R, and obtain the
d-dimensional action

2R _ 1 _
I= —0y / A%z \/yeP? <r(’y) + e ARd+1e p2 _ (v¢)2> : (5.29)
167Gy
N———

= (167G )1

In a region where ¢ is more or less constant, we just get a unified theory of a scalar field, an
“electromagnetic field”, and gravity. Probably, this theory would have languished in the physics of
the 1920’s, were it not for string theory. Since string theory only makes sense in higher dimensions,
you have to do the same construction to get rid of the extra dimensions.
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5.1

Particle Motion in Kaluza-Klein Theory

Now the first thing is to ask yourself about the motion of particles in this spacetime:

(a) Classical particle motion

This is given by geodesics, obtained by extremising the action

I= / ds gapt®i®. (5.30)
Let us decompose this
I= / ds (emw + eMAZ-Aj) @i 4 2700 A;its 4 €20 27, (5.31)
Since 2 is Killing, o
57 = 270 (2 + Aid) (5.32)

is a constant of the motion along geodesics. (This is of course general: If K¢ is Killing, and
u® = 2%, then ubVy(K%,g) = 0.)
We only want to consider ¢ = constant. This is because the vacuum solution will be of the
form

nijdatda? + dz? + 2dz Aydx' + ... (5.33)

The last term in the one-particle action looks like a mass term. In a region where ¢ is constant,
there is also a term

2204 2 At (5.34)

=iq

where ¢ looks like the charge of a test particle.
Thus the motion in the z-direction corresponds to electric charge. This is why this does not
make sense as a theory of electromagnetism; test particles have masses proportional to their
charge. As a unified theory of gravity and electromagnetism, this theory was out of fashion
until approximately 1982.

Quantum-mechanical particle motion
Consider the Klein-Gordon equation

(—D + 7;':—22> 6= 0. (5.35)

h has been put in for a reason which will become apparent. We consider a semi-classical
approximation of the form

¢ = Ae"SI", (5.36)

This wavefunction in the 2 — 0 limit gives you back the classical theory. Derivatives of ¢ are
Vep = VaAeS/h 4 %vaSAeiS/h, (5.37)

O¢p = DAeiS/h+2%(VQA)(VGS)eiS/h+%DSAeiS/h—%VGSV“SAeiS/h. (5.38)
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Stick this into the Klein-Gordon equation to get

DA z VA m2
Multiply by h? and take the limit # — 0 to get
(VS)? +m? =0. (5.40)

So we can identify V.S with the momentum, u, x V,5. The velocity vector of a particle is
orthogonal to the surfaces of constant phase of the wavefunction.
This means that u, obeys the geodesic equation:

UV aup) = (VS)Va(V3S) = (VOS)VyVaS = %vb (VS)?) = %Vb(—mQ) —0. (541)

The geodesic equation is absolutely inevitable quantum-mechanically.

Let us think of a Kaluza-Klein spacetime with metric
—dt? + dr® + r*(df* + sin? 0d¢?) + (dz°)?, (5.42)

where the 2® direction is curled up into a circle, and try to solve the Klein-Gordon equation
for this metric. We will have

0? m?
<—D(4) - W + ﬁ) ¢ =0. (5.43)

If we separate variables
b= X2)f(x1,...,z%), (5.44)

you will discover by the usual argument that
1 9°X
X 952

= constant = k?, (5.45)

which gives X (2°) = ¢™*** with real k for k2 > 0, and X (25) = e**I*° for k2 < 0. But the

5

wavefunction must be single-valued, so under z° — 2° + 27 R, the wavefunction must not

change. This means we must have k2 > 0 with

k=— 5.46
R7 ( )

where n is an integer. k must be quantised in units of %
Recall that velocity in the z° direction looks like electric charge. But the component of

velocity in the 2 direction is k, so charge is quantised.
But now we see precisely what is bad: Go back to the Klein-Gordon equation, which becomes

(_% i <l<: i Zj—>) =0, (5.47)

We see that the effective mass is also quantised, which is not observed.
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5.2 Magnetic Monopoles

There is some folklore that any theory with charge quantisation has magnetic monopoles in it.
Kaluza-Klein theory in dimension five is

_ 1 5 .

this has as its symmetry group five-dimensional co-ordinate transformations.

Normally one would try to find interesting five-dimensional spacetimes such as Minkowski,
Schwarzschild, etc. Kaluza-Klein theory means specifying that the five-dimensional spacetime must
have a Killing vector that generates a circle S! of radius R.

From a four-dimensional spacetime, the action becomes something like

N ! Ll v Lioe).
where the four-dimensional Newton’s constant G is
G®)
4 =
G R (5.50)

This is four-dimensional general relativity coupled to a U(1) vector field, which is the Abelian gauge
invariance found in electromagnetism.

We have broken the symmetry group from five-dimensional co-ordinate transformations (diffeomor-
phisms) into the group of four-dimensional co-ordinate transformations xU(1). This is an instance
of symmetry breaking, rather similar to what you do in Grand Unified Theories.

The vacuum solution in five dimensions in Minkowski space R%!

—dt? + dr? + r2dh? + r? sin® 0d¢? + dr?; (5.51)
the vacuum of Kaluza-Klein theory is metrically identical:
—dt? + dr? + 12d6? + r? sin® 0d¢? + d22, (5.52)

where the z direction is now a circle. To get from five-dimensional general relativity to four-
dimensional general relativity, you need to choose to wrap one direction up to form a circle. That
choice may seem restrictive, but it is simply what you do. You should really think of this as (an-
other) example of symmetry breaking.

In the vacuum, we have ¢ = 0, A = 0, R;; = 0. You can always find another solution of a
Ricci-flat four-dimensional metric times a flat fifth dimension, such as a magnetic monopole:

1
:1+4_m'

T

1

ds® = —dt?
’ Vo

(dr® +72d0* 412 sin? 0d¢®) +V (1) (dz+4m(1—cos 0)dp)*, V

(5.53)

The spacelike part of this metric is the “Euclidean” version of a four-dimensional space that has van-
ishing Ricci tensor, known as Taub-NUT space, and has rather strange properties in its Lorentzian
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version. The solution obviously solves the five-dimensional Einstein equations.
The co-ordinate ranges are

0<r<oo, 0<6<m, 0<¢<2m. (5.54)

r = 0 corresponds to a co-ordinate singularity, and z must be identified with period 8mm; the radius
of the Kaluza-Klein circle is 4m. The last term in the metric represents the Kaluza-Klein direction.
Thus the vector potential of the electromagnetic field has non-vanishing expectation value,

A =4m(1 — cos 0)do. (5.55)
This looks kind of weird, but we have
F =dA = 4msin6df A do. (5.56)

This is a magnetic field with Fpy = 4msin 6.
You will remember that as a three vector,

1
B, = 5gamFﬁV. (5.57)
If we look near r — oo, we have
4m sin 0 / 4m
0 0 6
r2 sin @

This represents a magnetic monopole of strength 4m. All other components of the electromagnetic
field fall off faster.

The vector potential is singular for # = 0, but this is a gauge artefact. We can remove this by a
gauge transformation

A_—A_+dA= A4 (5.59)
and a corresponding transformation on z. If we choose A = —8m¢, then
Ay — —4m(1 + cos0)dg. (5.60)

The magnetic field from this is the same, but the singularity has been moved to 6 + 7, the south
axis. Just as for co-ordinate patches in general relativity, you have found two regions which are
related by a gauge transformation.

) A_ singular here.

-« A, singular here.
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The radius of the Kaluza-Klein circle is R = 4m = P, the magnetic monopole strength. Electric
charge for particles moving in this field is quantised in units of %, as we saw before. It follows that
for any particle charge g, ¢P = n must be an integer. This is the Dirac quantisation condition.
You can discover that » = 0 is only a co-ordinate singularity by calculating the curvature. Near
r =0, ,

V(r) ~ oo (5.61)

The metric near » = 0 is
4
ds® = —dt* + —m(dr2 + r2dh* 4 r*sin® 0dp?) + %(dz + 4m(1 — cos 0)de)>. (5.62)
r m

We try to invent a co-ordinate transformation that gets rid of the singularity at » = 0: Under

p=r, dr=2pdp, (5.63)
the metric becomes
2
ds® = —dt* + 4m(4dp?® + p*de* + p? sin® 0d¢?) + f—m(dz + 4m(1 — cos 0)de)>. (5.64)

You can get rid of the constants by overall rescaling, and discover that the spatial part is the metric

on flat R*, written as
dp? + p? x (metric on S%). (5.65)

There is an entertaining generalization of the magnetic monopole metric, which we can write as

_ 2 —1 T dT Z(dz .
dt +V(|f|)(d dz) + V(|Z])(dz + A), (5.66)

where V and A satisfy

1 - L o
2 7 A=
vﬂat V(‘.ﬂ) 0 (.%' 7& 0)7 V X \Y

1
v(z)

(5.67)

We found that a simple pole in r in % does not cause a spacetime singularity. This suggests that

we can move a single monopole to £ = ¥, such that

Ve—— (5.68)

or replace it by
V= . (5.69)

Then A still satisfies the above relation. This is a configuration of N monopoles of strength 4m,
which are in neutral equilibrium!
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5.3 S% as a Group Manifold

Recall that the form of the Kaluza-Klein monopole metric near r = 0 is
2
ds? = —dt* + 4m(4dp* + p*df? + p*sin® dp?) + f—m(dz — 4m cos 0dp)?, (5.70)

where we have shifted z. We claimed that the spatial part of this is flat R*. We need to investigate
the S2 part of this metric further. Start with flat four-dimensional space with metric

ds® = dr? + da® + dy* + d2?, (5.71)

where we define
e e T (5.72)

We want to look at the metric on surfaces of constant p, this will give a metric on S3.
We use the Euler angle parametrization

0 0
@ = peos o cos <%(¢ - ¢)> , Yy =peosy sin <%(¢ - ¢)> , (5.73)
z= psingcos <%(¢ + ¢)> , T = psingsin <%(¢ + zp)> . (5.74)

The ranges of the co-ordinates are
0<p<o0,0<O<7m 0<¢p<2m, 0<1 <A4r. (5.75)

You can make life easier by assembling (z,y) and (z,7) into a pair of complex numbers

u=ux+iy = pcosgexp <%(¢—1/))> ,wW=z+iT = psingexp <%(¢+1/))> . (5.76)

There is no escape from the following mess. To get the metric, notice that flat space in these
co-ordinates has line element
ds® = du di + dw di. (5.77)

Note that not all spaces allow for the introduction of complex co-ordinates. We have

0 i 1 0 i j 0 i
du = dp cos 565(4571#) - ipsin §d065(¢*w) + %(d(b — dip)pcos 565((;571/}), (5.78)
in2ei@-0) 4 1) cos L gpeie-v) 4 1 in 0 ede-v)
dw = dpsin ¢ + 5P cos 5(1962 + §(d¢+d¢)psm € . (5.79)

The metric of R?* in these co-ordinates is

ds®> = dudi+ dw dw

1 1
= dp2+1p2d62+1p2 cos? (d(b dip)* + p sin? —(d¢+d1/1) (5.80)

you can see that all cross-terms cancel out. We can rewrite this metric as

ds? = dp? +4p (d6? + sin® 0dp* + (dip — cos 0 dp)?) (5.81)
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which looks like the metric we had for the magnetic monopole.
This has nothing to do with S being also a group manifold of SU(2). What do we mean by
group manifold? Elements of SU(2) are of the form

(_‘2* ;) . aa® +bb =1. (5.82)
This is the same as the condition uu* + ww* =1 (with p = 1) that we used previously.

How is one to form a metric, given that S3 can be represented as a matrix group? We need to find
a basis of one-forms and construct a metric. Suppose you have g € G. The first thing to do is to
construct the Lie algebra; then ¢g~! dg will give you a basis of one-forms which are left-invariant:
Under g — hg, g~ ' dg is invariant.

Alternatively, one could construct right-invariant one-forms wich are invariant under ¢ — gh. Then
one would use dg g~ .

Suppose one starts with g~! dg and sends g — g~!. Then
g 'dg—gdg", (5.83)
But if you take d of the equation gg~! = 1, you find that

dggt+gdg 't =0, (5.84)

1 1 1

= —g tdgg'. So gdg~' = —dgg~
one-forms to right-invariant one-forms.

1

and hence dg~ , and the inverse map maps left-invariant

You can construct a bi-invariant metric by taking
1 _ _ 1 _ _
—5Tr(g" dg@ g~ dg) = —5Te(dgg ™" ©dgg ) (5.85)

where ® is a tensor product of forms. To construct the Lie algebra of SU(2), we choose generators,

01:<(1) ;) 02:<3 BZ> 03:<(1) _01>. (5.86)

They satisfy 0;0; = 0;j1 + i€;jp0. The Euler angle parametrization of SU(2) is then

the Pauli matrices

;@ ;0 ¥
g=e"2%3¢'272723, (5.87)

These angles are almost the same co-ordinates as we used before. Use 07 = 1 to write this as

B 6 ¢ o 0 v
g = <1 cos 5 + 103 sin 5 1 cos 5 + 109 sin 5 1 cos 5~ io3sin g (5.88)
0
= COS—COS—COSﬂ—{—SiD?COSQSiD% 1+ —cosgsingsin%—sin?singcos— 101
2 2 2 2 2 2 2 2 2 2 2 2

i inin? 4 eonain® cos Y i 1 (sin @ cos? AP
SID2SID251H2 CO&2SID2COS 9 109 51112(3082(308 9 (3082(308251112 103

003(0=%)  jgin Le—5(0+¥)
COS 5€2 181 e 2
( 2 2 > (5.89)

7 sin ge%(q”'w) cos ge_%(¢_w)
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Clearly this is an element of SU(2). You will notice that in previous notation, this is
g= ( * “f’) . (5.90)
iw U

9! :< i, _m>, (5.91)

We need to calculate g~ dg:

—w u
o, (a =i\ [ du idw\ [ udut+wdw  iudwo—iwdu
g (—z’w u > <z’dw du > B (—iwdu+iudw wdw +uda ) (5.92)

We use Tr M? = M2 + 2M12Msy + M3, to get the metric

1 1
—§T1r(g71 dggtdg) = -3 ((adu + wdw)? + (w dw + wda)? — 2(a dw — w da)(—w du + udw)) .

5.93
To get back to the correct answer, use uu + ww = 1, and ( )
dut + udu +wdw + dww = 0. (5.94)
This gives
—%Tr(g*1 dggtdg) = —(adu+ wdw)?®+ (a@dw — o da)(—w du + udw)

= (adu + wdw)(udu + w dw) + (@ dw — w du)(—w du + v dw)
= wududu + wwodw dw + ww dodu + wu dw du
—uw du dw + ww du du + vt dw dw — uw dw du

= dudu+ dwdw. (5.95)

In practice, this procedure does not work for any matrix bigger than 4 x 4.

We have a group G, and construct an element of the Lie algebra. You can think of
A=gldg (5.96)

as a Lie algebra valued connection one-form. Thus A can be regarded as a Yang-Mills field. A
obeys the Maurer-Cartan equations: The first thing to calculate would be the curvature (field
strength) of A. This is

F=dA+ANA=dg 'Ndg+ANA=—gtdgngtdg+ANA=0. (5.97)

For this reason, ¢! dg is sometimes referred to as a flat connection. Such an A is usually called a
pure gauge field, that means that it is just a gauge transformation of nothing. (You can see this
infintesimally, if g = 1 + ¢, then g~ dg = de.)

These fields represent the classical vacuum states of Yang-Mills theory.
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6 Aspects of Yang-Mills Theory

6.1 Spontaneous Symmetry Breaking

We consider Yang-Mills theory with an SU(2) gauge group. The Lagrangian is
1
L= —ZFO%FC”“’, (6.1)
where
FS = 0, Ay — 0,AY + ge®P1 AP A]. (6.2)

Here Greek indices run from one to three and £*#7 is the alternating symbol in three dimensions
which gives the structure constants for SU(2).

The idea of symmetry breaking is to break the gauge group G into a subgroup H by introducing a
triplet of scalar fields ¢ with a potential in the Lagrangian.

We need to introduce a gauge covariant derivative because the fields ¢ are charged under SU(2):

Dy¢® = 0,0° + g AP g (6.3)
Then what you do is to add this scalar field into the action,
1
Lscalar = _§Da¢aDa¢a- (64)

If that is all you have, nothing very interesting will happen; you need to add a potential. What
you add is entirely and utterly up to you. We choose this such that the theory is renormalizable,
which means one can have ¢2, ¢ and ¢* terms, and gauge invariant, so that V' must be a singlet
under SU(2). This leaves two possibilities only,

¢ and (¢%¢*)?, (6.5)

where the first is a mass term and the second a quartic coupling. For a conventional mass term,
1 2 o o A a o2
V(6) = gm0 + J(6°6"), (6.6)

where we must have A > 0 to obtain a stable theory, the only vacuum is ¢* = 0 everywhere.
In the situation we are interested here, which corresponds to the Higgs mechanism, one changes
the shape of the potential to be

V(9) = —gm?¢°0° + 2 (66", (67

We obtain the familiar picture (compare with the discussion of domain walls, where one only had
a single scalar field):
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9]

unbroken SU(2) symmetry

The phase of the theory that has unbroken SU(2) is sitting at a local maximum of V(¢). This
is unstable, excitations around this point have mass im and correspond to “tachyons”. We are
looking for vacua, these are configurations ¢ = constant satisfying the field equations

D%¢p—V'(¢) =0, (6.8)

where also A, = 0. We must have V’'(¢) = 0, hence

—m?¢% + \(¢%¢*) ¢ = 0. (6.9)
One possible solution is ¢ = 0, which is called a false vacuum. The second solution is
m2

This defines a sphere in field space, which is a symmetric space S? = SU(2)/U(1) = G/H, where
G is the original gauge group and H is the group which one has broken G into. It is called the
true vacuum. The potential in the true vacuum takes the value

1 2m2 A [ m? 2 m*
_§mT+Z<T> = <0. (6.11)

This model might have cosmological implications since in the false vacuum, one would measure a
vacuum energy corresponding to a “cosmological constant” relative to the true vacuum.

In the true vacuum, there is a massless excitation around the sphere which is called a (Goldstone
mode.

Now consider the gauge bosons. If you fix ¢! = ¢? = 0 and ¢> = mTQ (say), you will discover that
A3 remains massless, while A and A% end up with a mass term in the Lagrangian. To see the

mass term, look at
1
—5Dad" D", Dad™ = 0a0 + g A (6.12)

There is a term 1
_ 5926a57Ag¢y8a65A6a¢5 (613)

in the Lagrangian. With the given values for ¢, this is equal to

1 ,m* 1 ¢?>m*
_§g2v€aﬁ3A5’g€a53A5a — _ = "

(AJA™ + A2ZA%) (6.14)
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which indeed is a mass term for A! and A%. There is no mass term for A2, so this massless field
still has a U(1) gauge symmetry.

This is a toy model for symmetry breaking, called the Georgi-Glashow model, which is a proto-
type for unifying electromagnetic and weak interactions. The masses of A' and A? are %, these
correspond to the W7 bosons; the massless A3 corresponds to the photon.

Let us check that the number of degrees of freedom is the same in the true vaccum and in the
false vacuum: Massless gauge bosons have two degrees freedom per point in space. Here we started
with Al, A%, A3 and ¢!, ¢?, ¢3, so this gives nine degrees of freedom in the false vacuum.
In the true vacuum, A' and A? are massive, and massive fields of spin s have (2s + 1) degrees of
freedom. What you see is that A! and A? have eaten the degrees of freedom of ¢! and ¢?.
The only field left is the scalar ¢3. The mass of this field at the minimum of the potential ¢q is
given by

V(6) = Vi(do) + (6~ 60)° V" (00)’+ .. (6.15)

N——
=: m2

Here, we have

V" (¢o) = —m? + 31" " = —m? + 3m? = 2m>. (6.16)

¢a¢a:mT2
The mass of the Higgs boson is v/2m.
This is the simplest theory in which you unify electromagnetism with something else.

6.2 Magnetic Monopoles

The action of the theory is
4 1 a o ab 1 aya Lo 1 2 o« A  Lo\2

We found vacuum solutions by asking for ¢ and A not depending on space. The next step then is
to look for static, spherically symmetric solutions.

You might think that spherical symmetry tells you that AS and ¢® only depend on r. But this is
not a gauge-invariant statement. You can only say that ¢“¢“ only depends on 7, since this is a
singlet under the gauge group.

We are in flat space, where the metric in Cartesian co-ordinates is

ds* = —dt* + di - dz. (6.18)
So try
(e% xa (o317 HQ(T) (o7 0% HQ(T)

This is a reasonable guess as long as we do not mind using « as a spacetime index. Although this
was originally a gauge group index, it can be interpreted as a spatial index here. This looks special

to SU(2), but you can always apply it to any SU(2) subgroup of a given G.
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You then have to decide what to do with your gauge field:

« x a
Ap :WJ(T)’ Af =

€aij£l?j

1—K(r)). 6.20
(- KW) (6:20)
You find the equations of motion by substituting this ansatz into the Lagrangian and finding the
Euler-Lagrange equations for H, J and K. This of course is not a mathematically correct thing to
do. While it works, it is not guaranteed to work. At the end, you ought to check that H, J and K
really do satisfy the equations of motion.

The equations that you get are

V“QKH(T) = K(T)(KQ(T) -1+ K(T)(HQ(T) — JQ(T)), (6.21)

T2J"(r) = 2J(’I“)K2(’I“), (6.22)
m2a2

r?H"(r) = 2H(r)K?*(r) + g—); <H3(7°) - )\éq 7°2H(7“)> ) (6.23)

if H, J and K all go to zero as r — oo, there will be a long range classical gauge field.

You can solve these equations numerically and get a mess. What is more entertaining is that
you can solve these equations analytically in a particular limit (the Prasad-Sommerfield! limit).
From the Yang-Mills coupling g and the scalar field coupling A, we can construct a length scale

C:%% (6.24)

which controls the scale of the problem. The limit in which you can solve the equations analytically
is A\ = 0 and g — 0 at fixed C. The solutions are

Cr

IO J =0, Crcoth(Cr) — 1, (6.25)

so as r — oo, K — 0 but A does not go to zero.
If one identifies the physical electromagnetic field

Fézlectromagn.) -9, <<ZASQA?> o 81) (ngSO‘A2‘> _ éea,@“/gbaaagbﬁabqﬂ’ (6.26)

where an is a rescaled Higgs field:
¢ = "V PP (6.27)

The output of this is of course well-known to all of us. As r — oo,

1
E;=0, B;=

F(electromagn.)
07

where we define = —F; and %aiij(eleCtromagn')jk = B;. This is a magnetic monopole

of charge % .

!Sommerfield is not a famous person!
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To see this, you can define magnetic charge by the following: Take the spatial R3 and consider
a sphere S? at spatial infinity. Then perform a Gaussian integral of the magnetic flux:

1 e |
~ [ B.d§=-. (6.29)
dm Jsz. g

Or as a differential form, you can integrate

1 1 1
— F=— [sinfddNdp=—. (6.30)
4T Jsz2, 4rg g
You should feel miserable about this for the following reason: From Stokes’ theorem, you would
expect
1 1 1
— F=— dA = — A=0. (6.31)
4 J g2 AT Jgo 4T Jog2

This argument fails because A is not globally defined. Charges of this type are regarded as topo-
logical. To see that A cannot be globally defined, try

1
A= ;(1 — cos 0)do, (6.32)
where the spatial metric is
ds® = dr? + r?df? + r? sin® 0d¢?. (6.33)
The norm of A is
1 —cosf)?

1
A1 = 404° = —

6.34
g% r2sin?6 ( )

Hence the norm blows up along the south axis § = w. To remove this, you can perform a gauge
transformation which gives the same F', e.g.

A — 1(—1 —cosf)dp, A— A+dA, A= —2¢ (6.35)
g g

This then gives ||A||?> — oo along the north axis 6 = 0.

6.3 Instantons in Yang-Mills Theory

The magnetic charge in the last example is of a topological nature. There are other examples
which are of great interest. A second example of topological charges are instantons, which arise
in Yang-Mills theory and gravity.

Let us consider Yang-Mills theory in flat R* with positive signature, i.e. metric

ds? = do'’ + dz?’ + d2®® + da?t’. (6.36)

Instantons are solutions of the Yang-Mills equations with no singularities, with finite action. We
take G to be compact, then the action is

1
=1 /FO‘ A%y, (6.37)
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You can put F' into canonical form (the normal form for an antisymmetric 4 x 4 matrix) by writing
it as

1
F* = S Fgda N\ dz® = F&dzt A da?® + F§idad A da. (6.38)
Then

«F = F$ida' A da® + Fyda® A da? (6.39)

The action is then 1
I=3 / dz (FZ, + F2). (6.40)

—_——
>0

The Yang-Mills equations are
DAF = 0, DA * F=0. (6.41)

If we are interested in solutions with finite action, we must have ' — 0 at infinity, and so A = g~ 'dg
for some g at infinity.

It is fairly easy to discover that there is a topological charge for this system. Take the Chern-
Simons three-form (see first example sheet)

2
CS3=ANdA+ ZANANA (6.42)

The associated topological charge is

/ Tr(CSs) = / Tr(dCSs) = / Tr(dANdA+2dANANA) (6.43)
Sgo R4 R4
Recall the definition
F=dA+AANA (6.44)
to write this as
/ Tr(CSg):/ Tr(F/\F—ZA/\A/\A/\A):/ Tr (FAF), (6.45)
53 R4 R4

since the trace is invariant under cyclic permutations, which change the sign of AAAAAA A. Thus

1

called the instanton number, is a topological charge.

The topological charge is related in a simple way to the action: In four dimensions with Euclidean
signature, #x = 1 on two-forms. Hence * has eigenvalues +1. You can therefore decompose two-
forms into self-dual and anti-self-dual parts. The self-dual part of F is

1
Fy = 5(F ++F), (6.47)

the anti-self-dual part is
1
F_ = §(F —xF), (6.48)

Clearly «F, = F, and *F_ = —F_.
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The action can be rewritten as

1 1
f:1/(F$+FQ)A(F$—FQ):Z/(Fprf_FaAFa). (6.49)

The two remaining terms are positive definite. To see this, take F' in canonical form:
F* = Fda' Ada? + F§ida® A do* = Floda'? + Fyyda® (6.50)
in “cheating notation”. Then
1 1
F, = §(F12 + F34) (d$12 + d$34) , F_= §(F12 — F34) (d$12 — d$34) (651)
and 1 1
Fy APy = 2(Fia+ F3)?da'®, F AF_ = —5(Fi2 - Fyy)2dz?3, (6.52)

Now let us compare this to the toplogical invariant we found, the “instanton number”, which was

1 1 1
k=— | FANF=— | (F+ +F)NF+ +F_)=— FXNFY+FCN\NF® 6.53

since Ft A F_ = 0. Then there is a simple inequality:
I >27° k|, (6.54)

with equality if and only if
I =0, hence F =0 for k=0,
F_. =0 for k >0, . (6.55)
Fr=0 for k <0

The solutions where equality holds are self-dual, anti-self-dual, or both.
These bounds are absolutely universal in these kinds of situations in physics. The simplest instanton
ought then to be self-dual. For G = SU(2), this is

Ay(x) (aszb)JrTa, (6.56)

1
x? 4+ A2
where 71,75 and 73 are Pauli matrices and 7% = 1.

This self-dual solution has instanton number k = 1, and A defines an arbitrary scale.

Physically instantons can be interpreted as how tunnelling proceeds in the context of quantum
field theory. The mathematics of instantons are a fascinating topic in their own right.

7 Gravitational Instantons

7.1 Topological Quantum Numbers for Gravity

Gravitational instantons have a number of similarities and a number of differences. We consider
non-singular solutions of the Einstein equations Ry, = Ag,, which have positive signature (++-++).
The action for gravity is a bit of an embarrassment:

1
I= ~Tom d*z /g (R —2A) + possible boundary terms (neglected here). (7.1)
™
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The big problem here is that, unlike in Yang-Mills theory, this has no nice boundedness properties.
This usually suggests an instability in the theory.

The simplest way to see the unboundedness is to do a conformal transformation

Gab — gab = Q2(x)gab- (72)
You can do a calculation and see that

5] = _% d'z /g (Q2(x)R + 6(VAz)) — 24 Q%) (7.3)
up to integration by parts. To get this you need to find the conformally rescaled R (see example
sheet).

We are not asking for solutions to the equations of motion, but think about a general variation of
the action. As long as A > 0, the AQ? term corresponds to a positive potential, so that is fine.
But the term involving (V)2 has the wrong sign. The action can be made arbitrarily negative by
picking a rapidly oscillating €.

In gravity, there are two topological quantum numbers:

1. The Euler character. In two dimensions, this is

1
= — 7.4

=1 ) (7.4)
If ¥ is compact and orientable, y classifies these surfaces. You can write it as

X =2-2g, (7.5)
where g is the genus of 3. Examples are

9=0 g=1 g=2

Alternatively,

X =2-by, (7.6)

where b; is the first Betti number. b, is the number of S? that cannot be contracted to a
point or deformed into each other.

On S?, you can always contract a circle to a point, so by = 0. If you can catch the manifold
with a piece of string, it has by > 0.
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There is a theorem by Hodge which states that for compact manifolds, b, is equal to the

number of square integrable harmonic p-forms, these are p-forms satisfying

dp=0, d*p=0, /pap“ < 00. (7.7)

It immediately follows that for these manifolds, b, = b4—,, which is known as Poincaré du-
ality.

For d = 4, the Euler character can be written as

1 1
X = 3272 /Rab N *Rgp = —12871'2 /d4.%' \/§€abcd€abefRCdghRghef, (7.8)

where you can have extra boundary terms if there is a boundary. In terms of Betti numbers,

X =2 — 2by + bo. (79)
2. The Hirzebruch signature
1 ab _ L 4 abcd ef
T= 152 | BUANRa =g [ de/g BT Ravereed™ - (7.10)

It, too, has a topological interpretation in terms of Betti numbers:
T="bf — by, (7.11)

where by = b;r + b5 and b;r is the number of self-dual harmonic square integrable 2-forms and

b, is the number of anti-self-dual such forms.

There are generalizations of the Euler character for all even dimensions, and of the Hirzebruch
signature for all d which are multiples of four.

These look a bit like action and instanton number for Yang-Mills theory, respectively.

The intellectual history of general relativity is littered with the corpses of people who tried to
manipulate the Euler character into the action for general relativity. But general relativity just is
not like Yang-Mills theory.

The inequality analogous to I > 272|k| for Yang-Mills theory is
2x > 3|7, (7.12)

with equality if and only if the Riemann tensor is self-dual or anti-self-dual (see example sheet).

Self-duality here means
1
Rabcd = §5abefRefcd- (713)
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7.2 De Sitter Space

As an example of a gravitational instanton, we want to consider de Sitter spacetime, written in

static co-ordinates

dr?

A
2 2 2
ds ——<]——T>dt S —

2 + r2(dh? + sin® 0 d¢?), (7.14)
3

where A > 0. This satisfies Ryp = Agap-
The instanton associated with de Sitter spacetime is found by sending t to 7. This preserves the
field equations. The metric of the instanton is

2 A, 2 dr? 20302 | a2 2
ds® = |1— 7" | dr* + ——F— +r°(df" + sin” 0 dp”). (7.15)
3 1-— §T2

De Sitter space can be easily viewed as an hyperboloid embedded in R*! with metric

ds* = —dv® + dw® + dz® + dy* + dz*. (7.16)
The hyperboloid is
3

—v2+w2—i—x2+y2—|—22:K::a2>0. (7.17)

In FRW co-ordinates, you can view de Sitter space as a space of constant spatial curvature k = 1
(you could also view it as k = 0 or k = —1). Here the co-ordinates cover the entirety of de Sitter

space. They are
) t t T .
v=asinh| —], w=acosh|— |cosy, x=acosh| — ]sinycos#,
e e o
t\ . . t\ . . .
Yy = « cosh <—> sin y sin# cos ¢, z = a.cosh <—> sin y sin 6 sin ¢. (7.18)
o o
If you are interested in the line element in the (¢, x, 6, ¢) co-ordinates, you will discover it is

t
ds®> = —dt? + o cosh? <—> (dx2 + sin? x df? + sin? 6 d¢2) . (7.19)
a

Metric on S?3 in hyperspherical co—ordinates

The scale factor for this universe is
t
a(t) = acosh <—> , (7.20)
«

the Hubble parameter is

¢ _ L <3> , (7.21)
a

« o

the acceleration is

. 1
g — = constant > 0. (7.22)
a «

We can picture de Sitter space as the hyperboloid
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Tt

~— 53 at fixed t

What makes the spacetime interesting is the presence of cosmological horizons.

To the future of the light-cone of an observer moving on a timelike geodesic is a region of spacetime
the observer cannot see. This is not an event horizon. These regions are different for different
observers, the horizon is called a cosmological horizon. This leads to all kinds of interesting
paradoxes.

The Penrose diagram is
t =400

t=—00
where we have drawn cosmological horizons for particular observers.
That looks a bit like the Penrose diagram for a black hole, but horizons depend on the observer.

Now we want to construct Schwarzschildesque co-ordinates for this spacetime:

2 # 2 #
v:ayll—r—Qsinh<—>, w:ayll—T—Zcosh<—>,
@ @ @ @

x=rcos, y=rsinfcosp, z=rsinfsindep. (7.23)

Then the line element is, as claimed above,

2
2

g = — (1= g2 2(d6? + sin? 0 d? 7.24
2= (1= 5 )@t + o 42 +sin 0 do?), (7.24

«

which only makes sense for 0 < r < «. This only covers the following region of de Sitter space:

r=a,t' /% oq

r=a,t > —po
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In cosmology, calculations are normally done in k& = 0 co-ordinates, but these do not cover the
entire spacetime. You should better use £k = 1 co-ordinates.

Now look at the de Sitter instanton: Find a “Euclidean” solution to R, = Agqp by a co-ordinate
transformation ¢’ — 7

2 r? 2 dr? 20702 | o2 2

ds*=(1—— )dr" + > + 7r%(df” + sin” 0 do?). (7.25)

o 112
o?

This is a perfect local solution, but has a singularity at r = a = \/% . This is actually a co-ordinate

singularity. To see this, define new co-ordinates. Since we want to analyse what happens near

r:\/%, set

3 A
= /= (1=-=6 2
r A < 5 ) , (7.26)
then
A

dr = — gédé, r? ~ % -6 (7.27)

and the line element becomes

A 3

ds® = §52 dr? + do? + K(dHZ +sin? 0 d¢?) + terms higher order in 4. (7.28)

The singularity is now at 6 = 0. This metric now consists of a metric on S? and a part which is
the metric on a plane (almost).
The metric on a plane with co-ordinates (p, ) is

ds® = dp* + p? dip?. (7.29)

At p =0, you need to identify ¢ with ¢ + 2. If not, you get a conical singularity; then there is a
defect angle A and p = 0 has a d-function in curvature. In the present case, § = 0 is a co-ordinate

singularity as long as 7 is identified with period \/%271.
This has some interesting physical consequences (see Black Holes course).

We already know that the solution is four-dimensional and has constant curvature

Rabed X (9acGbd — Yadbe)- (7.30)

It has ten Killing vectors, and so must be the metric on S*. You can embed it into R?. We want
to evaluate the topological quantum numbers.
First try to get the proportionality constant. Contract Rupeq to get

A
Ry = 3(constant)gge = Agae, constant = 3 (7.31)

The Hirzebruch signature of this space is

T

= 967‘(2 /d41' gEabefRabcdRCdef =0. (7.32)
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All even-dimensional spheres have Euler character two, all odd-dimensional spheres have xy = 0.

We can compute it explicitly using

X / d4.%' @EabcdaefghRabefRCdgh. (7.33)

= 12872

Whilst this is a true formula, it is inconvenient for this calculation. You can show (on the example
sheet) that an equivalent formula gives

1
T 12872

X / d*z /g <R“deRabcd —4R™R,y, + R2> =2. (7.34)

The action for the de Sitter instanton is

1 A
I=——1r|[d* —2A)=——-Vol .
16 z/g (R ) 3 ol, (7.35)

which is negative!

From Schwarzschildesque co-ordinates, you get /g = r2sin @. Then the volume of S4 is

3 27,/ 3
: ’ 2 /3 /3\* 24r°
8
Vol = /derdeqf)rQ sinf = 4 / r2dr / dr = % X (K) = A72T ) (7.36)
0 0
and the action is 3
T
I= X (7.37)
The partition function in statistical mechanics would be
Z = /D¢ e~ 1ol (7.38)

where one integrates over all metrics that are periodic in complex time, with period % It follows
that the temperature of de Sitter space is

1 /A
= /3 (7.39)

It is believed, but nobody has proved, that for fixed A this is a lower bound of the action, so that
always
1 > IdeSittera (740)

with equality only for de Sitter.

7.3 Other Examples
Now we can find other instantons, some of which are interesting, all of which are fun:

1. S% x §2, a direct product of two two-spheres (of radius a).
The metric is a direct product

Metric on S? 0
2
= . 41
ds < 0 Metric on S? ) (7.41)
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These are two Einstein manifolds, satisfying R, = Agap-

The Ricci tensor also factorises:

1 . 2
= - Metric on S 0
Ry = ¢ . 7.42

ab < 0 a% - Metric on SQ> (7.42)

Then the Ricci scalar is ;—2, and the metric solves Einstein’s equations with A = a%

The topological quantum numbers are (Exercise)

x=4, 7=0. (7.43)
The action is negative:
1 A A 2
I=—— [ d&* N =—— [ &* = ——(4ra®)? = —2rAa* = —==. (7.44
e [ devaR—2m =~ [dte 5= - 2 (ra®)? = ~2mhat = T (1)

. Fubini-Study Metric on CP? (a compact manifold)

This is
dr? 1 1 1
ds® = — 2 + =2 o (dip £ cos 0d)* + db? + sin® 0 de” oz (7.45)
<1 4 Ar2 ) 4 \1+ 8- 1+ 5
6
If A =0, then this is just flat space.
For A > 0, it has finite volume and is non-singular.
The topological quantum numbers are
x=3, 7t=1 (7.46)
The action is again negative,
97
I=——. 7.47
A (7.47)

It has interesting property of its curvature, regarding the Weyl tensor C%,.4. Consider the
Weyl two-form

1
C% = 5C pcada® A dax?. (7.48)
Then for CP?, the Weyl two-form is (anti-)self-dual,
*Cab = iC“b, (7.49)

depending on the choice of sign in the metric.
All of the examples presented here are of great interest in string theory.

. K3 is the unique simply connected compact four-manifold that satisifies Ry, = 0.
The proof of this does not rely on the construction of a metric; the metric is not known. We

know that the topological quantum numbers are

X =24, 7==16. (7.50)
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The curvature form must be either self-dual or anti-self-dual.
There is a b8-parameter family of solutions of R, = 0.
To see this, consider the Betti numbers: Since K3 is simply connected, b; = 0, so

X=2-2b +bf +b; =2+b] +by, T=0b by, (7.51)

which tells you that
by =19, b, =3. (7.52)
There are 19 self-dual harmonic two-forms with components Fcfb (I =1,...,19) and three

anti-self-dual harmonic two-forms with components ng (J =1,2,3).
Assume that we have a metric g which solves

Raslg] = 0. (7.53)
Under a slight deformation of g, if
Rupplg+€eh] =0, e< 1, (7.54)

then g + €h is a new solution of the Einstein equations.
The condition for this (cf. gravitational waves, GR course) is the following differential equa-
tion

—Ohgp — 2Raepah = 0, (7.55)

where h is not of the form V,&), which would just be a co-ordinate transformation. These
two conditions can be summarised as

Vg, = 0. (7.56)
We know that FaIb and ng obey
1 1
VaFIab — 07 Flab — 52,_:aLbcalecId; VaGJab — O, GJab — _§€abch;]d. (757)
You can construct
hay = G F1%, + Gl F',, (7.58)

which generically will give 57 independent perturbations, one for each combination of I and
J.
This is transverse, V®h,, = 0, so not a co-ordinate transformation, and satisfies

—Ohap — 2Raepah = 0. (7.59)

There must be one more such deformation. Since no scale is associated with this metric, it
can be multiplied by a constant. If g, obeys Ry, = 0, then so does Agq, for any constant A.
The interesting thing to show is that this k. actually satisfies the wave equation (see example
sheet).

If the curvature is self-dual, this tells you something about holonomy.
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A vector at any given point p can be parallelly transported around a closed loop C'. Then the
components of the vector after and before parallel transport, written in some orthonormal
basis, satisfy a relation

VeC,p) = M%(C)V(p). (7.60)

What are the properties of the matrix M? Parallel transport does not change the norm, so
M(C) is a Lorentz transformation. This is because one uses a metric-preserving connection.
Therefore in the Euclidean case,

M € SO(4). (7.61)

What is remarkably true for any metric with self-dual (or anti-self-dual) curvature is that
M € SU(2). (This is a consequence of supersymmetry.)

. Another example of huge importance in string theory is the Eguchi-Hanson metric on
a non-compact manifold. This is an attempt to construct the analogue of the Yang-Mills
intanton.

You start from the assumption that curvature should go to zero on an enormous S near
infinity. You start with a metric on R%:

1
f(r)

where 6, ¢, 1) are Euler angles on S3 with ranges

1
ds® = dr® + ZTQ (d6? + sin® 0 do* + f(r)(dip =+ cos 0 dp)?) (7.62)

0<O0<m, 0<o¢<2m, 0<v<drm (7.63)

which cover all of S3, and 0 < r < 0.
This looks very reasonable. The function f can be determined to be

fr)=1- (9)4, (7.64)

r

where a is an arbitrary scale. This falls off very fast as r — 00, so the metric is asymptotically
flat. There is a problem at r = a, which is identified as a co-ordinate singularity.

You can look at the (r,) plane to discover this is a conical singularity. What is the condition
that the singularity at r = a is removed? We have done this many times, it tells you that the
period of v is 2.

But we set the period of ¥ to be 47 before. You can take the solution to be asymptotically
locally Euclidean, such that the boundary at infinity is not S% but S®/Zs, a three-sphere
with antipodal points identified. (This is useful in string theory.)

The topological quantum numbers of this metric are

X=0, 7=x=1, (7.65)

where the given formulae need boundary corrections.
The curvature is again self-dual (or anti-self-dual). The action (which also requires boundary
corrections) is zero.
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It can be generalised to the Multi-Eguchi-Hanson metric, which is of the form

ds® = V(%) (A + wida")? + V (Z)8;dx’ da’. (7.66)

This metric looks like the multi-monopole metric in Kaluza-Klein theory, but with ¢ =
constant. Whereas in Kaluza-Klein theory we had

k
1

for the Multi-Eguchi-Hanson metric, we delete the one:

1
V=2 7.68
; A (7.68)
where as usual,
VV =V x &. (7.69)

k = 1 is flat space, k = 2 is the Eguchi-Hanson metric; & > 2 is a Multi-Eguchi-Hanson
metric. These have self-dual curvature, boundary S2/Z;_,, and zero action.

8 Positive Energy

8.1 Geometry of Surfaces

Consider a (d — 1)-dimensional surface ¥, embedded in a d-dimensional manifold (possibly space-
time). If the surface is characterised by an equation f(x) = 0, the unit normal to the surface
is

ng = N O, f, (8.1)
where N is a normalisation factor. In a Riemannian manifold, one can always normalise n, such
that non® = 1.
In Lorentzian signature, you can have a timelike n, (then X is called spacelike), a spacelike n, (then
¥ is called timelike), or a null n, (then ¥ is called null). We will ignore the case where nyn® =0
since it is more difficult.
We can assume in the following that

nng = +1. (8.2)

We need other quantities to characterise the geometry of 3: We can define a symmetric rank two
tensor h, called the first fundamental form for historical reasons, by

hab = 5ab + ’I’La’l’Lb. (8.3)

It has the following properties.
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1. h is a projection.

habhbc = (5ab + nanb)(ébc + nbnc)
= 6% F nn. F nne + n® nyn® n,.
+1
= 00 Fnne=h%. (8.4)

2. In d dimensions, the trace of h is

ht, =0% Fn'ng=d— 1. (8.5)

3. h is orthogonal to n in the following sense:

h%ng = (0% F nnp)ng = np F ngn®ny, = 0. (8.6)
+1

You can deduce that any vector Y defined on ¥ can be decomposed into two parts:
Y =6%Y? = h%Y? £+ nn,Y?, (8.7)

which is a part tangential to 3 and a part perpendicular to X. Indeed, the first part is orthogonal
to n®, while the second is annihilated by h.

Absolutely any vector or tensor can be decomposed in this way. In particular, you can project the
metric tensor into the surface 3. You get

hachbdgab = hachad = hcd- (88)

You can consider h as the induced metric on X..
There is also a second fundamental form, which describes how n changes as one moves around

>

Keq = hh° 4V amy,. (8.9)
This is symmetric too: Since n, = NV, f, we have
VN
Vany = NV Vi f + VoNVf = NV .V f + N (8.10)
Then
a 1b VGN a 1b
Keg=h"hg| NV Vyf + N ny | = h*h’gNV,Vyf, (8.11)

since h annihilates n. This is symmetric for a torsion-free connection.
The covariant derivative of n will have components tangential to 3 and perpendicular to >:

Vaonpg = (h% £ ncna)(hdb + ndnb)vcvd
K + (incnahdb + hcandnb)vcnd + nngnngVeng
Ka £ n°ngh®Veng
= K, =+ ncna(édb + nbnd)VCnd
= Ku F newy, (8.12)
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where we have used 1
niV.ng = 5vc(ndnd) =0 (8.13)
and
wp = —nVeny (8.14)

is sometimes called the acceleration vector.
There is a notion of covariant derivative in ¥, which is defined by projecting the covariant derivative
of the d-dimensional manifold into X:

(=07 70 = he KOy By VT (8.15)

That may seem a bit perverse, but it is actually quite useful.
If you take V to be the symmetric metric connection,

WOV = b Ve (W Vaf)
B b5V Vof + 5 b (Vo hy ) (Ve f)
= h" Vo Vaf +h”oh” (Vo (6% F 0my)) (Vaf)
= W Vi Vo F h b s (Vany)(Vaf), (8.16)
where we used hYyny = 0. The first term is symmetric, the second term is proportional to Kgp,
which we know is symmetric.

So (@=)V, is a symmetric connection and its torsion vanishes. It also turns out to be a metric
connection:

@Y hey = h9:hhT\V ghes
= hIhh! 4V g(ges F neny)

Fh9 hohf yn YV gne F b9 hEohd ynVgng = 0. (8.17)
Thus =DV is the unique symmetric metric connection of h. One can find the curvature of it by
calculating
_ (d—1)
(Vv D VYY) V2 RV (8.18)

for a vector V. lying in %, i.e. satisfying nV, = 0. Doing this calculation requires a certain amount
of concentration:

@=Dp 2V, = R h9h" NV, (h" hY, NV V,) — (a < b 8.19
p q Y
= hWPohYh" Vp((67¢0Yr F n'ngd?, F 6" nYn, + n"ngn?n,) V. V) — (a < b).

Since h annihilates n, the only contributions can come from

DRIV = RPohIh ¢ (67409, Y, VoV, F n®(Vpng )oY, ViV, F 6% gn?(V,yn, )V V,) — (a < b)
q p Yy pr'hq Yy q p Yy
= WP hThY NV Vy T P ohdy(Vpng)hY en®V .V, T WP oh™h o(Vpn, )n¥ V..V, — (a < b)
= hpahgﬁbhchpxszz F 2K[ab] hycngﬁvmvy F 2hp[ah$b] h”c(Vpnr)nnyVy. (8.20)

The second term is zero, for the third term use

nYV,V, = Va(n¥V,) — V,Van? = —V,Vn?, (8.21)
Yy Yy Yy Yy
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so that

@ DRwMVy = hPoh®yhY Rpay.V* £ 202 [ By B o(V 1, )V, Vo
= WPoh"phY  Rppy. V> £ 2K [oh" Vi Van?
= hWPoh"phY e Rpyy. V> £ 2K [oh" 67 .V V ny
= WPoh"phY cRppy. V> £ 2K (oh"y (WY, £ nYn, )VEVn,
= W™ WY RppyV* £ 2K o Ky, V*
= (WPah"phY cRpay> £ KoKy, F Koy Koz) VE. (8.22)
We have obtained Gauss’ equation
(dil)Rabcd - hpahthrchstpqrs + Kachd + Kchad- (823)
For the Ricci tensor, we obtain
@D Ry = h9 @D R yeq = h9h° ghP" Rpgrs T K Kpg + Kpe Ky (8.24)
You can also find a formula for the Ricci scalar:
(d—l)R hbd (d—l)Rbd
= WP"h%Rpys + K2 + Ky K"
= (¢" Fnn") (9 FnIn®)Rpgrs F K? + K, K"
= RF20Pn" R, ¥ K%+ Kp K. (8.25)
This is very useful if you want to divide up spacetime into space and time. There is another useful
equation, the Codazzi equation. This comes from taking the divergence of K:
@Dy, K-V K = bl heh VK9 — hP.Vy(h%Vng)
= I he V(W9 hY NV yn®) — hP. Vi (h*V 4ng)
b hY .V iV yn® — RPh VY ang
= Wl BV (VVyn® — V,Vn®)
= hihYRyp," n* = WY Ry.n”. (8.26)

(d-1)

We have used the fact that the connection V preserves h.

Two obvious uses for this formalism are the canonical formulation of general relativity (ADM

formalism), and the positive energy theorem, which we will do next.

8.2 Spinors in Curved Spacetime

In Minkowski space, a spinor v is a four-component object which transforms in the following way:
Under a Lorentz transformation
r— 1 = Lz, (8.27)

it transforms as

P — <1 + %nyA‘“’ + .. ) Y, (8.28)
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where
1 1

v = 5(7#71/ - 'YI/Y;L) = 5[7}u7y] (8.29)

and A" are the parameters of an infinitesimal Lorentz transformation. The matrices .J,,, = %fy,w

T

are the generators of the Lorentz group in the spinor representation, the satisfy

[Juvs Jpo) = —Nupdve + Mpdue + MuoJvp = Mve Jup- (8.30)

What happens in an arbitrary spacetime? At each point, you can always construct the tangent space
by finding the vierbeins satisfying g,;, = e,"€p”1n,,. Then under a local Lorentz transformation of
the vierbeins, a spinor field transforms like a Minkowski space spinor:

1
P — (1 + 57#,,1&“”(:6) +.. > . (8.31)
Since you have a flat metric at each point, you define as before

{47} =29 - 1, (8.32)

such that +° is anti-Hermitian and +* are Hermitian.
In practice, a useful representation of the y-matrices is

0o -1 : 0 ot

0 7

- = ) 8.33
v (1 0 > > <O’Z 0 ) ’ ( )

where ¢ are the Pauli matrices. These matrices do not depend on the co-ordinates.
You can as always turn the Lorentz index into a spacetime index by contracting with e:

v =e?uyH. (8.34)

Then the matrices v* generally depend on co-ordinates.
You cannot accommodate spinors withour using either vielbeins or a basis of one-forms.

You want some notion of a covariant derivative of a spinor. This should be a quantity Dy
which transforms as a spinor under local Lorentz transformations, and a covector under co-ordinate
transformations.

It is easier to invent D), a spinor-valued one-form, and treat ¢ as a spinor-valued O-form. This is
1
D = 09 dx® + Z%“,w“’%b. (8.35)

As usual, under a Lorentz transformation of v, generated by A, the first term gives JA terms,
which are compensated by the connection. If w is torsion-free, we have

dEF = —wh, N EY, (8.36)
and under a Lorentz transformation £ — LFE you get (schematically)

LdE+dLE = —wA LE. (8.37)
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Adding a connection term cancels the JA terms you get under a Lorentz transformation.

There is a Ricci identity for spinors:

1 1
DD’[/} <d + Z’ypngO/\> <dw + ZVMVWMVib)

1 1 1 1
= awdw™ ) = 2yt Y+ 2 pew dY + Yo Y AW

1 1
= <Z’7,uzxdwwj + ﬁhpm 'Y;w]wpa A WW}) P

1 1 .
N (Z’Y"”dwﬂy * 16 (Mup Yoo = MpVuo = NuoYvp + MvoVup) W7 A ww) v

1 v 1 v
= <Z’Y;u/dwu + Z’YVO’MMU A wh ) (0

1 1 1
= _r)/,ul/dwuy + _r)/,ulxwl” ANw:” | = _'Y;LVRMV¢’
4 4 4
where RM is just the curvature 2-form. You could turn this into components:

1 1
(DaDy — DyDg)tp = ZRabuV7uyw = ZRabcd76d¢-

The Dirac equation is

(rVaDa + m)¢ = 0.

An idea of great technological importance is that of a constant spinor:
Dqp =0,
these are 16 equations. If a constant spinor exists, one must have D, Dy = 0 and hence
Rapea ) = 0.

Thus curvature is an obstruction to having a constant spinor.
We are trying to find constant spinors in Minkowski spacetime, i.e. solutions of

Ve = 0.

(8.38)

(8.39)

(8.40)

(8.41)

(8.42)

(8.43)

We use the v matrices that we defined before. This is best done in spherical co-ordinates, where

the metric is

ds? = —dt® + dr? + r2d#? + r? sin® 0d¢>
We pick a basis of one-forms:
E°=dt, E'=dr, E*=rdf, E3=rsinfds
As usual we calculate the components of the connection one-form using

dE* = —w®3 N EP,
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The nonvanishing connection components are
2 1 2 3 1 3 3 3
w1 =-FE° w’y=-cotfE’, w’y=-FE". (8.47)
T T T

You find that the possible spinors are the following
ei9/2(Aei¢>/2 —i—Be’w/Q)
efiG/Q(Aeiq&/Q _ Be’w/Q)
ei9/2(cei¢>/2 +Defi¢/2) )
efi9/2(cei¢/2 _ D67i¢>/2)

(8.48)

where A, B,C and D are complex constants.

There is something inherently spinorial about this. If you rotate ¢ — ¢ + 27 around the z-axis, €
will go to —e. That is characteristic of a spinor which is not single-valued in spacetime.

Under a rotation ¢ +— ¢ + 4w, the spinor transforms into itself. This reflects the fact that spinors
are not representations of SO(3,1), but rather its universal cover.

8.3 Definition of Mass

In general relativity, conserved quantities are only associated with Killing vectors. It is difficult to
give a definition of energy.

We consider asymptotically flat spacetimes, which have Penrose diagram

Here ¥ is some spacelike surface.

You would like to invent a Gaussian integral; we need to find a two-form to integrate over the S?
at infinity.

For stationary spacetimes there is a notion of energy, since we have a Killing vector ka% = %.
k then defines a one-form and you can integrate

1
— xdk = M for Schwarzschild. (8.49)
8w S2,

All that is required for this definition is a metric asymptotic to the Schwarzschild metric,
2M 2M -
ds* = — (1 -4+ ) dt* + (1 -— +> dr? 4+ r* (d6? + sin” 0 d¢?) (8.50)
r r
The one-form k associated with the Killing vector is

2M
k= (—1+—+...> dt, (8.51)
T
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then

oM oM
dk = <——+...>dr/\dt:—th/\dr+...,
T

2
oM ., | , 1
*dk = —-rsin@df Ndp + ... =2Msin0dd Ndp+O | - |. (8.52)
r T
Hence
/ wdk = / IM sin 6 df A dp = 87M, (8.53)
52 52

which works for any stationary metric.
We need to apply the divergence theorem to this:

1 1
M=-— dS®V Ky = —— / dxb VOV .k, (8.54)
4 47T b

7 Sgo
where ¥ is any surface asymptotic to a two-sphere. Since

Ok, = —V*Vik, = -V, V%, — R%ack® = — Ry kS, (8.55)

where we have used Killing’s equation V ,ky) = 0, this becomes

1
M=— / A’ Rycke. (8.56)
Am Js

7

You can pick the surface such that k is everywhere normal to . Then

1 1
M=— / dY Ry kke = 2 / dy (Tab - —Tgab> kKb (8.57)
47T b b 2

by the Einstein equations. This is the closest you can get to something like a Gaussian integral in
general relativity. For a perfect fluid,

Tab = (p + p)uaub + PGab, (858)

where p is the energy density of the fluid, p its pressure and u its velocity. If you pick an orthonormal
frame, where u* = (1,0,0,0),

p 0 0 0

0 p 0 0
Tw= T =3p— 8.59
w=10 0 p» ol p—p (8.59)

000 p

For k* = (1,0,0,0), the mass is
1
M:2/d2 <p+ 5(31)—,0)) :/dE(p+3p). (8.60)
b b

Why should M be positive? If not, perpetual motion machines using gravity seem possible. This
would be a sign of instability in the theory.
In Newtonian theory (+ special relativity), the total energy would be

rest mass energy + kinetic energy + potential energy. (8.61)
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Since potential energy is negative and scales with M?, there is no guarantee that this is bounded
by the positive contributions.
In general relativity, an example of a spacetime with negative energy is given by the Schwarzschild

metric )
2M 2M N\
ds? = - (1 - 7) at? + (1 - 7) dr? 417 df? +1* sin 0 dg” (8.62)

M is just a constant of integration, and the spacetime with negative M is still a solution of R, =0

locally. It contains a naked singularity at » = 0.

8.4 Energy Conditions

We must require the energy-momentum tensor to satisfy certain conditions. Possible conditions

are

e Weak Energy Condition
T4ty >0 (8.63)

for any timelike vector ¢. This means the energy density must be positive in any frame. In

an orthonormal frame in which the matter is at rest,

p 0 0 O
0 00
T = p (8.64)
00 p O
00 0 p
is isotropic in space. We can therefore take ¢ to be
ty = (cosh@,sinh6,0,0). (8.65)
Then we have
pcosh? 6 4 psinh? § > 0. (8.66)

Setting # = 0, we see we must have p > 0; in the limit § — oo we get p > —p. Almost all
known forms of matter obey this condition. It is not very useful for proving theorems.

e Dominant Energy Condition
This states that 7% > |T%| in any orthonormal frame, or

p = |p| = 0. (8.67)
Another way of expressing this is to say that

w* = T, (8.68)
is not spacelike for arbitrary timelike or null vectors t;. Examples of use are

(i) If the dominant energy condition holds, the event horizon of a black hole is spherical in

d=4.
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(ii) If the dominant energy condition holds, energy in general relativity is positive (see
below.)

Examples:

1. The condition holds for all plausible classical matter including a cosmological constant.

2. The condition is not true in QFT. Consider the Casimir effect which has negative energy
density.

e Strong Energy Condition
This is useful for singularity theorems. The condition is

Rapt®t® > 0, (8.69)

where t? is an arbitrary timelike or null vector, and is a geometrical condition rather than a
physical one. You can translate this into a condition on Ty, via the Einstein equations:

1
(Tab — 5Tga,,> 2 > 0. (8.70)

If you pick ¢ to be a unit vector as before, then you can turn this into conditions on the
pressure and energy density:
p+p>0, 3p+p>0. (8.71)

This proves positivity of mass for static spacetimes, where k% is everywhere timelike, and

M = /dZ (p+ 3p). (8.72)
The strong energy condition does not hold for a positive cosmological constant, which has
p>0, p=—p. (8.73)
This messes up some singularity theorems.

8.5 Proof of Positive Energy

We want to prove that energy is positive in general. We suppose our spacetime is asymptotically
flat, and contains a spacelike surface ¥ that does not contain singularities. This will have an
induced metric hy and an outward normal ¢¢, which we assume is normalised. We assume the
surface is asymptotic to a two-surface with volume element

1
dS™ = (1" — 'r*)dS. (8.74)
Asymptotically, we have t* ~ (1,0,0,0) and r® ~ (1,0,0,0) (in spherical polar co-ordinates). Then

1 1
ds% ~ §r2 sin@dfdp, dS™® ~ —§r2 sinfdfde, all others vanish. (8.75)
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All that is needed is to find a vector field X¢ such that X ~ % in the r-direction. Then

1
I=—— dS®t, X .
el S b (8.76)

will correspond to mass. The idea is to turn this into an integral over 3 and find something that
is positive, applying the divergence theorem:

1

I = —— b (1, Xy — t X
6 dS (taXp — tpXa)
_ 3 avyy _
= —1 67T d 2 Vht V0 (t, Xy, — t,X,)
_ 16 d% VI ((tavbta)Xb 1,V X, — (19VP) X, — t“thbXa)
0
- = d% VI ( VOX, — (19VPt) X, — t“thbXa> : (8.77)
T
where we write dX% = d3z VA t* and we have used t%t, = —1. Since h® = ¢g® + %%, we can write
this as 1
= d%f (habv Xy + 19X, Vbtb> (8.78)

If we choose a vector field X that hes in ¥ everywhere, the second term vanishes:

1 3 ab
= d:c\/_ (h vxb> (8.79)

To show that this is positive, you have to invent something that turns this into an integral over a
square of soemthing. The only possibility is to use a spinor to do this:

X, =€ Vge (8.80)

Then
hPV o Xy = hV €' Ve + hPeTV Ve (8.81)

To get an X which actually lies in X, we project it:

X = h®eVye. (8.82)
The motivation to do things this way came from supergravity.
We must invent an equation for € to satisfy. Remember we need X" ~ 73 near infinity. A first

guess would be € ~ r1/2

, but does not quite work. We rather assume boundary conditions
€ — constant as r — 00. (8.83)

It is possible to find such an € near infinity.
We only need a spinor in the surface . Consider the Dirac equation v*V,e = 0 which does not
only describe things in X, so take its projection into . This is the Witten equation

h®~, Ve = 0. (8.84)
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The rest of this is an awful calculation. We write
€1
e=|?]. (8.85)
€3
€4

You can pick one of the spinors that are covariantly constant in flat space:
€1 = ei(9+¢)/2, €9 = ei(¢—0)/27 €3 — €4 — 0. (8.86)
The metric on 3, near infinity, must look like the Schwarzschild metric,

2M
ds3, = (1 +—+.. ) dr? 4 1°(d6” + sin” 0 d¢”). (8.87)
T

If you solve the Witten equation in powers of %, you find

A IM 1 A IM 1
¢ = i(0+0)/2 (1 Ao (ﬁ)) ey = 002 (1 _M (ﬁ)) om0

r
(8.88)
Then near infinity, X" is
X = 1yt e = emi0+0)/22M iorgyz  2M 0 AM (8.89)
2 ot =gt .
Then indeed 1
M=-— [ dSpt"X" 8.90
167 2. ab ) ( )
so we can take the integral I as a defintion of mass.
How do you know that such a solution to the Witten equation exists? Let us write
W = h%~, Vs, (8.91)

so that we try to find a solution of We = 0. You can write € = ¢y + €1, where V,eg = 0 in flat
space. Then we want

W61 = —WE(), (8.92)

where the right-hand side is fixed. You can find the Green’s function of W, call it G. Then
er(z) = — / P Vi G, 2! ) (Weo(')). (8.93)

Since this method seems to be able to prove existence of any kind of solution you can think of, it
is not a rigorous proof, which however apparently exists. Now let us go back to

1
M=— / BrVhh®V, Xy, Xp = h%e Vye. (8.94)
by

167
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Square the Witten equation to get
0 = h%Vy (hab%vbe>
= th%h“byanVbe + th%va(Vbe)(th“b)
= DD (gea + Vea) VaVie + he7a(Vie) (Vah™)
= h®VaVie + hh 70V g Ve + hea(Vie) (Vah®)
1
= PV, Ve + gthh“b%aRdbe Y e+ Ry, (Vie) (Vah™), (8.95)

where we have used the Ricci identity. The first term is a sort of Laplacian projected into . We
will use this to show that the mass integral is positive:

M = % NG (noe Ve
- % . B vVh (h“b(vaeT VhepVee + hPhCye Vo Ve + hb (Vohy) €f Vce) (8.96)
Since the Dirac conjugate in a curved spacetime must be taken to be
€= €y, (8.97)
we have
ety = Ty ptaty = €19, = —€. (8.98)
Hence
(Vae) = =Vaer 'ty = —Vaer'ty = =V (€M7t 'ty = Vael — €/ 75(Vate ) ts, (8.99)
and

1
M=— / Bxvh <h“c(Vae)T Vee + bty (Vata) 1ty Vee + h%e'V, Ve + B (Voh) € vce> .
b

167
(8.100)
The first term is positive, and only zero if V,e = 0 everywhere. For the remaining terms, use the
squared Witten equation to get

1
M = Tor dzVh (h“c(vae)fvce + h“cewd(vatd)wl’tbvce + hob (Vah) 'V e
T J5
1
—geTthhab%aRdbefvefe - theT%va(Vbe)(th“b)> . (8.101)

First consider the term involving the Riemann tensor:
1 1
—e bty Ry e = =gt (g 4t (97 + 18 ) vevaners Bale

1
= —geT <Rc“ef%%%7f + 2tcthd“ef%%%7f) €. (8.102)

From the Bianchi identity,

R yyeyy = — (Rdef “+ Ry “e> YaYeVs
= R (vev1Ya + 2907 — 29af7e) — Ra’ ™ (Yvave + 29efYa — 29afVe)
= 2R v,y — 6RaT s, (8.103)
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hence
Ry yavevs = —2Ra% vy (8.104)

and
L 4 cdyab ef L s cydp f
-3¢ REh Py Rape 7T e = —3€ <—2R—4t "Ry ’)/c')/f) €
1 1

= geT <2R + 4¢c4? (877Tdf + §R5df> 'yc'yf> €

= 4Ty (Jtc%fyfe) . (8.105)
where we used the Einstein equations. Now

wy = €ty e (8.106)

is a timelike vector (check), and so if dominant energy is satisfied, this term is positive. There are
three other terms in M which cancel:

RNV ot )Nty Ve + W% (Voh) €7V e — BTy (Vie) (V gh®)
Wty (W ota)y Pt Vee + hV o (1) €l Ve — heletyra (Vye) Vg (tatb>
= hacewd(vatd)wbtbvce + habge (Vatp) 'Vee — theT%va(Vbe)t“ (thb> - theT%ya(Vbe)tb (Vat)

= h%I VK vt Ve + Rt K 4TV e — theT%%(Vbe)tade — theT%%(Vbe)tbKda

= GT'YdKCd'thbvcﬁ + tCKETvcf - €T7c7a(vb€)taKCb - KcaeT'Yc’Ya(vbe)tb = 0. (8'107)
One is left with 1
M= / @ Vi (R(06) Ve + ATy 0l 1) (8.108)
T Js

You can interpret the first part as the energy of the gravitational field, and the second as the energy
of matter. The amazing thing is the way is proof is done is based on supergravity.
The result that M > 0 as long as dominant energy holds is absolutely true in classical general
relativity.
It must mean that gravitational energy is not localised: Imagine some matter distribution in a
region on the surface X, then you could deform X slightly to a new surface ¥’ not including this
region. M would be the same for ¥ and X', but the contributions from the two terms could be
quite different.
The partition between “gravitational” energy and “matter” energy is different on different surfaces.
So one sees that gravitational energy cannot be localised.
Finally,

M=0 =Vu=0, Tyu=0, (8.109)

so if spacetime is asymptotically flat with no horizons and zero mass, it must be flat space.

- END -
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