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1 Introduction to Differential Forms
Lect. 1

This course will be somewhat different from the course given by Prof Gary Gibbons in previous

years. We will plan to cover applications of differential geometry in general relativity, quantum

field theory, and string theory.

1.1 Vectors, Tensors and p-forms

Assume we have some kind of d-dimensional manifold, possibly representing spacetime, with a set

of co-ordinates xa, a = 1, . . . , d.

In general relativity, typically one thinks of a vector as being represented by ua. But ua is really

the components of a vector in some particular basis. We need to think about basis-independent

expressions.

In d dimensions, there is always a set of d basis vectors

E1, . . . , Ed, collectively Ea. (1.1)

A vector is then

u =
∑

a

uaEa, (1.2)

where ua are the components of u in the basis {Ea}.
A one-form ω is an object which is dual to a vector, i.e. given a vector u and a one-form ω there

is a bracket operation 〈ω, u〉 giving a real number.

This bracket is linear: If u = αv + βw for arbitrary vectors v,w and real numbers α, β,

〈ω,αv + βw〉 = α〈ω, v〉 + β〈ω,w〉. (1.3)

We can write a one-form as

ω =
∑

a

ωaE
a, (1.4)

where ωa are numbers and Ea are one-forms. Then the bracket can be defined as

〈Ea, Eb〉 = δab, (1.5)

such that the basis of one-forms are dual to the basis of vectors.

The bracket is also linear in ω: If ω = αη + βλ for one-forms η, λ and real numbers α, β,

〈αη + βλ, u〉 = α〈η, u〉 + β〈λ, u〉. (1.6)
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Consider now

〈ω, u〉 =
∑

a,b

〈ωaEa, ubEb〉 =
∑

a,b

ωau
b〈Ea, Eb〉 =

∑

a

ωau
a. (1.7)

The bracket corresponds to the usual scalar multiplication.

The next thing is to define the derivative of a function f(x), denoted by df - this is a one-form. It

should have the property

〈df,X〉 = X f. (1.8)

We can pick a set of one-forms and a basis of vectors to make it explicit. In a co-ordinate basis,

these basis vectors are ∂
∂xi

and the one-forms are dxi. These are dual,

〈 ∂

∂xi
, dxj〉 = δij , (1.9)

which is consistent with the definition of df , since

〈 ∂
∂xi

, dxj〉 =
∂

∂xi
xj. (1.10)

This can also be done for an arbitrary vector X = Xj ∂
∂xj

. From linearity,

〈df,X〉 = 〈df,Xj ∂

∂xj
〉 = Xj ∂

∂xj
f. (1.11)

This is the directional derivative of f in the direction X.

This, roughly speaking, is what one-forms are. There is a simple geometrical consequence; suppose

that

〈df,X〉 = 0. (1.12)

Then f is a constant in the direction of the vector X, which means that df is normal to surfaces of

f = constant.

We can put this into a bigger perspective: Functions f are often called 0-forms. Then df , the

derivative of f , is a one-form. We have defined an operator d turning 0-forms into one-forms. In

general, d will turn p-forms into (p+ 1)-forms. In terms of a co-ordinate basis,

df =
∂f

∂xi
dxi. (1.13)

This is exactly as expected from the chain rule for a derivative.

A general tensor is of type (r, s); its components are T a1...ar b1...bs . We think of this as some-

thing which does not depend on a basis:

T = T a1...ar b1...bs Ea1 ⊗ Ea2 ⊗ . . . ⊗ Ear ⊗ Eb1 ⊗ . . .⊗ Ebs . (1.14)

This is independent of the particular basis in question.

In general relativity, a tensor transforms in a particular way under a co-ordinate transformation.

But this is really just a change of basis:

Ea → Ea′ = χa′
aEa, (1.15)
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where χa′
a represents a non-degenerate d× d matrix. Similarly, one could do a transformation on

the basis one-forms

Ea → Ea
′

= Φa′
aE

a. (1.16)

This could be a co-ordinate basis, but does not have to be. Looking at the bracket, we must have

δa
′

b′ = 〈Ea′ , Eb′〉 = 〈Φa′
aE

a, χb′
bEb〉 = Φa′

aχb′
bδab = Φa′

aχb′
a, (1.17)

thus χ is the matrix inverse of Φ. Under a change of basis, the tensor T must be invariant, thus

T = T a
′

1...a
′

r
b′1...b

′
s
Ea′1 ⊗Ea′2 ⊗ . . .⊗ Ea′r ⊗ Eb

′

1 ⊗ . . .⊗ Eb
′

s

= T a
′

1...a
′

r
b′1...b

′

s
χa′1

a1 . . . χa′r
arΦb′1b1 . . .Φ

b′s
bsEa1 ⊗ Ea2 ⊗ . . .⊗ Ear ⊗Eb1 ⊗ . . .⊗ Ebs

= T a1...ar b1...bs Ea1 ⊗Ea2 ⊗ . . .⊗ Ear ⊗ Eb1 ⊗ . . .⊗ Ebs , (1.18)

so the components of T transform as (expressing the old components in terms of the new)

T a
′

1...a
′

r
b′1...b

′

s
χa′1

a1 . . . χa′r
arΦb′1b1 . . .Φ

b′s
bs = T a1...ar b1...bs , (1.19)

exactly as expected from the co-ordinate formulation of general relativity.

A p-form is defined to be a tensor of type (0, p) whose components are totally antisymmetric (in

any basis):

T = Ta1...apE
a1 ⊗ . . . ⊗ Eap = Ta1...apE

[a1 ⊗ . . .⊗ Eap] =
1

p!
Ta1...ap (Ea1 ∧ . . . ∧ Eap) , (1.20)

where we define the wedge product

Ea1 ∧ . . . ∧ Eap :=
∑

σ∈Sp

π(σ)Eσ(a1) ⊗ Eσ(a2) ⊗ . . . ⊗ Eσ(ap) (1.21)

and the sum is over all permutations σ of p elements with parity π(σ) either +1 or −1, so there

are p! terms in the sum. ∧ basically tells you to take the antisymmetric product:

Ea ∧ Eb = Ea ⊗Eb − Eb ⊗ Ea,

Ea ∧ Eb ∧ Ec = Ea ⊗Eb ⊗ Ec +Eb ⊗ Ec ⊗ Ea +Ec ⊗ Ea ⊗ Eb

−Ea ⊗ Ec ⊗ Eb − Eb ⊗ Ea ⊗ Ec − Ec ⊗ Eb ⊗ Ea, (1.22)

etc. Ea1 ∧ . . . ∧ Eap is antisymmetric under the interchange of any adjacent pair of indices. In d

dimensions, the number of linearly independent such objects is

d(d − 1) . . . (d− p+ 1)

p!
=

d!

p!(d− p)!
=

(
d

p

)

. (1.23)

This means one must have p ≤ d, because one will get nothing otherwise.
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1.2 Operations on Forms
Lect. 2

The next thing is to look at a product of a p-form P and a q-form Q. A p-form P can in any basis

be written as

P =
1

p!
Pa1...apE

a1 ∧ Ea2 ∧ . . . ∧ Eap , (1.24)

similarly

Q =
1

q!
Qb1...bqE

b1 ∧ Eb2 ∧ . . . ∧ Ebq . (1.25)

We already have a rule for defining the product of one-forms. We define the wedge product of a

p-form with a q-form to be

P ∧Q =
1

(p+ q)!
Pa1...apQb1...bqE

a1 ∧Ea2 ∧ . . . ∧ Eap ∧ Eb1 ∧Eb2 ∧ . . . ∧ Ebq . (1.26)

You can think of this in a slightly different way. P ∧ Q is really equivalent to a tensor of type

(0, p+ q) that is antisymmetric on all its p+ q indices. If you wanted to know its components, you

could write down a simple formula

P[a1...apQb1...bq ]. (1.27)

That, of course, means that if you stare at this product, consequently

P ∧Q = (−)pqQ ∧ P. (1.28)

We have discovered that differential forms have a Z2-grading:

P ∧Q =

{
Q ∧ P if either p or q is even,

−Q ∧ P if p and q are odd
. (1.29)

You can think of P or Q as odd objects if p, q are odd, and as even objects if p or q are even.

(This is analogous to bosons which are described by even quantum fields, and fermions which are

described by odd quantum fields in quantum field theory.)

To avoid possible ambiguities, we write out explicitly what is meant by [·], namely antisymmetriza-

tion with weight one:

X[a1...ap] =
1

p!

∑

σ∈Sp

π(σ)Xσ(a1)...σ(ap), (1.30)

so that

X[ab] =
1

2
(Xab −Xba) ,

X[abc] =
1

6
(Xabc +Xbca +Xcab −Xacb −Xbac −Xcba) , (1.31)

etc. Similarly, (·) always means symmetrization with weight one.

The next thing is to define an exterior derivative d on p-forms. We look at a p-form in a

co-ordinate basis:

P =
1

p!
Pa1...ap
︸ ︷︷ ︸

set of 0−forms

dxa1 ∧ dxa2 ∧ . . . ∧ dxap
︸ ︷︷ ︸

p−form

. (1.32)
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We already know what d does on 0-forms, and so we define

dP =
1

p!

∂Pa1...ap
∂xb

dxb ∧ dxa1 ∧ dxa2 ∧ . . . ∧ dxap . (1.33)

This is consistent with how d acts on a 0-form to give a one-form. There is an alternative convention

where dxb is put at the end which gives you unpleasant factors of (−)p, and which we will not use.

Because

dP = X =
1

(p+ 1)!
X[a1...ap+1]dx

a1 ∧ dxa2 ∧ . . . ∧ dxap+1 , (1.34)

we can write the components of X = dP in terms of the components of ∂P
∂x :

Xa1...ap+1 = (−)p(p+ 1)∂[ap+1
Pa1...ap], (1.35)

where we write ∂a for ∂
∂xa . It is impossible to suppress all factors of (−)p; this one is a nuisance.

Properties of the operator d:

• d maps p-forms to (p+ 1)-forms. To see this, you have to prove that dP is a tensor. Do the

calculation in a co-ordinate basis: Under a change of co-ordinates xa → x′a
′

= x′a
′

(xa), we

define

Aa
′

a =
∂x′a

′

∂xa
, Aa′

a =
∂xa

∂x′a′
. (1.36)

Then if P is a p-form,

Pa1...ap → Pa′1...a′p = Aa′1
a1Aa′2

a2 . . . Aa′p
apPa1...ap . (1.37)

The components of dP transform as

∂[bPa1...ap] → ∂[b′Pa′1...a′p] = ∂[b′

(

Aa′1
a1Aa′2

a2 . . . Aa′p]
apPa1...ap

)

=
∂xb

∂x′[b′|
∂b

(

A|a′1
a1Aa′2

a2 . . . Aa′p]
apPa1...ap

)

= Ab′
bAa′1

a1Aa′2
a2 . . . Aa′p

ap∂[bPa1...ap]

+A[b′|
b∂b

(

A|a′1
a1
)

Aa′2
a2 . . . Aa′p]

apPa1...ap + . . . , (1.38)

with more similar terms. These all contain terms of the form

∂xb

∂x′b′
∂Aa′1

a1

∂xb
=

∂xb

∂x′b′
∂xa1

∂x′a
′

1∂xb
=

∂xa1

∂x′a
′

1∂x′b′
, (1.39)

antisymmetrized over a′1 and b′. Since partial derivatives commute, these terms all vanish.

What you end up with is what you expect for a tensorial object:

∂[bPa1...ap] → Ab′
bAa′1

a1Aa′2
a2 . . . Aa′p

ap∂[bPa1...ap]. (1.40)

Components of dP transform tensorially under a co-ordinate transformation.
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• d2 = 0. This is most easily seen by looking at the components of d(dP ).

components of P ∼ P[a1...ap]

components of dP ∼ ∂[bPa1...ap]

components of d(dP ) ∼ ∂[c∂[bPa1...ap]] = ∂[c∂bPa1...ap] = 0. (1.41)

Remember there was a Z2-grading. dP is a (p + 1)-form and so d changes the Z2-grading of

the form.

So morally, d had better be odd. Therefore dd = −dd = 0.

• The operator d is Leibnizian.

P = Pa1...apdx
a1 ⊗ . . . ⊗ dxap

dP = dPa1...ap
︸ ︷︷ ︸
∂Pa1...ap

∂xb
dxb

∧dxa1 ⊗ . . .⊗ dxap + . . . , (1.42)

where all remaining terms contain some ddxai and will vanish.

• d acting on the product of a p-form with a q-form:

The components of P ∧Q are

P[a1...apQb1...bq ]. (1.43)

Then the components of d(P ∧Q) will be proportional to

∂[b(Pa1...ap)Qb1...bq ] + (P[a1...ap)∂bQb1...bq ]. (1.44)

Since X[a1...apbb1...bq ] = (−)pX[ba1...apb1...bq], this shows that

d(P ∧Q) = dP ∧Q+ (−)pP ∧ dQ. (1.45)

• All manipulations were in a co-ordinate basis but this is inessential. The action of d is

independent of a choice of co-ordinates.

This all looks like messing about, but it is easy to apply these things to electromagnetism, Yang-

Mills theory and general relativity. As of now, the word “metric” has not been mentioned. Forms,

their products and their exterior derivatives are all concepts which are independent of the metric.

We will need an object called the alternating tensor: This is an object εa1...ad which is antisym-

metric under the interchange of any adjacent pair of indices. It has components

εa1...ad =
1

√

|g|







+1 (a1 . . . ad) is an even permutation of (1, . . . , d)

−1 (a1 . . . ad) is an odd permutation of (1, . . . , d)

0 otherwise.

(1.46)

Here g = det gab for a metric gab. These form the components of a rank d tensor (proof provided

later). One can also form

εa1...ad = ga1b1ga2b2 . . . gadbdε
b1...bd ; (1.47)
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this has components

εa1...ad = (−)t
√

|g|







+1 (a1 . . . ad) is an even permutation of (1, . . . , d)

−1 (a1 . . . ad) is an odd permutation of (1, . . . , d)

0 otherwise.

(1.48)

Here t is the number of timelike directions, which may be different depending on the type of

geometry one is studying.

Pure mathematicians study almost exclusively Riemannian geometry - this is based on the

axiom that if the distance
∫
ds, as defined by the metric

ds2 = gabdx
adxb, (1.49)

between two points is zero, then they are the same point.

This means that the metric g is positive definite, with only positive eigenvalues. The signature is

(+d). This type of geometry is known in the physics literature, quite confusingly, as “Euclidean”.

It corresponds to t = 0.

We contrast this with what happens in general relativity, where one studies pseudo-Riemannian

geometry. Here g is not positive-definite and ds = 0 defines how light rays propagate. Typically,

we have signature (+d−1,−), and t = 1. (The term spacetime means a manifold with such a

metric in the following.)

There is also Kleinian geometry, which is encountered in twistor theory (t = 3) or in the

F-theory approach to string theory (t = 2). Here one has a general signature (+p,−t). One must

remember this when doing calculations with forms.

Lect. 3

Now we prove that ε is indeed a tensor. That means that under a co-ordinate transformation

xa → x′a
′

= x′a
′

(xa), Aa
′

a =
∂x′a

′

∂xa
, (1.50)

it must transform as

εa
′b′c′... = Aa

′

aA
b′
bA

c′
c . . . ε

abc...

1
√

|g′|
ηa

′b′c′... = Aa
′

aA
b′
bA

c′
c . . .

1
√

|g|
ηabc..., (1.51)

where we defined the alternating symbol (not a tensor!)

ηa1...ad =







+1 (a1 . . . ad) is an even permutation of (1, . . . , d)

−1 (a1 . . . ad) is an odd permutation of (1, . . . , d)

0 otherwise.

(1.52)

Because of the symmetry, there is really only one equation that has to be satisfied. We multiply

the equation by ηa
′b′c′... and sum over all indices:

∑

a′b′c′...

1
√

|g′|
ηa

′b′c′...ηa
′b′c′... =

∑

a′b′c′...

Aa
′

aA
b′
bA

c′
c . . .

1
√

|g|
ηa

′b′c′...ηabc... (1.53)
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The sum on the left-hand side gives d!, on the right-hand side we have
∑

a′b′c′...

Aa
′

aA
b′
bA

c′
c . . . η

a′b′c′... = ηabc... detA, (1.54)

and the remaining summation over a, b, c, . . . gives

(d!)
1

√

|g′|
= (d!)

1
√

|g|
detA. (1.55)

For that to be true we must have that under a co-ordinate transformation

|g′| = |g|(detA)−2. (1.56)

Since the metric is a tensor, it transforms as

g′a′b′ =
∂xa

∂x′a′
∂xb

∂x′b′
gab = Aa′

aAb′
bgab, (1.57)

where Aa′
a is the inverse of A. Take the determinant of this equation to get

det g′ = det(A−1A−1g) = (detA)−2 det g. (1.58)

Putting this together leads to the conclusion that ε really is tensorial. ε has the following useful

properties:

εabcd...εabcd... = (−)td!; (1.59)

from that, you can derive other contractions, such as

εabc...deεabc...df = (−)t(d− 1)!δef ,

εab...cεpq...r = (−)td!δ[a[pδ
b
q . . . δ

c]
r]. (1.60)

Now we want to construct the dual of a differential form. We start off with a p-form P ; its dual is

going to be ∗P , a (d− p)-form. We define this in terms of its components, in any basis: If

P =
1

p!
Pa1...apdx

a1 ∧ . . . ∧ dxap , (1.61)

we define

∗P =
1

(d− p)!
(∗P )a1...ad−pdx

a1 ∧ . . . ∧ dxad−p , (1.62)

where

(∗P )a1...ad−p =
1

p!
εa1...ad−p

b1...bpPb1...bp . (1.63)

Note that we contract the last p indices, this is conventional. We can construct the double dual of

P , and find that its components are

(∗ ∗ P )c1...cp =
1

p!(d− p)!
εc1...cp

a1...ad−pεa1...ad−p
b1...bpPb1...bp

=
(−)p(d−p)

p!(d− p)!
εa1...ad−pc1...cpε

a1...ad−pb1...bpPb1...bp

=
(−)p(d−p)

p!(d− p)!
(−)t(d− p)!δ[b1 [c1δ

b2
c2 . . . δ

bp]
cp]Pb1...bp

= (−)p(d−p)(−)tPb1...bp (1.64)
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and hence we obtain

∗ ∗ P = (−)p(d−p)+tP. (1.65)

This means that if t is even, then

∗ ∗ P =

{−P if d even and p odd

P otherwise;
(1.66)

for odd t it is the other way around.

1.3 Electromagnetism and Yang-Mills Theory

Now we will find a use for forms. The simplest use for forms is Maxwell’s equations, where now

d = 4, t = 1. These are

∇[aFbc] = 0 ⇔ ∂[aFbc] = 0; ∇aF
ab = −jb. (1.67)

We can rewrite this in terms of forms, this will make life easier:

dF = 0, ∗d ∗ F = −j. (1.68)

We do this explicitly. F is an antisymmetric tensor, the field strength. We can therefore construct

a two-form

F =
1

2
Fabdx

a ∧ dxb; (1.69)

then (remember d2 ≡ 0)

dF = d

(
1

2
Fabdx

a ∧ dxb
)

=
1

2
dFab ∧ dxa ∧ dxb

=
1

2

∂Fab
∂xc

dxc ∧ dxa ∧ dxb

=
1

2

(

∂[cFab]dx
c ∧ dxa ∧ dxb

)

= 0 (1.70)

reproduces the first set of equations. We need to define a current one-form for the other half of

Maxwell’s equations:

j = jadx
a. (1.71)

Now work out ∗d ∗ F :

∗F =
1

2

(
1

2
εab

cdFcddx
a ∧ dxb

)

. (1.72)

We will “cheat” by using Riemann normal co-ordinates. In these co-ordinates,

g ∼ η, Γ ∼ 0, ∂Γ 6= 0. (1.73)

All quantities are tensorial, so the results will hold in general. In these co-ordinates dε = 0; then

d ∗ F =
1

4
d
(

εab
cdFcddx

a ∧ dxb
)

=
1

4
ε[ab

cd∂e]Fcddx
e ∧ dxa ∧ dxb. (1.74)
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This is a three-form with components

(d ∗ F )eab =
3

2
ε[ab

cd∂e]Fcd. (1.75)

Then the components of ∗d ∗ F are

(∗d ∗ F )p =
1

6
εp
eab 3

2
ε[ab

cd∂e]Fcd

=
1

4
εabp

e
εab

cd∂eFcd

= −δ[c|pge|d]∂eFcd
= −δcpged∂eFcd = −∂dFpd = ∂dFdp. (1.76)

On the example sheet, you can do this with combinatorial factors and using Christoffel symbols for

a general metric.

The simplest example is a current flowing through a wire in the z-direction. In cylindrical co-

ordinates, the metric is

ds2 = −dt2 + dρ2 + ρ2dθ2 + dz2, (1.77)

so that det g = −ρ2. The current density only has a z component

jz = Iδ(2)(ρ), j = Iδ(2)(ρ)dz. (1.78)

We need to figure out F . The only component of the electromagnetic field is Bθ(ρ). That is

Fρz = −Fzρ = −Bθ. (1.79)

The two-form will be

F =
1

2
Fabdx

a ∧ dxb =
1

2
(Fρzdρ ∧ dz − Fzρdz ∧ dρ) = Fρzdρ ∧ dz = −Bθdρ ∧ dz. (1.80)

Then automatically

dF = −dBθ ∧ dρ ∧ dz = −∂Bθ
∂ρ

dρ ∧ dρ ∧ dz = 0. (1.81)

∗F has components

(∗F )ab =
1

2
εab

cdFcd =
1

2
εpqcdFcdgapgbq, (1.82)

the only component will be

(∗F )tθ = −(∗F )θt =
1

2

(

εtθρzFρzgttgθθ + εtθzρFzρgttgθθ

)

= −1

ρ
Fρz(−1)ρ2 = −ρBθ. (1.83)

Then ∗F = −ρBθdt ∧ dθ and

d ∗ F = −d(ρBθ)dt ∧ dθ = −∂(ρBθ)

∂ρ
dρ ∧ dt ∧ dθ. (1.84)

Lect. 4

The only component of ∗d ∗ F is

∗d ∗ F = εzρtθ(d ∗ F )ρtθdz = ρgρρgttgθθ
(

− ∂

∂ρ
(ρBθ)

)

=
1

ρ

∂

∂ρ
(ρBθ)dz (1.85)
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Maxwell’s equations are
1

ρ

∂

∂ρ
(ρBθ) = −Iδ(2)(ρ) (1.86)

which gives the obvious result. So that is how you do electromagnetism.

Next consider a generalisation of electromagnetism, developed by Yang and Mills in 1954, and

earlier (1952) by R. Shaw of the University of Hull.

Normally, a one-form A is

A = Aadx
a (1.87)

with functions Aa. But there is no requirement that Aa should be real-valued functions; they could

be elements of a Lie algebra.

Take some Lie group G. There will be a set of generators in the adjoint representation {Tα}.
The Cartan metric on the Lie algebra of G is

ηαβ = −2Tr(TαTβ). (1.88)

There will be compact and non-compact directions in general. Compact directions will be repre-

sented by anti-Hermitian generators for which ηαβ = +1; non-compact directions will be represented

by Hermitian generators for which ηαβ = −1. This might fit in more with the mathematics than

the physics literature, that is simply too bad. For physical Yang-Mills theories, G is compact as

required to make a unitary quantum field theory.

The metric can then be used to raise or lower indices in the Lie algebra.

The group can be specified by the commutation relations

[Tα, Tβ ] = cαβ
γTγ , (1.89)

where cαβ
γ are structure constants of the Lie algebra. Then we define

Aa = AαaTα, (1.90)

where Aαa are components of the gauge field in question, and A is a Lie algebra valued one-form.

This generalises the vector potential of electromagnetism. We need to find the analogue of the field

strength. In electromagnetism, the field strength is invariant under gauge transformations. This

requirement is too strong in Yang-Mills theory. We define

F = dA+ gA ∧A, (1.91)

which is now a Lie algebra valued two-form, and g is a coupling constant that one introduces in

particle physics. In the mathematics literature, one sets g = 1. In the field theory world, this is

written out in terms of components:

1

2
Fαabdx

a ∧ dxbTα = d(AαaTα) ∧ dxa + gAαaA
β
b dx

a ∧ dxbTαTβ

= (dAαa ∧ dxa)Tα +
1

2
gAαaA

β
b dx

a ∧ dxb[Tα, Tβ]

= ∂bA
α
adx

b ∧ dxaTα +
1

2
gAαaA

β
b dx

a ∧ dxb[Tα, Tβ]

=
1

2
(∂aA

α
b − ∂bA

α
a ) dxa ∧ dxbTα +

1

2
gAαaA

β
b cαβ

γ
(

dxa ∧ dxb
)

Tγ , (1.92)
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so

Fαab = ∂aA
α
b − ∂bA

α
a + gAβaA

γ
b cβγ

α. (1.93)

It is often simpler to do abstract calculations using forms.

In electromagnetism, since F = dA, one has automatically dF = 0. In Yang-Mills theory,

DAF = 0, (1.94)

where DA is a gauge covariant derivative defined by

DAF = dF + g[A,F ], (1.95)

where the commutator of a p-form P and a q-form Q is defined by

[P,Q] =

{
P ∧Q−Q ∧ P if either or both of P and Q are even,

P ∧Q+Q ∧ P if P and Q are both odd.
(1.96)

Substitute this in F = dA+ gA ∧A to discover that DAF = 0 (Bianchi identity):

DAF = d(dA + gA ∧A) + g(A ∧ (dA+ gA ∧A) − (dA + gA ∧A) ∧A)

= gdA ∧A− gA ∧ dA+ gA ∧ dA+ g2A ∧A ∧A− gdA ∧A− g2A ∧A ∧A
= 0. (1.97)

Let us generalise gauge transformations: In electromagnetism, these are

A→ A+ dǫ, F → F. (1.98)

Here

A→ A+DAǫ = A+ dǫ+ g[A, ǫ]. (1.99)

Then the infinitesimal change in F is

δF = dδA+ gδA ∧A+ gA ∧ δA
= d(dǫ+ gAǫ− gǫA) + g(dǫ+ gAǫ− gǫA) ∧A+ gA ∧ (dǫ+ gAǫ− gǫA)

= gdAǫ− gA ∧ dǫ− gdǫ ∧A− gǫdA+ gdǫ ∧A+ g2Aǫ ∧A− g2ǫA ∧A+ gA ∧ dǫ
+g2A ∧Aǫ− g2A ∧ ǫA

= g(dA+ gA ∧A)ǫ− gǫ(dA+ gA ∧A)

= g[F, ǫ]. (1.100)

So F transforms covariantly under gauge transformations, i.e. depends only on ǫ and not dǫ. That

should remind us of something, namely curvature.

In general relativity, under a co-ordinate transformation

gab → ga′b′ = Aa′
aAb′

bgab, Γabc → Γa
′

b′c′ = Aa
′

aAb′
bAc′

cΓabc + . . . , (1.101)

where the remaining terms contain derivatives of A. The Riemann tensor Rabcd contains derivatives

of Γ and squared Γ terms, so one would expect second derivatives of A or squared first derivatives

to appear. But

Ra
′

b′c′d′ = Aa
′

aAb′
bAc′

cAd′
dRabcd (1.102)
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with no such ∂A, ∂∂A terms. F in Yang-Mills theory has the same property, that is not a coinci-

dence. In general relativity,

[∇a∇b −∇b∇a]Vc = Rabc
dVd. (1.103)

The curvature is the commutator of two covariant derivatives. The same is true in Yang-Mills

theory (see later).

We first go back to Maxwell’s equations; the other half of these equations is (in vacuum)

d ∗ F = 0. (1.104)

The obvious generalisation of this is the Yang-Mills equation

DA(∗F ) = 0, (1.105)

that is in components,

∇aF
abα +

1

6
gcβγ

αAβcF
γ
deε

bcde = 0. (1.106)

Lect. 5

Let us now calculate DADAX, where X is a p-form in the adjoint representation of G. Then

Y = DAX is a (p+ 1)-form, so we have

DAY = dY + gA ∧ Y + g(−)pY ∧A, Y = DAX = dX + gA ∧X + g(−)p+1X ∧A. (1.107)

Then

DADAX = d(dX + gA ∧X + g(−)p+1X ∧A) + gA ∧ (dX + gA ∧X + g(−)p+1X ∧A)

+g(−)p(dX + gA ∧X + g(−)p+1X ∧A) ∧A
= gdA ∧X − gA ∧ dX + g(−)p+1dX ∧A− gX ∧ dA+ gA ∧ dX + g2A ∧A ∧X

+g2(−)p+1A ∧X ∧A+ g(−)pdX ∧A+ g2(−)pA ∧X ∧A− g2X ∧A ∧A
= g(dA + gA ∧A) ∧X − gX ∧ (dA+ gA ∧A)

= g[F,X] (1.108)

since F is a two-form.

That is exactly what you would expect from a curvature. F is often called the curvature form in

mathematics (or Yang-Mills field strength in physics). So F must be the curvature of something,

so you should think of A as being a connection one-form (in the mathematics world).

2 Connections and General Relativity

2.1 Vielbein Formalism

You should wonder whether the same ideas work in general relativity. In general relativity, every-

thing involves just the metric tensor gab. All of the geometry of spacetime will be encoded into a

line element

ds2 = gabdx
adxb. (2.1)
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We try to extend this idea: gab is a d-dimensional metric with t timelike directions. That means in

practice that you can always construct normal co-ordinates such that

η ∼
(

(−)t, (−)d−t
)

. (2.2)

One can only do this at a point. But as η describes the tangent space of the manifold, we can

rewrite the metric as

gab = ea
µeb

νηµν , ηµν = diag
(

(−)t, (−)d−t
)

. (2.3)

The objects ea
µ are called vierbein or vielbein fields in general relativity, or frame fields in the

mathematics world. It is not entirely obvious that you can always do this construction. At each

point, g is a symmetric matrix, so can diagonalise it:

g = OTDO, D =
∑

i

λi(fi ⊗ fi), fi = (0, . . . , 1
︸︷︷︸

ith place

, 0, . . . , 0). (2.4)

There will be d non-zero eigenvalues λi, of which t will be negative and d− t will be positive. Then

by rescaling the eigenvectors, it should be clear that one can get g to the above form.

But while gab has 1
2d(d + 1) components, ea

µ has d2 components, so many more. But Lorentz

transformations

V µ → V ν = ΛνµV
µ (2.5)

preserve the Lorentz metric:

ΛT ηΛ = η, ΛµρΛ
ν
σηµν = ηρσ. (2.6)

In the general case, Λ ∈ SO(d − t, t), and it is often useful to restrict attention to the component

connected to the identity. One would not call this a Lorentz transformation, but a generalised

rotation.

Under a (local) transformation of the frame fields,

ea
µ → ẽa

µ = Λµν(x)ea
ν , (2.7)

the metric is left invariant:

gab → g̃ab = ẽa
µẽb

νηµν = Λµρ(x)ea
ρΛνσ(x)eb

σηµν = ea
ρeb

σηρσ = gab. (2.8)

You have found a new local invariance. We have enlarged the symmetry of general relativity (or

. . . ) to be

a) general co-ordinate transformations,

b) local generalised rotations.

One needs the frame fields to describe fermions in general relativity. Greek indices µ, ν, . . . are

tangent space indices (Lorentz indices), Latin indices a, b, c, . . . are spacetime indices.

gab, g
ab can raise and lower spacetime indices; ηµν , η

µν can raise and lower tangent space indices:

eaµ = ηµνea
ν , ea

µ = ηµνeaν , etc. (2.9)
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We can now write

gab = ea
µeb

ν = ea
µebµ. (2.10)

The objects ea
µ can also be used to convert spacetime vectors (tensors) into tangent space vectors

(tensors):

V a → V µ = ea
µV a, V a = eaµV

µ, (2.11)

and indeed

eaµV
µ = eaµeb

µV b = δabV
b = V a. (2.12)

This works similarly for general tensors of type (r, s).

The next thing is some idea of a derivative: A covariant derivative is

V a → ∇bV
a, (2.13)

such that under a co-ordinate transformation, if V a′ = Aa
′

aV
a,

∇bV
a → ∇b′V

a′ = Ab′
bAa

′

a∇bV
a (2.14)

with no derivatives of A, which are cancelled by the usual Christoffel symbols. What is the covariant

derivative of ea
µ? It should be a (0, 2) spacetime tensor, and a Lorentz vector. Under a Lorentz

transformation e→ eΛ, one will normally get ∂e ∼ (∂e)Λ + e∂Λ, so we need to add an extra term:

∇bea
µ = ∂bea

µ − Γb
c
aec

µ + ωb
µ
σea

σ, (2.15)

where ωb
µ
σ is the spin connection. The spin connection is needed to absorb the terms involving

∂Λ if one performs a Lorentz transformation.

In Riemannian geometry and general relativity, one is accustomed to making a certain choice of

connection, such that

∇agbc = 0. (2.16)

One wants to make an analogous choice for frame fields, which is consistent with it. The simplest

way to arrange this is to make

∇bea
µ = 0, ∇aηµν = 0. (2.17)

We can turn

∂bea
µ − Γb

c
aec

µ + ωb
µ
σea

σ = 0 (2.18)

into an expression for the spin connection by multiplying by eaλ:

ωb
µ
λ = ωb

µ
σea

σeaλ = −eaλ∂beaµ + Γb
c
aec

µeaλ. (2.19)

We can regard this as a definition of the spin connection (almost). This definition of the spin

connection contains more information than Γ, so ω and Γ are not equivalent. Remember that a

metric connection consists of two pieces:

Γb
c
a = Γ(b

c
a)

+ Γ[b
c
a]
, (2.20)

where the symmetric part is given by the Christoffel symbols and the antisymmetric part defines

the torsion:

Tb
c
a = 2Γ[b

c
a]
. (2.21)
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We have not yet looked at ∇aηµν = 0. Lect. 6

You can obtain an equation analogous to the one above by writing out ∇be
a
ν = 0:

∂be
a
ν + Γb

a
ce
c
ν + ωbνσe

aσ = 0. (2.22)

Then multiply this by ea
λ to get

ωbνλ = −eaλ∂beaν − ea
λΓb

a
ce
c
ν . (2.23)

This definition is equivalent to the one above.

You see that calculations like these are rather messy. Cartan called this a “debauch of indices”.

The point of using forms is to get rid of the indices. We still need to look at

∇aηµν = 0. (2.24)

This gives

0
!
= ∇aηµν = ∂aηµν + ωaµ

σησν + ωaν
σηµσ = ωaµν + ωaνµ. (2.25)

Hence a spin connection that is metric is antisymmetric on its Lorentz indices.

So this how a spin connection is defined, but you really do not want to do it this way in practice.

Let us start again, remembering that a conncetion can have torsion as well as curvature. We

demanded that

0 = ∇agbc = ∂agbc − Γa
d
bgdc − Γa

d
cgbd. (2.26)

For a symmetric connection, you can solve this in terms of Γ and discover that a symmetric metric

connection is unique. No such luck for us!

Let us try to repeat the usual calculation with nonvanishing torsion. One starts with

0 = ∇agbc + ∇bgca −∇cgab, (2.27)

which gives

∂agbc + ∂bgca − ∂cgab = Γa
d
bgdc + Γa

d
cgbd + Γb

d
cgda + Γb

d
agcd − Γc

d
agdb − Γc

d
bgad

= 2Γ(a
d
b)
gdc + 2Γ[a

d
c]
gbd + 2Γ[b

d
c]
gda

= 2Γ(a
d
b)
gdc + T[a

d
c]
gbd + T[b

d
c]
gda. (2.28)

If the torsion vanishes, you can get what you are used to.

Let us recall a formula for the curvature:

Rabcd = ∂cΓd
a
b − ∂dΓc

a
b + Γc

a
eΓd

e
b − Γd

a
eΓc

e
b (2.29)

or equivalently, by commuting covariant derivatives

(∇c∇d −∇d∇c)Z
a = RabcdZ

b − Tc
e
d∇eZ

a. (2.30)

We have another connection which will have a curvature too:

(∇c∇d −∇d∇c)V
µ = ∇c(∂dV

µ + ωd
µ
σV

σ) −∇d(∂cV
µ + ωc

µ
σV

σ)

= ∂c∂dV
µ + (∂cωd

µ
σ)V

σ + ωd
µ
σ∂cV

σ − Γc
e
d(∂eV

µ + ωe
µ
σV

σ)

+ωc
µ
λ(∂dV

λ + ωd
λ
σV

σ) − (c↔ d), (2.31)
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we would like this to be a spin curvature and a torsion term. We look at the terms involving V

and no derivatives of V , and identify

Rcd
µ
σ = ∂cωd

µ
σ − ∂dωc

µ
σ + ωc

µ
λωd

λ
σ − ωd

µ
λωc

λ
σ (2.32)

as the curvature of the spin connection. The remaining terms are

(−Γc
e
d + Γd

e
c)(∂eV

µ + ωe
µ
σV

σ) = −Tced∇eV
µ. (2.33)

We obtain the same form as before. Manipulations on Lorentz indices are analogous to manipula-

tions on spacetime indices. Another fact which is almost miraculous is

Rab
µ
ν = ec

µedνRab
c
d, (2.34)

where the term on the left-hand side is the curvature from the spin connection, and the Riemann

tensor on the right-hand side is the curvature from the Γ connection. This is true including torsion,

but not for a non-metric connection.

This is not entirely obvious. If you like, you can prove it explicitly using a metric connection.

2.2 Form Notation

Everybody who has ever calculated Rab
c
d explicitly knows that it is a nightmare. All these expres-

sions look much easier when written in terms of forms.

We start with a basis of (“pseudo-orthonormal”) one-forms

Eµ = ea
µdxa. (2.35)

This is enough to specify the metric by

ηµνE
µ ⊗ Eν = ηµνea

µeb
νdxa ⊗ dxb. (2.36)

Since {Eµ} form a basis, one can use them in any practical calculation. There is, in addition, a

connection one-form built from the spin connection

ωµν = −ωνµ = ωaµνdx
a. (2.37)

We can define a torsion two-form

T λ = ea
λ 1

2
Tb
a
cdx

b ∧ dxc. (2.38)

Lastly, there is a curvature two-form

Rµ
ν =

1

2
Rµνcddx

c ∧ dxd. (2.39)

These forms contain all the information you could possibly want. Now we will translate everything

into this language. No sane person, after they have seen this, will do calculations any other way.
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We discover that

dEµ + ωµν ∧ Eν = d(ea
µdxa) + ωa

µ
νdx

a ∧ ebνdxb

= (∂bea
µ)dxb ∧ dxa + ωa

µ
νeb

νdxa ∧ dxb

=
1

2
(∂aeb

µ − ∂bea
µ + ωa

µ
νeb

ν − ωb
µ
νea

ν)dxa ∧ dxb

=
1

2
(Γa

c
bec

µ − ωa
µ
σeb

σ − Γb
c
aec

µ + ωb
µ
σea

σ + ωa
µ
νeb

ν − ωb
µ
νea

ν)dxa ∧ dxb

=
1

2
Ta

c
bec

µdxa ∧ dxb = T µ, (2.40)

where we have used

∂beaν = Γb
c
aecν − ωbνσea

σ. (2.41)

This is Cartan’s first equation of structure:

dEµ + ωµν ∧ Eν = T µ. (2.42)

What about the curvature? You can substitute in the components to see that Cartan’s second

equation of structure holds:

dωλσ + ωλν ∧ ωνσ = Rλσ. (2.43)

Lect. 7

The second equation of structure is very similar to Yang-Mills theory, where F = dA + A ∧ A,

except that

{
F,A take values in the adjoint representation of a gauge group,

R,ω take values in the Lorentz group (or whatever stands in for it).
(2.44)

However, in Yang-Mills theory there is no analogue of torsion T or vielbeins E. This leads to

problems if you try to interpret general relativity as a Yang-Mills theory for the Lorentz group.

You could write something like

R = Dωω, (2.45)

but we will not use this notation.

Let us look at Bianchi identites. The first identity is obtained by taking d of Cartan’s first

equation of structure:

dT µ = d(dEµ + ωµν ∧ Eν)
= dωµν ∧ Eν − ωµν ∧ dEν

= (Rµ
ν − ωµρ ∧ ωρν) ∧ Eν − ωµν ∧ (T ν − ωνσ ∧ Eσ)

= Rµ
ν ∧ Eν − ωµν ∧ T ν . (2.46)

For vanishing torsion, as in general relativity, one has

Rλ
µ ∧ Eµ = 0, (2.47)
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which corresponds to the usual Ra[bcd] = 0.

There is a second Bianchi identity: Take d of the defintion of curvature.

Rλ
µ = d(dωλµ + ωλρ ∧ ωρµ)

= dωλρ ∧ ωρµ − ωλρ ∧ dωρµ
= (Rλ

ρ − ωλν ∧ ωνρ) ∧ ωρµ − ωλρ ∧ (Rρ
µ − ωρν ∧ ωνµ)

= Rλ
ρ ∧ ωρµ − ωλρ ∧Rρ

µ. (2.48)

We could write this as

dR = [R, ω], (2.49)

which is again very similar to Yang-Mills theory. In components, this is ∇[aRλ
|µ|bc] = 0.

2.3 Explicit Example

If one wants to evaluate the curvature and use it for something, then using this formalism is

relatively easy. In general relativity, the torsion vanishes, T µ = 0 (typically). Then you can use

0 = dEµ + ωµν ∧ Eν , ωµν = −ωνµ (2.50)

to find a metric connection ωµν for a given (pseudo-)orthonormal basis of one-forms Eµ. You can

expand the two-form dEλ as

dEλ =
1

2
cλµρE

µ ∧Eρ = −ωλµ ∧ Eµ (2.51)

and invert this relation to get

ωµν =
1

2
(−cλµν − cµλν + cνλµ)E

λ. (2.52)

This defines the connection one-form. Then you can use the second equation of structure to find

the curvature.

Most of the time, you can actually find ω by inspection, without using this formula.

Example: Spherically symmetric static spacetimes with line element

ds2 = −V 2(r)dt2 +W (r)2dr2 + r2dθ2 + r2 sin2 θdφ2 = ηµνE
µ ⊗ Eν (2.53)

which defines an orthonormal basis of one-forms:

E0 = V (r)dt, E1 = W (r)dr, E2 = r dθ, E3 = r sin θ dφ. (2.54)

You can think of the coefficients in these expressions as ea
µ. This relates the basis {Eµ} to a

co-ordinate basis; it is useful to invert this:

dt =
E0

V (r)
, dr =

E1

W (r)
, dθ =

E2

r
, dφ =

E3

r sin θ
. (2.55)
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The coefficients appearing here form the matrix eaµ. The first equation of structure gives

dE0 = d(V (r)dt)

= −V ′(r)dt ∧ dr

= − V ′(r)
V (r)W (r)

E0 ∧E1

= −ω0
1 ∧ E1 − ω0

2 ∧ E2 − ω0
3 ∧E3, (2.56)

since ω0
0 = −ω00 = 0. This means that ω0

2 is proportional to E2, ω0
3 is proportional to E3 and

ω0
1 =

V ′(r)
V (r)W (r)

E0 + αE1. (2.57)

Similarly,

dE1 = d(W (r)dr)

= 0

= ω1
0 ∧ E0 − ω1

2 ∧E2 − ω1
3 ∧ E3. (2.58)

We use ω1
0 = ω10 = −ω01 = ω0

1 to see there is no E1 term and hence

ω0
1 =

V ′(r)
V (r)W (r)

E0. (2.59)

ω1
2 is proportional to E2 and ω1

3 is proportional to E3.

dE2 = d(rdθ)

= dr ∧ dθ
=

1

rW (r)
E1 ∧ E2

= ω2
0 ∧ E0 − ω2

1 ∧E1 − ω2
3 ∧ E3. (2.60)

Using that ω2
0 = ω20 = −ω02 = ω0

2 and ω2
1 = ω21 = −ω12 = −ω1

2, we now have

ω0
2 = 0, ω1

2 = − 1

rW (r)
E2. (2.61)

Finally,

dE3 = d(r sin θdφ)

= sin θdr ∧ dφ+ r cos θdθ ∧ dφ

=
1

rW (r)
E1 ∧ E3 +

1

r tan θ
E2 ∧ E3

= ω3
0 ∧E0 − ω3

1 ∧ E1 − ω3
2 ∧ E2. (2.62)

Using ω3
0 = ω0

3, ω
3
1 = −ω1

3 and ω3
2 = −ω2

3 we obtain

ω0
3 = 0, ω1

3 = − 1

rW (r)
E3, ω2

3 = − 1

r tan θ
E3. (2.63)

We can summarise this in a table:
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ωab b = 0 b = 1 b = 2 b = 3

a = 0 0 V ′(r)
V (r)W (r)E

0 0 0

a = 1 V ′(r)
V (r)W (r)E

0 0 − 1
rW (r)E

2 − 1
rW (r)E

3

a = 2 0 1
rW (r)E

2 0 − 1
r tan θE

3

a = 3 0 1
rW (r)E

3 1
r tan θE

3 0

There are always 1
2d(d−1) nontrivial components of ω. Compare this with Γb

a
c, which has 1

2d
2(d+1)

components for a symmetric connection. Lect. 8

Now we will calculate the curvature two-form using

Rµ
ν = dωµν + ωµρ ∧ ωρν , (2.64)

in the basis of two-forms given by Eρ ∧ Eσ, where

Rµ
ν =

1

2
Rµ

νρσE
ρ ∧ Eσ. (2.65)

Since

Rµν = −Rνµ, (2.66)

we again only need to calculate six components:

R0
1 = dω0

1 + ω0
µ ∧ ωµ1

= dω0
1 + ω0

2 ∧ ω2
1 + ω0

3 ∧ ω3
1

=

(

V ′′(r)
V (r)W (r)

− V ′2(r)
V 2(r)W (r)

− V ′(r)W ′(r)
V (r)W 2(r)

)

dr ∧ E0 +
V ′(r)

V (r)W (r)
dE0

=

(

− V ′′(r)
V (r)W 2(r)

+
V ′2(r)

V 2(r)W 2(r)
+
V ′(r)W ′(r)
V (r)W 3(r)

)

E0 ∧ E1 − V ′2(r)
V 2(r)W 2(r)

E0 ∧ E1

=
1

W 2(r)

(

−V
′′(r)
V (r)

+
V ′(r)W ′(r)
V (r)W (r)

)

E0 ∧ E1. (2.67)

R0
2 = dω0

2 + ω0
1 ∧ ω1

2 + ω0
3 ∧ ω3

2

=
V ′(r)

V (r)W (r)
E0 ∧

(

− 1

rW (r)
E2

)

= − V ′(r)
rV (r)W 2(r)

E0 ∧ E2. (2.68)

R0
3 = dω0

3 + ω0
1 ∧ ω1

3 + ω0
2 ∧ ω2

3

=
V ′(r)

V (r)W (r)
E0 ∧

(

− 1

rW (r)
E3

)

= − V ′(r)
rV (r)W 2(r)

E0 ∧ E3. (2.69)
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R1
2 = dω1

2 + ω1
0 ∧ ω0

2 + ω1
3 ∧ ω3

2

= d

(

− 1

rW (r)
E2

)

+

(

− 1

rW (r)
E3

)

∧
(

1

r cot θ
E3

)

=

(
1

r2W (r)
+

W ′(r)
rW 2(r)

)

dr ∧ E2 − 1

rW (r)
dE2

=
1

W 2(r)

(
1

r2
+
W ′(r)
rW (r)

)

E1 ∧ E2 − 1

r2W 2(r)
E1 ∧ E2

=
W ′(r)
rW 3(r)

E1 ∧ E2. (2.70)

R1
3 = dω1

3 + ω1
0 ∧ ω0

3 + ω1
2 ∧ ω2

3

= d

(

− 1

rW (r)
E3

)

+
1

rW (r)
· 1

r tan θ
E2 ∧E3

=

(
1

r2W (r)
+

W ′(r)
rW 2(r)

)

dr ∧ E3 − 1

rW (r)

(
1

rW (r)
E1 ∧ E3

+
1

r tan θ
E2 ∧ E3

)

+
1

r2W (r) tan θ
E2 ∧ E3

=
1

W 2(r)

(
1

r2
+
W ′(r)
rW (r)

)

E1 ∧ E3 − 1

r2W 2(r)
E1 ∧E3

=
W ′(r)
rW 3(r)

E1 ∧ E3. (2.71)

R2
3 = dω2

3 + ω2
0 ∧ ω0

3 + ω2
1 ∧ ω1

3

= d

(

− 1

r tan θ
E3

)

− 1

rW (r)
· 1

rW (r)
E2 ∧E3

=
1

r2 tan θ
dr ∧ E3 +

1

r sin2 θ
dθ ∧E3 − 1

r tan θ

(
1

rW (r)
E1 ∧ E3 +

1

r tan θ
E2 ∧ E3

)

− 1

r2W 2(r)
E2 ∧ E3

=

(
1

r2W (r) tan θ
− 1

r2W (r) tan θ

)

E1 ∧ E2 +

(
1

r2 sin2 θ
− 1

r2 tan2 θ
− 1

r2W 2(r)

)

E2 ∧ E3

=
1

r2

(

1 − 1

W 2(r)

)

E2 ∧ E3. (2.72)

Now in practice you want to calculate solutions of Einstein’s equations. For this you need to

calculate the Ricci tensor, defined by

Rµ
νµσ = Rνσ. (2.73)

We can read off the components Rµ
νµσ from the expressions above, e.g.

R0
101 =

1

W 2(r)

(

−V
′′(r)
V (r)

+
V ′(r)W ′(r)
V (r)W (r)

)

, (2.74)

noticing that they are only non-vanishing if ν = σ, which is a consequence of the symmetry of the

problem. It follows that we must have

Rνσ = 0, ν 6= σ. (2.75)
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The diagonal components are

R00 = R1
010 +R2

020 +R3
030

=
1

W 2(r)

(
V ′′(r)
V (r)

− V ′(r)W ′(r)
V (r)W (r)

)

+
1

W 2(r)

V ′(r)
rV (r)

+
1

W 2(r)

V ′(r)
rV (r)

=
1

W 2(r)

(
V ′′(r)
V (r)

− V ′(r)W ′(r)
V (r)W (r)

+ 2
V ′(r)
rV (r)

)

. (2.76)

R11 = R0
101 +R2

121 +R3
131

=
1

W 2(r)

(

−V
′′(r)
V (r)

+
V ′(r)W ′(r)
V (r)W (r)

+ 2
W ′(r)
rW (r)

)

. (2.77)

R22 = R0
202 +R1

212 +R3
232

=
1

W 2(r)

(

− V ′(r)
rV (r)

+
W ′(r)
rW (r)

− 1

r2

)

+
1

r2
, (2.78)

and R33 = R22 (exercise). For vacuum solutions, we need Rµν = 0, so

0 = R00 +R11 =
2

rW 2(r)

(
V ′(r)
V (r)

+
W ′(r)
W (r)

)

, (2.79)

and hence

log V (r)W (r) = constant, V (r)W (r) = constant. (2.80)

If we demand that spacetime is flat as r → ∞, it is natural to set

W (r) =
1

V (r)
(2.81)

Then

R22 = V 2(r)

(

−2
V ′(r)
rV (r)

− 1

r2

)

+
1

r2
(2.82)

and so we have to solve

2
V ′(r)
V (r)

= −1

r
+

1

rV 2(r)
=

1 − V 2(r)

rV 2(r)
. (2.83)

This is an ordinary differential equation that you can easily solve:

∫
2V (r) dV

1 − V 2(r)
=

∫
dr

r
, V 2(r) = 1 − constant

r
. (2.84)

We have rediscovered the Schwarzschild solution. This is the easiest way to find solutions to

Einstein’s equations.
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3 Integration

You have learned in general relativity that if we want to integrate a scalar φ over a d-dimensional

domain D (with boundary ∂D), then

I =

∫

D
ddx

√
g φ(x) (3.1)

is independent of the choice of co-ordinates, where

g = |det gab| (3.2)

and
∫
ddx is interpreted as a Riemann integral.

Now suppose that φ = ∇aV
a, then (Gauss’ theorem)

I =

∫

D
∇aV

a =

∫

∂D
dΣa V

a, (3.3)

where dΣa = na·(volume element of ∂D) for an outward unit normal na. The metric on ∂D is

hab = gab ± nanb, (3.4)

where there is a plus if n is timelike and a minus if n is spacelike. Lect. 9

We will now replace the covariant volume element ddx
√
g in the above formulation by a volume

form, the d-form

ǫ = E1 ∧ E2 ∧ . . . ∧Ed, (3.5)

where {Eµ} are a basis of orthonormal one-forms. Remember the alternating symbol (in the tangent

space)

ηµν...τ =







+1 (µν . . . τ) is an even permutation of (1, . . . , d)

−1 (µν . . . τ) is an odd permutation of (1, . . . , d)

0 otherwise.

(3.6)

ηµν...τ is found by lowering with the Lorentz metric (or more generally, the tangent space metric).

Hence,

ηµν...τ = (−)tηµν...τ . (3.7)

(Normally you should not write equations like this one.) In terms of components, we then have

ǫ =
1

d!
(−)tηµν...τ E

µ ∧ Eν ∧ . . . ∧ Eτ . (3.8)

Expressing this in a co-ordinate basis, using Eµ = ea
µdxa,

ǫ =
1

d!
(−)tηµν...τ ea

µeb
ν . . . ef

τdxa ∧ dxb ∧ . . . ∧ dxf

=
1

d!
(−)tηµν...τ ea

µeb
ν . . . ef

τηabc...fdx1 ∧ dx2 ∧ . . . ∧ dxd

= (−)t(det e)ddx. (3.9)

det e is almost the same as
√
g:

gab = ea
µeb

νηµν ⇒ det g = det(e2η) = ±(det e)2. (3.10)
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Hence |det e| =
√

|det g| =
√
g. What you discover is that ǫ reproduces the previous expression

for the volume element. So we define integration over a d-dimensional region to be
∫

D
φ d(V ol) ≡

∫

D
φ ǫ. (3.11)

One always integrates a d-form over a space of dimension d. Alternatively,
∫

D
φ d(V ol) ⇒

∫

D
∗φ. (3.12)

The first and most imporant result for integrals over forms is Stokes’ theorem. We prove a

pedestrian version, where the region D is bounded by two surfaces which can be taken as λ = 0

and λ = 1. We can then choose co-ordinates in D such that the metric is

ds2 = dλ2 + ds2⊥, (3.13)

such that gλλ = 1 and gλi = 0 (these are Gaussian normal co-ordinates, see GR course). The

volume form on D is dλ ∧ d(V ol)d−1, where d(V ol)d−1 is a volume form on surfaces λ = constant.

Now take a (d− 1)-form which is proportional to d(V ol), written as f(λ, xi)d(V ol), and integrate

∫

D

∂f(λ, xi)

∂λ
dλ ∧ d(V ol) =

∫

D
df(λ, xi) ∧ d(V ol) =

∫

D
d
(
f(λ, xi) ∧ d(V ol)

)
, (3.14)

since (∂f/∂xi)dxi ∧ d(V ol) = 0 and ∂d(V ol)/∂λ = 0. As a one-dimensional integral over λ this is

∫

D

∂f(λ, xi)

∂λ
dλ ∧ d(V ol) =

∫

∂D(λ=1)
f(1, xi)d(V ol) −

∫

∂D(λ=0)
f(0, xi)d(V ol), (3.15)

which is an integral over the boundary. So in this case we have
∫

D
dω =

∫

∂D
ω. (3.16)

This is by far the easiest version of Stokes’ theorem. A corollary of this is

0 =

∫

D
ddg =

∫

∂D
dg =

∫

∂∂D
g (3.17)

for any (d− 2)-form g. So the boundary of a boundary is empty.

3.1 Action for General Relativity

We want to give an action for general relativity in d = 4. You are probably used to the Einstein-

Hilbert action ∫

ddx
√
g R; (3.18)

from this you derive Rab = 0 in vacuum, but under various assumptions on the connection. There

is an alternative formulation which makes the requirements on the connection appear more natural:

I =

∫

D
(Rµν(ω) ∧ Eρ ∧Eσ)ηµνρσ =

∫

D

((

dωµλ + ωµν ∧ ωνλ
)

∧ Eρ ∧ Eσ
)

ηµνρσ . (3.19)
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This action contains two types of fields: the vielbein fields and the connection ω. We require

I to be stationary under arbitrary variation of both E and ω. Note that in this action, ηµνρσ
projects out the symmetric part of ω. We only need to consider the antisymmetric part of ω, so

one automatically has a metric connection.

Vary E

δI =

∫

D
(Rµν(ω)∧ δEρ ∧Eσ +Rµν(ω)∧Eρ ∧ δEσ)ηµνρσ =

∫

D
2(Rµν(ω)∧ δEρ ∧Eσ)ηµνρσ ; (3.20)

if this is supposed to vanish for arbitrary δEρ, we must have

Rµν ∧ Eρηµνρσ = 0. (3.21)

In components, this is
1

2
RµνλτE

λ ∧ Eτ ∧ Eρηµνρσ = 0, (3.22)

or

Rµν [λτηρ]µνσ = 0. (3.23)

Contract this with ηλτρκ, which does not annihilate any information in the equation:

0 = Rµνλτηρµνση
λτρκ

= 2Rµνλτ

[

δµ
κδν

λδσ
τ + δµ

λδν
τδσ

κ + δµ
τ δν

κδσ
λ
]

(3.24)

= 2
(

Rκλλτ δσ
τ +Rλτ λτ δσ

κ +Rτκλτ δσ
λ
)

= 2 (−2Rκσ +Rδσ
κ) ,

which you recognise as the vacuum Einstein equations. Contraction gives

Rκσ = 0, (3.25)

so the Ricci tensor of the connection ω vanishes.

Now we try to vary ω:

δI =

∫

D

((

dδωµλ + δωµν ∧ ωνλ + ωµν ∧ δωνλ
)

∧Eρ ∧ Eσ
)

ηµνρσ. (3.26)

This should vanish for arbitrary ω. Use the identity for a one-form X and a two-form Y
∫

∂D
X ∧ Y =

∫

D
d(X ∧ Y ) =

∫

D
dX ∧ Y −X ∧ dY. (3.27)

When varying something, you always have to worry about boundary conditions. Here we put

δωµν = 0 on the boundary. One could do this more generally, and consider boundary terms in the

action as well (see Black Holes course).

Setting the boundary term to zero, we can turn (dδω) ∧ E ∧ E into δω ∧ d(E ∧ E):

δI =

∫

D

{

δωµλ ∧ (dEρ ∧ Eσ − Eρ ∧ dEσ) + 2 (δωµν) ∧ ωνλ ∧ Eρ ∧Eσ
}

ηµλρσ

=

∫

D
δωµν ∧

(

(dEρ ∧ Eσ − Eρ ∧ dEσ) ηµνρσ + 2ων
λ ∧ Eρ ∧Eσηµλρσ

)

. (3.28)
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This should vanish for arbitrary ωµν , so we get

(dEρ ∧ Eσ − Eρ ∧ dEσ) ηµνρσ + 2ω[ν
λ ∧ Eρ ∧Eσηµ]λρσ = 0. (3.29)

Recall Cartan’s first equation of structure and replace dEρ = T ρ − ωρτ ∧ Eτ :

((T ρ − ωρτ ∧Eτ ) ∧Eσ − Eρ ∧ (T σ − ωστ ∧ Eτ )) ηµνρσ + 2ω[ν
λ ∧Eρ ∧ Eσηµ]λρσ = 0. (3.30)

Now use

2ω[ν
λ ∧ Eρ ∧Eσηµ]λρσ + (−ωρτ ∧Eτ ∧ Eσ + Eρ ∧ ωστ ∧ Eτ ) ηµνρσ

= 2ω[ν
λ ∧ Eρ ∧Eσηµ]λρσ − 2ωρλ ∧ Eλ ∧ Eσηµνρσ

= 2
(

ωτ [ν
ληµ]λρσ − ωτ

λ
ρηµνλσ

)

Eτ ∧ Eρ ∧ Eσ

= 2
(

−ωτλ[νηµ]λρσ − ωτ
λ
ρηµνλσ

)

Eτ ∧Eρ ∧ Eσ, (3.31)

where we expanded ων
λ = ωτν

λEτ etc. Take the components of this three-form and multiply by

ητρσκ, which is taking the Hodge dual:

2
(

−ωτλ[νηµ]λρση
τρσκ − ωτ

λ
ρηµνλση

τρσκ
)

= −ωτλνηρσµληρστκ + ωτ
λ
µηρσνλη

ρστκ + 2ωτ
λ
ρησµνλη

στρκ

= 4ωτ
λ
νδ[µ

τδλ]
κ − 4ωτ

λ
µδ[ν

τδλ]
κ − 12ωτ

λ
ρδ[µ

τδν
ρδλ]

κ

= 4ω[µ
λ
|ν|δλ]

κ − 4ω[ν
λ
|µ|δλ]

κ − 12ω[µ
λ
ν
δλ]

κ

= 2
(

ωµ
κ
ν − ων

κ
µ − ωλ

λ
νδµ

κ + ωλ
λ
µδν

κ − ωµ
κ
ν − ων

λ
λδµ

κ − ωλ
λ
µδν

κ + ωµ
λ
λδν

κ + ωλ
λ
νδµ

κ + ων
κ
µ

)

= 2
(

−ωνλλδµκ + ωµ
λ
λδν

κ
)

= 0. (3.32)

Hence all terms involving the connection cancel, and we finally obtain

(T ρ ∧ Eσ) ηρσµν = 0. (3.33)

Lect.

10We claim that it follows from

T τ ∧ Eλ = 0 (3.34)

that the torsion two-form has to vanish identically. To show this, we expand in a basis of one-forms:

T τ =
1

2
T τ αβE

α ∧ Eβ. (3.35)

Then we have

T τ αβE
α ∧ Eβ ∧ Eλ = 0. (3.36)

We multiply this three-form by ητλρσ and take its components:

T τ [αβη|τ |λ]ρσ = 0. (3.37)

More explicitly,

T ταβητλρσ + T τ λαητβρσ + T τ βληταρσ = 0. (3.38)
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Now we contract with ηλρσκ

0 = T τ αβητλρση
λρσκ + T τ λαητβρση

λρσκ + T τ βληταρση
λρσκ

= 6T τ αβδτ
κ − 2

(

δτ
λδβ

κ − δβ
λδτ

κ
)

T τ λα − 2
(

δτ
λδα

κ − δα
λδτ

κ
)

T τ βλ

= 6T καβ − 2 (T τ ταδβ
κ − T κβα) − 2 (T τ βτδα

κ − T κβα)

= 2T καβ − 2T τ ταδβ
κ − 2T τ βτδα

κ (3.39)

Contract κ in this equation with β to find

2T κακ + 8T τ ατ − 2T τ ατ = 0. (3.40)

Therefore we have T κακ = 0 and consequently

T καβ = 0. (3.41)

We have discovered that the action

I[E,ω] =

∫

Rµν(ω) ∧Eρ ∧ Eσηµνρσ , (3.42)

when E and ω are independently varied, gives implicitly a metric conection and explicitly vanishing

torsion and the vacuum Einstein equations. In this sense, the action is superior to the Einstein-

Hilbert action.

3.2 Yang-Mills Action

Yang-Mills theory in four dimensions can be defined by the action

I =
1

2

∫

Tr(F ∧ ∗F ), (3.43)

where the gauge group G is compact. (If you do not make this assumption, the quantum theory

will violate unitarity.) For a set of generators {Tα} of G,

I =
1

2

∫

Tr(FαTα ∧ ∗F βTβ), (3.44)

and we can use the Cartan metric Tr(TαTβ) = −1
2ηαβ = 1

2δαβ (since G is compact) to rewrite this

as

I =
1

2

∫

Fα ∧ ∗F β Tr(TαTβ) =
1

4

∫

Fα(A) ∧ ∗Fα(A), (3.45)

where explicitly

Fα = dAα +
1

2
gcβγ

αAβ ∧Aγ . (3.46)

We take G to be compact and semi-simple, so that c is totally antisymmetric in all indices. If you

think about it, the components of G ∧ ∗F , where G and F are two-forms, are proportional to

GµνF
ρσηρσλτ , (3.47)
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and so the thing that is integrated is

GµνF
ρσηρσλτη

µνλτ . (3.48)

But this is the same as you get for ∗G ∧ F . Hence, under variation of A one gets two identical

terms:

δI =
1

4

∫

δFα(A) ∧ ∗Fα(A) + Fα(A) ∧ ∗δFα(A)

=
1

2

∫

δFα(A) ∧ ∗Fα(A)

=
1

2

∫

δ

(

dAα +
1

2
gcβγ

αAβ ∧Aγ
)

∧ ∗Fα(A)

=
1

2

∫ (

δdAα +
1

2
gcβγ

αδAβ ∧Aγ +
1

2
gcβγ

αAβ ∧ δAγ
)

∧ ∗Fα(A)

=
1

2

∫ (

δdAα + gcβγ
αδAβ ∧Aγ

)

∧ ∗Fα(A) (3.49)

Again, we use
∫

∂M
δA ∧ ∗F =

∫

M
d(δA ∧ ∗F ) =

∫

M
(dδA ∧ ∗F − δA ∧ d ∗ F ) (3.50)

and set the boundary term to zero to obtain

δI =
1

2

∫

δAα ∧
(

d ∗ Fα + gcαβ
γAβ ∧ ∗Fγ

)

(3.51)

which should vanish for all δAα. One obtains the Yang-Mills equations

d ∗ Fα + gcαβ
γAβ ∧ ∗Fγ = 0, (3.52)

or alternatively

d ∗ F + g[A, ∗F ] = 0. (3.53)

Conventionally one rescales the fields to remove g from the definition of F :

A→ A

g
, F = dA+ gA ∧A→ 1

g
(dA+A ∧A). (3.54)

Since the action is homogeneous of degree two in F , g can be taken outside the integral:

I =
1

4g2

∫

Tr(F ∧ ∗F ), F = dA+A ∧A. (3.55)

Notice that this is just a way of rescaling the fields which is not a change of physics.

4 Topologically Non-Trivial Field Configurations

These are things which you can not see in perturbation theory in quantum field theory, but are

nevertheless important. The simplest example is a domain wall in scalar field theory, where we

take the potential to be

V (φ) = λ(φ2 − a2)2. (4.1)

30



This is a renormalizable sensible field theory. The action for this theory in four-dimensional space-

time is

I =

∫

d4x
√
g

(

−1

2
∂aφ∂bφg

ab − V (φ)

)

, (4.2)

where we take spacetime to be Minkowski space. The potential has minima at φ = ±a:

-

6

φ

V (φ)

φ− = −a φ+ = a

There are two different choices of vacuum state.

Perturbation theory describes small fluctuations around one of the minima. We might be interested,

instead of doing this, in domain walls. These are configurations where the field takes two different

asymptotic values in different regions of space.

Fluctuations around a minimum can be described as having some kind of mass. For an ordinary

massive particle,

V (φ) =
1

2
m2φ2. (4.3)

Hence we can define

m2 = V ′′(vacuum). (4.4)

This describes the curvature at the minimum. For our V (φ),

V (φ) = λ(φ2 − a2)2, V ′(φ) = 4λφ(φ2 − a2), V ′′(φ) = 4λ(φ2 − a2) + 8λφ2 (4.5)

and hence

m2 = V ′′(±a) = 8λa2. (4.6)

The potential has coupling constant λ and describes particles of mass
√

8λa. λ and m desribe the

physical variables in this problem. The equations of motion (the analogue of the Klein-Gordon

equation) are

2φ− V ′(φ) = 0. (4.7)

We look for solutions that are static and have planar symmetry. This turns it into a one-dimensional

problem: If φ = φ(z), the Klein-Gordon equation becomes

d2φ

dz2
= 4λφ(φ2 − a2). (4.8)
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Multiply this equation by φ′(z) and integrate over z:

φ′′(z)φ′(z) = 4λφ(z)φ′(z)(φ(z)2 − a2)

1

2
(φ′(z))2 = λ(φ(z)2 − a2)2 + constant. (4.9)

A long way away from the domain wall, we assume that φ → φ± and φ′(z) → 0. This means the

constant is set to zero. Now integrate again:

φ′(z) = ±
√

2λ(φ(z)2 − a2)
∫

dφ

φ2 − a2
= ±

√
2λ

∫

dz

1

a
Artanh

φ

a
= ±

√
2λ(z − z0). (4.10)

Choosing the positive sign, we have found a kink solution

φ(z) = a tanh
(√

2λa(z − z0)
)

. (4.11)

The solution interpolates between two vacua. z = z0 is a domain wall which separates one vacuum

from a different vacuum. Lect.

11The energy of the field is in the region around z = z0. To calculate the energy-momentum tensor,

take the covariant Lagrangian

I =

∫

d4x
√
g

(

−1

2
∂aφ∂bφg

ab − V (φ)

)

, (4.12)

then the energy-momentum tensor is given by

Tab = − 2√
g

δI

δgab
. (4.13)

This gives

Tab = ∂aφ∂bφ− 1

2
gab

(

gcd∂cφ∂dφ+ V (φ)
)

(4.14)

You want to calculate the energy per unit area in the domain wall, which is

∞∫

−∞

dz T00. (4.15)

We put z0 = 0 for simplicity. Then

φ(z) = a tanh(
√

2λaz), φ′(z) =

√
2λa2

cosh2(
√

2λaz)
, (4.16)

T00 =
1

2

(

φ′2 + λ(φ2 − a2)2
)

=
1

2

(
2λa4

cosh4(
√

2λaz)
+ λa4(tanh2(

√
2λaz) − 1)2

)

=
1

2
λa4

(
2

cosh4(
√

2λaz)
+

1

cosh4(
√

2λaz)

)

=
3λa4

2 cosh4(
√

2λaz)
. (4.17)
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The energy per unit area is then

∞∫

−∞

dz T00 =
3λa4

2

∞∫

−∞

dz
1

cosh4(
√

2λaz)

=
3λa4

2

∞∫

−∞

dz

(

1

cosh2(
√

2λaz)
− tanh2(

√
2λaz)

cosh2(
√

2λaz)

)

=
3λa4

2

[
1√
2λa

tanh(
√

2λaz) − 1

3
√

2λa
tanh3(

√
2λaz)

]∞

−∞

=
3λa4

2

1√
2λa

4

3
=

√
2λa3 =

1

16

m3

λ
, (4.18)

where we used a = m/
√

8λ. The important result is that this is proportional to λ−1.

For static configurations, the action is energy times a time interval. The path integral will be

Z ∼
∫

D[φ]e−iI[φ]. (4.19)

The amplitude with any process that contains a domain wall will be

Z ∼ ei/λ, (4.20)

up to numerical factors. This has an essential singularity at λ = 0.

The key point is that you can never find this process in perturbation theory in λ. Therefore

one has to do things which are inherently non-perturbative in nature. The amplitudes involving

topologically non-trivial configurations always involve inverse powers of the coupling constants.

5 Kaluza-Klein Theory

This, in its simplest form, is just general relativity in five dimensions instead of four. Your first

reaction will be that this makes absolutely no sense.

Imagine that one dimension out of the five is wrapped up in the form of a very small circle. We

would like x5 to be wrapped up with radius R, so we identify

x5 with x5 + 2πR. (5.1)

You could argue that this is a special class of solutions which are irrelevant. But this is nothing

unusual, this is simply what one does to make life easy - compare with isotropic and homogeneous

solutions in cosmology. We assume there is a Killing vector associated with translations in x5,

∂

∂x5
= Ka ∂

∂xa
. (5.2)

Then, the five-metric can be written as not to depend explicitly on x5. We write this as

gab =







g55 | g5j
|

gi5 | gij
|






, (5.3)
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where the indices i, j run from 0 to 3.

From a four-dimensional point of view, g5j looks like a vector field, g55 looks like a scalar field.

That is indicative of what you should expect.

We can write the five-metric in the following form, which is cunningly chosen to make life easy:

ds2 = e2βφγijdx
idxj + e2αφ

(
dx5 +Aidx

i
)2
, (5.4)

where we interpret γij as a four-dimensional metric, Ai as a vector field under four-dimensional co-

ordinate transformations and φ as a scalar field under four-dimensional co-ordinate transformations.

Now draw your attention to what happens under an infinitesimal co-ordinate transformation that

does involve x5. Suppose that

Ai → Ai + ∂iΛ, (5.5)

then the one-form dx5 +Aidx
i is invariant if

x5 → x5 − Λ. (5.6)

If this were to describe electromagnetism, a gauge transformation is the same as a co-ordinate

transformation. The simplest thing to do is to calculate the Ricci scalar, because this is what

appears in the action

I =
1

16πG
(5)
N

∫

d5x
√
g (5)R =

1

16πG
(5)
N

∫

d4x

∫

dx5

︸ ︷︷ ︸

= 2πR

e(4β+α)φ√γ (5)R. (5.7)

(Note that det g = e(8β+2α)φ det γ.)

The calculation of (5)R is half messy and half straightforward. You should do the straightforward

part yourself. The messy part is an application of the technology of forms.

Step 1 Find an orthonormal basis in d = 5: Define

E5 = eαφ(dx5 +A), A ≡ Aidx
i, (5.8)

and regard ds4(2) = γijdx
idxj as four-dimensional line element which defines an orthonormal basis

of one-forms ei, such that

γijdx
idxj = ei ⊗ ejηij , (5.9)

where we now use spacetime and tangent space indices interchangably. Then the five-dimensional

one-forms are defined by

Ei = eβφei, (5.10)

and the five-metric is

ds2 = E5 ⊗ E5 + ηijE
i ⊗ Ej . (5.11)

Step 2 Calculate the connection one-forms, setting torsion to zero:

dEi = β dφ eβφ ∧ ei + eβφdei

= β dφ eβφ ∧ ei − eβφω̂i j ∧ ej , (5.12)
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where we use Cartan’s first equation of structure dei = −ω̂i j∧ej for the four-dimensional connection

ω̂, and

dE5 = α dφ ∧ eαφ(dx5 +A) + eαφdA. (5.13)

Thinking of electromagnetism, we write dA as F , with

F =
1

2
Fije

i ∧ ej =
1

2
(∂iAj − ∂jAi) e

i ∧ ej (5.14)

We can rewrite this in terms of the big E’s with extreme ease:

dEi = β e−βφ∂jφE
j ∧ Ei − ω̂i j ∧ Ej , (5.15)

dE5 = α e−βφ∂jφE
j ∧ E5 +

1

2
e(α−2β)φ

(
FijE

i ∧ Ej
)
, (5.16)

where ∂jφ relates to the components of dφ = (∂jφ) ej (not written in terms of Ej)!

From Cartan’s first equation of structure, we obtain the connection components (note that the

connection must be antisymmetric)

ω5
i = α∂iφ e

−βφE5 +
1

2
e(α−2β)φFijE

j, (5.17)

ωij = ω̂i j − βe−βφ
(
∂iφEj − ∂jφE

i
)
− 1

2
e(α−2β)φF ijE

5, (5.18)

where we get the first from dE5 = −ω5
i ∧ Ei, and the second from

dEi = −ωij ∧ Ej − ωi5 ∧E5 = −ωij ∧ Ej +
1

2
e(α−2β)φF ijE

j ∧ E5. (5.19)

Lect.

12In slightly more general terms, we could do a reduction from (d + 1) dimensions to d dimensions,

where the metric is written as

ds2 = e2βφγijdx
idxj + e2αφ

(
dz +Aidx

i
)2

(5.20)

and the z direction is taken to be curled up. Of course, the calculations go through as before.

You can now calculate the two-form from this. This is rather messy and there are lots of terms you

will get. We will not write the calculation out explicitly.

You will find that the result is

Rzi = e−2βφ

(

α(α − 2β)∂iφ∂jφ+ α∂j∂iφ+ ηijαβ∂kφ∂
kφ− 1

4
e2(α−β)φFkjF

k
i

)

Ej ∧ Ez

+e(α−3β)φ

(
1

2
(α− β)∂iφFkj −

1

2
(α− β)∂[kφFj]i −

1

2
∂[kFj]i +

1

2
βηi[jFk]l∂

lφ

)

Ek ∧ Ej

−1

2
e(α−2β)φ

(

Fijω̂
j
k ∧ Ek + Fjkω̂

j
i ∧Ek

)

+ α∂jφe
−βφEz ∧ ω̂j i, (5.21)

Rij = rij + Ez ∧ Eke(α−3β)φ

(

(α− β)F ij∂kφ+
1

2
∂kF

i
j −

1

2
(α− β)

(
∂iφFjk − F ik∂jφ

)

+
1

2
β
(

∂nφF
n
jδ
i
k + F il∂

lφηjk

))

+ Ek ∧ Ele−2βφ
(
β
(
∂j∂[kφδ

i
l] − ∂[k∂

iφηl]j
)

(5.22)

−1

4
e2(α−β)φ

(
F ijFkl + F i[k|Fj|l]

)
+ β2

(
∂iφ∂[kφηl]j − ∂pφ∂

pφδi [kηl]j − ∂jφ∂[kφδ
i
l]

)
)

+βe−βφ
(

∂kφE
i ∧ ω̂k j − ∂kφω̂i k ∧Ej

)

− 1

2
βe(α−2β)φ

(

F kjω̂
i
k ∧Ez − F ikω̂

k
j ∧ Ez

)

,
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where rij = dω̂i j + ω̂i k ∧ ω̂k j is the d-dimensional Riemann tensor.

This, as you can gather, is an unpleasant calculation to do. If we look at the action

I =
1

16πG
(d+1)
N

∫

dd+1x
√
gR, (5.23)

we will find that this can be brought in to an extremely simple form. From the expressions for Rij ,

discover that

R = 2Rziz
i +Riji

j

= 2e−2βφ

(

α(−α+ 2β)(∇φ)2 − α2φ− d · αβ(∇φ)2 +
1

4
e2(α−β)φF 2

)

+ 2α∂kφe
−βφω̂ik i

+e−2βφr + 2e−2βφ + 2e−2βφ

(

β(−d+ 1)2φ− 1

4
e2(α−β)φ 1

2
F 2 + β2((∇φ)2(d− 1)

−1

2
(∇φ)2(d− 1)d

)

+ 2βe−βφ(d− 1)∂nφω̂
jn

j

= e−2βφr − 2e−2βφ(∇φ)2
(

α2 + (d− 2)αβ +
1

2
(d− 2)(d− 1)β2

)

− 2e−2βφ
2φ(α+ β(d− 1))

+
1

4
e(2α−4β)φF 2 + 2e−βφ∂kφω̂

ik
i(α+ β(d− 1)). (5.24)

The offending term involving the connection components can be set to zero by choosing

α = −β(d− 1). (5.25)

Then

R = e−2βφr − e−2βφ(d− 1)(d + 2)β2(∇φ)2 +
1

4
e(2α−4β)φF 2. (5.26)

If we recall that det g = e2(α+dβ)φ det γ, we obtain

√
g R =

√
γe−βφ

(

r(γ) +
1

4
e−β(2d+1)φF 2 − (∇φ)2

)

. (5.27)

The result could also be (choosing α = −β(d− 2), but then where are the connection terms?)

√
g R =

√
γ

(

r(γ) − 1

4
e−2β(d−1)φF 2 − 1

2
(∇φ)2

)

. (5.28)

You can do the integral over z in the action which just gives a constant 2πR, and obtain the

d-dimensional action

I =
2πR

16πG
(d+1)
N

︸ ︷︷ ︸

=:(16πG
(d)
N

)−1

∫

ddx
√
γe−βφ

(

r(γ) +
1

4
e−β(2d+1)φF 2 − (∇φ)2

)

. (5.29)

In a region where φ is more or less constant, we just get a unified theory of a scalar field, an

“electromagnetic field”, and gravity. Probably, this theory would have languished in the physics of

the 1920’s, were it not for string theory. Since string theory only makes sense in higher dimensions,

you have to do the same construction to get rid of the extra dimensions.
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5.1 Particle Motion in Kaluza-Klein Theory

Now the first thing is to ask yourself about the motion of particles in this spacetime:

(a) Classical particle motion

This is given by geodesics, obtained by extremising the action

I =

∫

ds gabẋ
aẋb. (5.30)

Let us decompose this

I =

∫

ds
(

e2βφγij + e2αφAiAj

)

ẋiẋj + 2e2αφAiẋ
iż + e2αφż2. (5.31)

Since ∂
∂z is Killing,

∂L

∂ż
= 2e2αφ(ż +Aiẋ

i) (5.32)

is a constant of the motion along geodesics. (This is of course general: If Ka is Killing, and

ua = ẋa, then ub∇b(K
aua) = 0.)

We only want to consider φ = constant. This is because the vacuum solution will be of the

form

ηijdx
idxj + dz2 + 2dz Aidx

i + . . . (5.33)

The last term in the one-particle action looks like a mass term. In a region where φ is constant,

there is also a term

2e2α〈φ〉 ż
︸ ︷︷ ︸

=: q

Aiẋ
i, (5.34)

where q looks like the charge of a test particle.

Thus the motion in the z-direction corresponds to electric charge. This is why this does not

make sense as a theory of electromagnetism; test particles have masses proportional to their

charge. As a unified theory of gravity and electromagnetism, this theory was out of fashion

until approximately 1982.

(b) Quantum-mechanical particle motion

Consider the Klein-Gordon equation

(

−2 +
m2

~2

)

φ = 0. (5.35)

~ has been put in for a reason which will become apparent. We consider a semi-classical

approximation of the form

φ = AeiS/~. (5.36)

This wavefunction in the ~ → 0 limit gives you back the classical theory. Derivatives of φ are

∇aφ = ∇aAe
iS/~ +

i

~
∇aSAe

iS/~, (5.37)

2φ = 2AeiS/~ + 2
i

~
(∇aA)(∇aS)eiS/~ +

i

~
2S AeiS/~ − 1

~2
∇aS∇aS AeiS/~. (5.38)
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Stick this into the Klein-Gordon equation to get

(

−2A

A
− 2

i

~

∇aA

A
∇aS − i

~
2S +

1

~2
(∇S)2 +

m2

~2

)

= 0. (5.39)

Multiply by ~
2 and take the limit ~ → 0 to get

(∇S)2 +m2 = 0. (5.40)

So we can identify ∇S with the momentum, ua ∝ ∇aS. The velocity vector of a particle is

orthogonal to the surfaces of constant phase of the wavefunction.

This means that ua obeys the geodesic equation:

ua(∇aub) = (∇aS)∇a(∇bS) = (∇aS)∇b∇aS =
1

2
∇b

(
(∇S)2

)
=

1

2
∇b(−m2) = 0. (5.41)

The geodesic equation is absolutely inevitable quantum-mechanically.

Lect.

13Let us think of a Kaluza-Klein spacetime with metric

−dt2 + dr2 + r2(dθ2 + sin2 θdφ2) + (dx5)2, (5.42)

where the x5 direction is curled up into a circle, and try to solve the Klein-Gordon equation

for this metric. We will have
(

−2(4) −
∂2

∂x52 +
m2

~2

)

φ = 0. (5.43)

If we separate variables

φ = X(x5)f(x1, . . . , x
4), (5.44)

you will discover by the usual argument that

− 1

X

∂2X

∂x52 = constant = k2, (5.45)

which gives X(x5) = eikx
5

with real k for k2 > 0, and X(x5) = e±|k|x5
for k2 < 0. But the

wavefunction must be single-valued, so under x5 7→ x5 + 2πR, the wavefunction must not

change. This means we must have k2 > 0 with

k =
n

R
, (5.46)

where n is an integer. k must be quantised in units of 1
R .

Recall that velocity in the x5 direction looks like electric charge. But the component of

velocity in the x5 direction is k, so charge is quantised.

But now we see precisely what is bad: Go back to the Klein-Gordon equation, which becomes

(

−2(4) +

(

k2 +
m2

~2

))

φ = 0. (5.47)

We see that the effective mass is also quantised, which is not observed.
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5.2 Magnetic Monopoles

There is some folklore that any theory with charge quantisation has magnetic monopoles in it.

Kaluza-Klein theory in dimension five is

I =
1

16πG(5)

∫

d5x
√
g R; (5.48)

this has as its symmetry group five-dimensional co-ordinate transformations.

Normally one would try to find interesting five-dimensional spacetimes such as Minkowski,

Schwarzschild, etc. Kaluza-Klein theory means specifying that the five-dimensional spacetime must

have a Killing vector that generates a circle S1 of radius R.

From a four-dimensional spacetime, the action becomes something like

I =
1

16πG(4)

∫

d4x
√
g

(

R− 1

4
FijF

ije−
√

3φ − 1

2
(∇φ)2

)

; (5.49)

where the four-dimensional Newton’s constant G is

G(4) =
G(5)

2πR
. (5.50)

This is four-dimensional general relativity coupled to a U(1) vector field, which is the Abelian gauge

invariance found in electromagnetism.

We have broken the symmetry group from five-dimensional co-ordinate transformations (diffeomor-

phisms) into the group of four-dimensional co-ordinate transformations ×U(1). This is an instance

of symmetry breaking, rather similar to what you do in Grand Unified Theories.

The vacuum solution in five dimensions in Minkowski space R
4,1

−dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2 + dτ2; (5.51)

the vacuum of Kaluza-Klein theory is metrically identical:

−dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2 + dz2, (5.52)

where the z direction is now a circle. To get from five-dimensional general relativity to four-

dimensional general relativity, you need to choose to wrap one direction up to form a circle. That

choice may seem restrictive, but it is simply what you do. You should really think of this as (an-

other) example of symmetry breaking.

In the vacuum, we have φ = 0, A = 0, Rij = 0. You can always find another solution of a

Ricci-flat four-dimensional metric times a flat fifth dimension, such as a magnetic monopole:

ds2 = −dt2+
1

V (r)
(dr2+r2dθ2+r2 sin2 θdφ2)+V (r)(dz+4m(1−cos θ)dφ)2, V =

1

1 + 4m
r

. (5.53)

The spacelike part of this metric is the “Euclidean” version of a four-dimensional space that has van-

ishing Ricci tensor, known as Taub-NUT space, and has rather strange properties in its Lorentzian
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version. The solution obviously solves the five-dimensional Einstein equations.

The co-ordinate ranges are

0 ≤ r <∞, 0 ≤ θ ≤ π, 0 ≤ φ < 2π. (5.54)

r = 0 corresponds to a co-ordinate singularity, and z must be identified with period 8πm; the radius

of the Kaluza-Klein circle is 4m. The last term in the metric represents the Kaluza-Klein direction.

Thus the vector potential of the electromagnetic field has non-vanishing expectation value,

A = 4m(1 − cos θ)dφ. (5.55)

This looks kind of weird, but we have

F = dA = 4m sin θ dθ ∧ dφ. (5.56)

This is a magnetic field with Fθφ = 4m sin θ.

You will remember that as a three vector,

Bα =
1

2
εαβγF

βγ . (5.57)

If we look near r → ∞, we have

F θφ =
4m sin θ

r4 sin2 θ
, Br = εrθφF

θφ =

√

g(3)

︸ ︷︷ ︸

r2 sin θ

F θφ =
4m

r2
. (5.58)

This represents a magnetic monopole of strength 4m. All other components of the electromagnetic

field fall off faster.

The vector potential is singular for θ = 0, but this is a gauge artefact. We can remove this by a

gauge transformation

A− 7→ A− + dΛ ≡ A+ (5.59)

and a corresponding transformation on z. If we choose Λ = −8mφ, then

A+ −−4m(1 + cos θ)dφ. (5.60)

The magnetic field from this is the same, but the singularity has been moved to θ + π, the south

axis. Just as for co-ordinate patches in general relativity, you have found two regions which are

related by a gauge transformation.

&%
'$b

� A− singular here.

� A+ singular here.
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The radius of the Kaluza-Klein circle is R = 4m = P , the magnetic monopole strength. Electric

charge for particles moving in this field is quantised in units of 1
R , as we saw before. It follows that

for any particle charge q, qP = n must be an integer. This is the Dirac quantisation condition.

You can discover that r = 0 is only a co-ordinate singularity by calculating the curvature. Near

r = 0,

V (r) ∼ r

4m
. (5.61)

The metric near r = 0 is

ds2 = −dt2 +
4m

r
(dr2 + r2dθ2 + r2 sin2 θdφ2) +

r

4m
(dz + 4m(1 − cos θ)dφ)2. (5.62)

We try to invent a co-ordinate transformation that gets rid of the singularity at r = 0: Under

ρ =
√
r, dr = 2ρ dρ, (5.63)

the metric becomes

ds2 = −dt2 + 4m(4dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2) +
ρ2

4m
(dz + 4m(1 − cos θ)dφ)2. (5.64)

You can get rid of the constants by overall rescaling, and discover that the spatial part is the metric

on flat R
4, written as

dρ2 + ρ2 × (metric on S3). (5.65)

There is an entertaining generalization of the magnetic monopole metric, which we can write as

−dt2 +
1

V (|~x|)(d~x · d~x) + V (|~x|)(dz +A), (5.66)

where V and A satisfy

∇2
flat

1

V (|~x|) = 0 (~x 6= 0), ~∇× ~A = ~∇ 1

V (|~x|) . (5.67)

We found that a simple pole in r in 1
V does not cause a spacetime singularity. This suggests that

we can move a single monopole to ~x = ~x1, such that

V =
1

1 + 4m
|~x−~x1|

(5.68)

or replace it by

V =
1

1 + 4m
∑N

i=1
1

|~x−~xi|
. (5.69)

Then ~A still satisfies the above relation. This is a configuration of N monopoles of strength 4m,

which are in neutral equilibrium!
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5.3 S3 as a Group Manifold
Lect.

14Recall that the form of the Kaluza-Klein monopole metric near r = 0 is

ds2 = −dt2 + 4m(4dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2) +
ρ2

4m
(dz − 4m cos θdφ)2, (5.70)

where we have shifted z. We claimed that the spatial part of this is flat R
4. We need to investigate

the S3 part of this metric further. Start with flat four-dimensional space with metric

ds2 = dτ2 + dx2 + dy2 + dz2, (5.71)

where we define

x2 + y2 + z2 + τ2 = ρ2. (5.72)

We want to look at the metric on surfaces of constant ρ, this will give a metric on S3.

We use the Euler angle parametrization

x = ρ cos
θ

2
cos

(
1

2
(φ− ψ)

)

, y = ρ cos
θ

2
sin

(
1

2
(φ− ψ)

)

, (5.73)

z = ρ sin
θ

2
cos

(
1

2
(φ+ ψ)

)

, τ = ρ sin
θ

2
sin

(
1

2
(φ+ ψ)

)

. (5.74)

The ranges of the co-ordinates are

0 ≤ ρ <∞, 0 ≤ θ ≤ π, 0 ≤ φ < 2π, 0 ≤ ψ < 4π. (5.75)

You can make life easier by assembling (x, y) and (z, τ) into a pair of complex numbers

u = x+ iy = ρ cos
θ

2
exp

(
i

2
(φ− ψ)

)

, w = z + iτ = ρ sin
θ

2
exp

(
i

2
(φ+ ψ)

)

. (5.76)

There is no escape from the following mess. To get the metric, notice that flat space in these

co-ordinates has line element

ds2 = du dū+ dw dw̄. (5.77)

Note that not all spaces allow for the introduction of complex co-ordinates. We have

du = dρ cos
θ

2
e
i
2
(φ−ψ) − 1

2
ρ sin

θ

2
dθe

i
2
(φ−ψ) +

i

2
(dφ− dψ)ρ cos

θ

2
e
i
2
(φ−ψ), (5.78)

dw = dρ sin
θ

2
e
i
2
(φ−ψ) +

1

2
ρ cos

θ

2
dθe

i
2
(φ−ψ) +

i

2
(dφ+ dψ)ρ sin

θ

2
e
i
2
(φ−ψ). (5.79)

The metric of R
4 in these co-ordinates is

ds2 = du dū+ dw dw̄

= dρ2 +
1

4
ρ2dθ2 +

1

4
ρ2 cos2

θ

2
(dφ− dψ)2 +

1

4
ρ2 sin2 θ

2
(dφ+ dψ)2; (5.80)

you can see that all cross-terms cancel out. We can rewrite this metric as

ds2 = dρ2 +
1

4
ρ2
(
dθ2 + sin2 θdφ2 + (dψ − cos θ dφ)2

)
, (5.81)
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which looks like the metric we had for the magnetic monopole.

This has nothing to do with S3 being also a group manifold of SU(2). What do we mean by

group manifold? Elements of SU(2) are of the form

(
a b

−b∗ a∗

)

, aa∗ + bb∗ = 1. (5.82)

This is the same as the condition uu∗ + ww∗ = 1 (with ρ = 1) that we used previously.

How is one to form a metric, given that S3 can be represented as a matrix group? We need to find

a basis of one-forms and construct a metric. Suppose you have g ∈ G. The first thing to do is to

construct the Lie algebra; then g−1 dg will give you a basis of one-forms which are left-invariant:

Under g → hg, g−1 dg is invariant.

Alternatively, one could construct right-invariant one-forms wich are invariant under g → gh. Then

one would use dg g−1.

Suppose one starts with g−1 dg and sends g 7→ g−1. Then

g−1 dg → g dg−1, (5.83)

But if you take d of the equation gg−1 = 1, you find that

dg g−1 + g dg−1 = 0, (5.84)

and hence dg−1 = −g−1 dg g−1. So g dg−1 = −dg g−1, and the inverse map maps left-invariant

one-forms to right-invariant one-forms.

You can construct a bi-invariant metric by taking

−1

2
Tr(g−1 dg ⊗ g−1 dg) = −1

2
Tr(dg g−1 ⊗ dg g−1) (5.85)

where ⊗ is a tensor product of forms. To construct the Lie algebra of SU(2), we choose generators,

the Pauli matrices

σ1 =

(
0 1

1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0

0 −1

)

. (5.86)

They satisfy σiσj = δij1 + iǫijkσK . The Euler angle parametrization of SU(2) is then

g = ei
φ
2
σ3ei

θ
2
σ2e−i

ψ
2
σ3 . (5.87)

These angles are almost the same co-ordinates as we used before. Use σ2
1 = 1 to write this as

g =

(

1 cos
φ

2
+ iσ3 sin

φ

2

)(

1 cos
θ

2
+ iσ2 sin

θ

2

)(

1 cos
ψ

2
− iσ3 sin

ψ

2

)

(5.88)

=

(

cos
φ

2
cos

θ

2
cos

ψ

2
+ sin

φ

2
cos

θ

2
sin

ψ

2

)

1 +

(

− cos
φ

2
sin

θ

2
sin

ψ

2
− sin

φ

2
sin

θ

2
cos

ψ

2

)

iσ1

+

(

− sin
φ

2
sin

θ

2
sin

ψ

2
+ cos

φ

2
sin

θ

2
cos

ψ

2

)

iσ2 +

(

sin
φ

2
cos

θ

2
cos

ψ

2
− cos

φ

2
cos

θ

2
sin

ψ

2

)

iσ3

=

(
cos θ2e

i
2
(φ−ψ) i sin θ

2e
− i

2
(φ+ψ)

i sin θ
2e

i
2
(φ+ψ) cos θ2e

− i
2
(φ−ψ)

)

(5.89)

43



Clearly this is an element of SU(2). You will notice that in previous notation, this is

g =

(
u iw̄

iw ū

)

. (5.90)

We need to calculate g−1 dg:

g−1 =

(
ū −iw̄

−iw u

)

, (5.91)

g−1 dg =

(
ū −iw̄

−iw u

)(
du i dw̄

i dw dū

)

=

(
ūdu+ w̄dw i ū dw̄ − i w̄ dū

−i w du+ i u dw w dw̄ + u dū

)

. (5.92)

We use Tr M2 = M2
11 + 2M12M21 +M2

22 to get the metric

−1

2
Tr(g−1 dg g−1 dg) = −1

2

(
(ūdu+ w̄dw)2 + (w dw̄ + u dū)2 − 2(ū dw̄ − w̄ dū)(−w du+ u dw)

)
.

(5.93)

To get back to the correct answer, use uū+ ww̄ = 1, and

du ū+ u dū+ w dw̄ + dw w̄ = 0. (5.94)

This gives

−1

2
Tr(g−1 dg g−1 dg) = −(ūdu+ w̄dw)2 + (ū dw̄ − w̄ dū)(−w du+ u dw)

= (ūdu+ w̄dw)(u dū +w dw̄) + (ū dw̄ − w̄ dū)(−w du+ u dw)

= uūdu dū+ ww̄dw dw̄ + ūw dw̄du+ w̄u dw dū

−ūw du dw̄ + ww̄ du dū+ uū dw dw̄ − uw̄ dw dū

= du dū+ dw dw̄. (5.95)

In practice, this procedure does not work for any matrix bigger than 4 × 4.

We have a group G, and construct an element of the Lie algebra. You can think of

A = g−1 dg (5.96)

as a Lie algebra valued connection one-form. Thus A can be regarded as a Yang-Mills field. A

obeys the Maurer-Cartan equations: The first thing to calculate would be the curvature (field

strength) of A. This is

F = dA+A ∧A = dg−1 ∧ dg +A ∧A = −g−1 dg ∧ g−1 dg +A ∧A = 0. (5.97)

For this reason, g−1 dg is sometimes referred to as a flat connection. Such an A is usually called a

pure gauge field, that means that it is just a gauge transformation of nothing. (You can see this

infintesimally, if g = 1 + ǫ, then g−1 dg = dǫ.)

These fields represent the classical vacuum states of Yang-Mills theory.
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6 Aspects of Yang-Mills Theory

6.1 Spontaneous Symmetry Breaking
Lect.

15We consider Yang-Mills theory with an SU(2) gauge group. The Lagrangian is

L = −1

4
FαabF

αab, (6.1)

where

Fαab = ∂aA
α
b − ∂bA

α
a + gεαβγAβaA

γ
b . (6.2)

Here Greek indices run from one to three and εαβγ is the alternating symbol in three dimensions

which gives the structure constants for SU(2).

The idea of symmetry breaking is to break the gauge group G into a subgroup H by introducing a

triplet of scalar fields φα with a potential in the Lagrangian.

We need to introduce a gauge covariant derivative because the fields φα are charged under SU(2):

Daφ
α = ∂aφ

α + gεαβγAβaφ
γ . (6.3)

Then what you do is to add this scalar field into the action,

Lscalar = −1

2
Daφ

αDaφα. (6.4)

If that is all you have, nothing very interesting will happen; you need to add a potential. What

you add is entirely and utterly up to you. We choose this such that the theory is renormalizable,

which means one can have φ2, φ3 and φ4 terms, and gauge invariant, so that V must be a singlet

under SU(2). This leaves two possibilities only,

φαφα and (φαφα)2, (6.5)

where the first is a mass term and the second a quartic coupling. For a conventional mass term,

V (φ) =
1

2
m2φαφα +

λ

4
(φαφα)2, (6.6)

where we must have λ > 0 to obtain a stable theory, the only vacuum is φα = 0 everywhere.

In the situation we are interested here, which corresponds to the Higgs mechanism, one changes

the shape of the potential to be

V (φ) = −1

2
m2φαφα +

λ

4
(φαφα)2, (6.7)

We obtain the familiar picture (compare with the discussion of domain walls, where one only had

a single scalar field):
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6

|φ|

V (φ)

A
A

A
A

AK

unbroken SU(2) symmetry

The phase of the theory that has unbroken SU(2) is sitting at a local maximum of V (φ). This

is unstable, excitations around this point have mass im and correspond to “tachyons”. We are

looking for vacua, these are configurations φ = constant satisfying the field equations

D2φ− V ′(φ) = 0, (6.8)

where also Aa ≡ 0. We must have V ′(φ) = 0, hence

−m2φα + λ(φαφα)φα = 0. (6.9)

One possible solution is φα ≡ 0, which is called a false vacuum. The second solution is

φαφα =
m2

λ
. (6.10)

This defines a sphere in field space, which is a symmetric space S2 = SU(2)/U(1) = G/H, where

G is the original gauge group and H is the group which one has broken G into. It is called the

true vacuum. The potential in the true vacuum takes the value

−1

2
m2m

2

λ
+
λ

4

(
m2

λ

)2

= −m
4

4λ
< 0. (6.11)

This model might have cosmological implications since in the false vacuum, one would measure a

vacuum energy corresponding to a “cosmological constant” relative to the true vacuum.

In the true vacuum, there is a massless excitation around the sphere which is called a Goldstone

mode.

Now consider the gauge bosons. If you fix φ1 = φ2 = 0 and φ3 = m2

λ (say), you will discover that

A3 remains massless, while A1 and A2 end up with a mass term in the Lagrangian. To see the

mass term, look at

−1

2
Daφ

αDaφα, Daφ
α = ∂aφ

α + gεαβγAβaφ
γ . (6.12)

There is a term

−1

2
g2εαβγAβaφ

γεαδǫAδaφǫ (6.13)

in the Lagrangian. With the given values for φα, this is equal to

−1

2
g2m

4

λ2
εαβ3Aβagε

αδ3Aδa = −1

2

g2m4

λ2

(
A1
aA

1a +A2
aA

2a
)
, (6.14)
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which indeed is a mass term for A1 and A2. There is no mass term for A3, so this massless field

still has a U(1) gauge symmetry.

This is a toy model for symmetry breaking, called the Georgi-Glashow model, which is a proto-

type for unifying electromagnetic and weak interactions. The masses of A1 and A2 are gm2

λ , these

correspond to the W± bosons; the massless A3 corresponds to the photon.

Let us check that the number of degrees of freedom is the same in the true vaccum and in the

false vacuum: Massless gauge bosons have two degrees freedom per point in space. Here we started

with A1, A2, A3 and φ1, φ2, φ3, so this gives nine degrees of freedom in the false vacuum.

In the true vacuum, A1 and A2 are massive, and massive fields of spin s have (2s + 1) degrees of

freedom. What you see is that A1 and A2 have eaten the degrees of freedom of φ1 and φ2.

The only field left is the scalar φ3. The mass of this field at the minimum of the potential φ0 is

given by

V (φ) = V (φ0) +
1

2
(φ− φ0)

2 V ′′(φ0)
2

︸ ︷︷ ︸

=: m2

+ . . . (6.15)

Here, we have

V ′′(φ0) = −m2 + 3λφαφα|
φαφα=m2

λ

= −m2 + 3m2 = 2m2. (6.16)

The mass of the Higgs boson is
√

2m.

This is the simplest theory in which you unify electromagnetism with something else.

6.2 Magnetic Monopoles

The action of the theory is

I =

∫

d4x

(

−1

2
FαabF

αab − 1

2
Daφ

αDaφα +
1

2
m2φαφα − λ

4
(φαφα)2

)

. (6.17)

We found vacuum solutions by asking for φ and A not depending on space. The next step then is

to look for static, spherically symmetric solutions.

You might think that spherical symmetry tells you that Aαa and φα only depend on r. But this is

not a gauge-invariant statement. You can only say that φαφα only depends on r, since this is a

singlet under the gauge group.

We are in flat space, where the metric in Cartesian co-ordinates is

ds2 = −dt2 + d~x · d~x. (6.18)

So try

φα =
xα

gr2
H(r), φαφα =

H2(r)

g2r4
(xαxα) =

H2(r)

g2r2
. (6.19)

This is a reasonable guess as long as we do not mind using α as a spacetime index. Although this

was originally a gauge group index, it can be interpreted as a spatial index here. This looks special

to SU(2), but you can always apply it to any SU(2) subgroup of a given G.

Lect.
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You then have to decide what to do with your gauge field:

Aα0 =
xα

gr2
J(r), Aαi =

εαijx
j

gr2
(1 −K(r)). (6.20)

You find the equations of motion by substituting this ansatz into the Lagrangian and finding the

Euler-Lagrange equations for H, J and K. This of course is not a mathematically correct thing to

do. While it works, it is not guaranteed to work. At the end, you ought to check that H, J and K

really do satisfy the equations of motion.

The equations that you get are

r2K ′′(r) = K(r)(K2(r) − 1) +K(r)(H2(r) − J2(r)), (6.21)

r2J ′′(r) = 2J(r)K2(r), (6.22)

r2H ′′(r) = 2H(r)K2(r) +
λ

g2

(

H3(r) − m2g2

λ2
r2H(r)

)

. (6.23)

if H, J and K all go to zero as r → ∞, there will be a long range classical gauge field.

You can solve these equations numerically and get a mess. What is more entertaining is that

you can solve these equations analytically in a particular limit (the Prasad-Sommerfield1 limit).

From the Yang-Mills coupling g and the scalar field coupling λ, we can construct a length scale

C =
mg√
λ

(6.24)

which controls the scale of the problem. The limit in which you can solve the equations analytically

is λ→ 0 and g → 0 at fixed C. The solutions are

K =
Cr

sinhCr
, J = 0, H = Cr coth(Cr) − 1, (6.25)

so as r → ∞, K → 0 but A does not go to zero.

If one identifies the physical electromagnetic field

F
(electromagn.)
ab = ∂a

(

φ̂αAαb

)

− ∂b

(

φ̂αAαa

)

− 1

g
εαβγφα∂aφ

β∂bφ
γ , (6.26)

where φ̂α is a rescaled Higgs field:

φ̂α = φα
√

φβφβ . (6.27)

The output of this is of course well-known to all of us. As r → ∞,

Ei = 0, Bi =
1

gr3
xi, (6.28)

where we define F
(electromagn.)
0i = −Ei and 1

2εijkF
(electromagn.)jk = Bi. This is a magnetic monopole

of charge 1
g .

1Sommerfield is not a famous person!
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To see this, you can define magnetic charge by the following: Take the spatial R
3 and consider

a sphere S2 at spatial infinity. Then perform a Gaussian integral of the magnetic flux:

1

4π

∫

S2
∞

~B · d~S =
1

g
. (6.29)

Or as a differential form, you can integrate

1

4π

∫

S2
∞

F =
1

4πg

∫

sin θ dθ ∧ dφ =
1

g
. (6.30)

You should feel miserable about this for the following reason: From Stokes’ theorem, you would

expect
1

4π

∫

S2

F =
1

4π

∫

S2

dA =
1

4π

∫

∂S2

A = 0. (6.31)

This argument fails because A is not globally defined. Charges of this type are regarded as topo-

logical. To see that A cannot be globally defined, try

A =
1

g
(1 − cos θ)dφ, (6.32)

where the spatial metric is

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2. (6.33)

The norm of A is

||A||2 = A0A
0 =

1

g2

(1 − cos θ)2

r2 sin2 θ
. (6.34)

Hence the norm blows up along the south axis θ = π. To remove this, you can perform a gauge

transformation which gives the same F , e.g.

A→ 1

g
(−1 − cos θ)dφ, A→ A+ dΛ, Λ = −2

g
φ. (6.35)

This then gives ||A||2 → ∞ along the north axis θ = 0.

6.3 Instantons in Yang-Mills Theory

The magnetic charge in the last example is of a topological nature. There are other examples

which are of great interest. A second example of topological charges are instantons, which arise

in Yang-Mills theory and gravity.

Let us consider Yang-Mills theory in flat R
4 with positive signature, i.e. metric

ds2 = dx12
+ dx22

+ dx32
+ dx42

. (6.36)

Instantons are solutions of the Yang-Mills equations with no singularities, with finite action. We

take G to be compact, then the action is

I =
1

4

∫

Fα ∧ ∗Fα. (6.37)
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You can put F into canonical form (the normal form for an antisymmetric 4×4 matrix) by writing

it as

Fα =
1

2
Fαabdx

a ∧ dxb = Fα12dx
1 ∧ dx2 + Fα34dx

3 ∧ dx4. (6.38)

Then

∗F = Fα34dx
1 ∧ dx2 + Fα12dx

3 ∧ dx4. (6.39)

The action is then

I =
1

2

∫

d4x (F 2
12 + F 2

34)
︸ ︷︷ ︸

≥ 0

. (6.40)

The Yang-Mills equations are

DAF = 0, DA ∗ F = 0. (6.41)

If we are interested in solutions with finite action, we must have F → 0 at infinity, and so A = g−1dg

for some g at infinity.

It is fairly easy to discover that there is a topological charge for this system. Take the Chern-

Simons three-form (see first example sheet)

CS3 = A ∧ dA+
2

3
A ∧A ∧A (6.42)

The associated topological charge is
∫

S3
∞

Tr(CS3) =

∫

R4

Tr(dCS3) =

∫

R4

Tr (dA ∧ dA+ 2dA ∧A ∧A) (6.43)

Recall the definition

F = dA+A ∧A (6.44)

to write this as
∫

S3
∞

Tr(CS3) =

∫

R4

Tr (F ∧ F − 2A ∧A ∧A ∧A) =

∫

R4

Tr (F ∧ F ) , (6.45)

since the trace is invariant under cyclic permutations, which change the sign of A∧A∧A∧A. Thus

1

8π2

∫

Tr(F ∧ F ), (6.46)

called the instanton number, is a topological charge.

The topological charge is related in a simple way to the action: In four dimensions with Euclidean

signature, ∗∗ = 1 on two-forms. Hence ∗ has eigenvalues ±1. You can therefore decompose two-

forms into self-dual and anti-self-dual parts. The self-dual part of F is

F+ =
1

2
(F + ∗F ), (6.47)

the anti-self-dual part is

F− =
1

2
(F − ∗F ), (6.48)

Clearly ∗F+ = F+ and ∗F− = −F−. Lect.
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The action can be rewritten as

I =
1

4

∫

(Fα+ + Fα−) ∧ (Fα+ − Fα−) =
1

4

∫
(
Fα+ ∧ Fα+ − Fα− ∧ Fα−

)
. (6.49)

The two remaining terms are positive definite. To see this, take F in canonical form:

Fα = Fα12dx
1 ∧ dx2 + Fα34dx

3 ∧ dx4 ≡ F12dx
12 + F34dx

34 (6.50)

in “cheating notation”. Then

F+ =
1

2
(F12 + F34)

(
dx12 + dx34

)
, F− =

1

2
(F12 − F34)

(
dx12 − dx34

)
(6.51)

and

F+ ∧ F+ =
1

2
(F12 + F34)

2dx1234, F− ∧ F− = −1

2
(F12 − F34)

2dx1234. (6.52)

Now let us compare this to the toplogical invariant we found, the “instanton number”, which was

k =
1

8π2

∫

F ∧ F =
1

8π2

∫

(F+ + F−) ∧ (F+ + F−) =
1

8π2

∫
(
Fα+ ∧ Fα+ + Fα− ∧ Fα−

)
, (6.53)

since F+ ∧ F− = 0. Then there is a simple inequality:

I ≥ 2π2|k|, (6.54)

with equality if and only if






I = 0, hence F ≡ 0 for k = 0,

F− ≡ 0 for k > 0,

F+ ≡ 0 for k < 0

. (6.55)

The solutions where equality holds are self-dual, anti-self-dual, or both.

These bounds are absolutely universal in these kinds of situations in physics. The simplest instanton

ought then to be self-dual. For G = SU(2), this is

Aa(x) =
1

x2 + λ2
(xbτ

b)†τa, (6.56)

where τ1, τ2 and τ3 are Pauli matrices and τ4 = 1.

This self-dual solution has instanton number k = 1, and λ defines an arbitrary scale.

Physically instantons can be interpreted as how tunnelling proceeds in the context of quantum

field theory. The mathematics of instantons are a fascinating topic in their own right.

7 Gravitational Instantons

7.1 Topological Quantum Numbers for Gravity

Gravitational instantons have a number of similarities and a number of differences. We consider

non-singular solutions of the Einstein equations Rab = Λgab which have positive signature (++++).

The action for gravity is a bit of an embarrassment:

I = − 1

16π

∫

d4x
√
g (R− 2Λ) + possible boundary terms (neglected here). (7.1)
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The big problem here is that, unlike in Yang-Mills theory, this has no nice boundedness properties.

This usually suggests an instability in the theory.

The simplest way to see the unboundedness is to do a conformal transformation

gab → ĝab = Ω2(x)gab. (7.2)

You can do a calculation and see that

I[ĝ] = − 1

16π

∫

d4x
√
g
(
Ω2(x)R + 6(∇Ω(x))2 − 2ΛΩ4

)
(7.3)

up to integration by parts. To get this you need to find the conformally rescaled R (see example

sheet).

We are not asking for solutions to the equations of motion, but think about a general variation of

the action. As long as Λ > 0, the ΛΩ4 term corresponds to a positive potential, so that is fine.

But the term involving (∇Ω)2 has the wrong sign. The action can be made arbitrarily negative by

picking a rapidly oscillating Ω.

In gravity, there are two topological quantum numbers:

1. The Euler character. In two dimensions, this is

χ =
1

4π

∫

Σ
R. (7.4)

If Σ is compact and orientable, χ classifies these surfaces. You can write it as

χ = 2 − 2g, (7.5)

where g is the genus of Σ. Examples are

&%
'$

g = 0

&%
'$

g = 1

&%
'$

g = 2

Alternatively,

χ = 2 − b1, (7.6)

where b1 is the first Betti number. bp is the number of Sp that cannot be contracted to a

point or deformed into each other.

On S2, you can always contract a circle to a point, so b1 = 0. If you can catch the manifold

with a piece of string, it has b1 > 0.
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There is a theorem by Hodge which states that for compact manifolds, bp is equal to the

number of square integrable harmonic p-forms, these are p-forms satisfying

dp = 0, d ∗ p = 0,

∫

pap
a <∞. (7.7)

It immediately follows that for these manifolds, bp = bd−p, which is known as Poincaré du-

ality.

For d = 4, the Euler character can be written as

χ =
1

32π2

∫

Rab ∧ ∗Rab =
1

128π2

∫

d4x
√
g εabcdε

abefRcdghRghef , (7.8)

where you can have extra boundary terms if there is a boundary. In terms of Betti numbers,

χ = 2 − 2b1 + b2. (7.9)

2. The Hirzebruch signature

τ =
1

48π2

∫

Rab ∧Rab =
1

96π2

∫

d4x
√
g RabcdRabefεcd

ef . (7.10)

It, too, has a topological interpretation in terms of Betti numbers:

τ = b+2 − b−2 , (7.11)

where b2 = b+2 + b−2 and b+2 is the number of self-dual harmonic square integrable 2-forms and

b−2 is the number of anti-self-dual such forms.

There are generalizations of the Euler character for all even dimensions, and of the Hirzebruch

signature for all d which are multiples of four.

These look a bit like action and instanton number for Yang-Mills theory, respectively.

The intellectual history of general relativity is littered with the corpses of people who tried to

manipulate the Euler character into the action for general relativity. But general relativity just is

not like Yang-Mills theory.

The inequality analogous to I ≥ 2π2|k| for Yang-Mills theory is

2χ ≥ 3|τ |, (7.12)

with equality if and only if the Riemann tensor is self-dual or anti-self-dual (see example sheet).

Self-duality here means

Rabcd =
1

2
εabefR

ef
cd. (7.13)
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7.2 De Sitter Space

As an example of a gravitational instanton, we want to consider de Sitter spacetime, written in

static co-ordinates

ds2 = −
(

1 − Λ

3
r2
)

dt2 +
dr2

1 − Λ
3 r

2
+ r2(dθ2 + sin2 θ dφ2), (7.14)

where Λ > 0. This satisfies Rab = Λgab.

The instanton associated with de Sitter spacetime is found by sending t to iτ . This preserves the

field equations. The metric of the instanton is

ds2 =

(

1 − Λ

3
r2
)

dτ2 +
dr2

1 − Λ
3 r

2
+ r2(dθ2 + sin2 θ dφ2). (7.15)

Lect.

18De Sitter space can be easily viewed as an hyperboloid embedded in R
4,1 with metric

ds2 = −dv2 + dw2 + dx2 + dy2 + dz2. (7.16)

The hyperboloid is

−v2 + w2 + x2 + y2 + z2 =
3

Λ
=: α2 > 0. (7.17)

In FRW co-ordinates, you can view de Sitter space as a space of constant spatial curvature k = 1

(you could also view it as k = 0 or k = −1). Here the co-ordinates cover the entirety of de Sitter

space. They are

v = α sinh

(
t

α

)

, w = α cosh

(
t

α

)

cosχ, x = α cosh

(
t

α

)

sinχ cos θ,

y = α cosh

(
t

α

)

sinχ sin θ cosφ, z = α cosh

(
t

α

)

sinχ sin θ sinφ. (7.18)

If you are interested in the line element in the (t, χ, θ, φ) co-ordinates, you will discover it is

ds2 = −dt2 + α2 cosh2

(
t

α

)
(
dχ2 + sin2 χdθ2 + sin2 θ dφ2

)

︸ ︷︷ ︸

Metric on S3 in hyperspherical co−ordinates

. (7.19)

The scale factor for this universe is

a(t) = α cosh

(
t

α

)

, (7.20)

the Hubble parameter is
ȧ

a
=

1

α
tanh

(
t

α

)

, (7.21)

the acceleration is
ä

a
=

1

α2
= constant > 0. (7.22)

We can picture de Sitter space as the hyperboloid
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6t

� S3 at fixed t

What makes the spacetime interesting is the presence of cosmological horizons.

To the future of the light-cone of an observer moving on a timelike geodesic is a region of spacetime

the observer cannot see. This is not an event horizon. These regions are different for different

observers, the horizon is called a cosmological horizon. This leads to all kinds of interesting

paradoxes.

The Penrose diagram is

@
@

@
@

@
@

@
@

@
@

�
�

�
�

�
�

�
�

�
�

χ = 0 χ = π

t = −∞

t = +∞

where we have drawn cosmological horizons for particular observers.

That looks a bit like the Penrose diagram for a black hole, but horizons depend on the observer.

Now we want to construct Schwarzschildesque co-ordinates for this spacetime:

v = α

√

1 − r2

α2
sinh

(
t′

α

)

, w = α

√

1 − r2

α2
cosh

(
t′

α

)

,

x = r cos θ, y = r sin θ cosφ, z = r sin θ sinφ. (7.23)

Then the line element is, as claimed above,

ds2 = −
(

1 − r2

α2

)

dt′2 +
dr2

1 − r2

α2

+ r2(dθ2 + sin2 θ dφ2), (7.24)

which only makes sense for 0 < r < α. This only covers the following region of de Sitter space:

@
@

@
@

@
@

@
@

@
@

�
�

�
�

�
�

�
�

�
�

� r = α, t′ → ∞

� r = α, t′ → −∞
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In cosmology, calculations are normally done in k = 0 co-ordinates, but these do not cover the

entire spacetime. You should better use k = 1 co-ordinates.

Now look at the de Sitter instanton: Find a “Euclidean” solution to Rab = Λgab by a co-ordinate

transformation t′ → iτ

ds2 =

(

1 − r2

α2

)

dτ2 +
dr2

1 − r2

α2

+ r2(dθ2 + sin2 θ dφ2). (7.25)

This is a perfect local solution, but has a singularity at r = α =
√

3
Λ . This is actually a co-ordinate

singularity. To see this, define new co-ordinates. Since we want to analyse what happens near

r =
√

3
Λ , set

r =

√

3

Λ

(

1 − Λ

6
δ2
)

, (7.26)

then

dr = −
√

Λ

3
δ dδ, r2 ≈ 3

Λ
− δ2, (7.27)

and the line element becomes

ds2 =
Λ

3
δ2 dτ2 + dδ2 +

3

Λ
(dθ2 + sin2 θ dφ2) + terms higher order in δ. (7.28)

The singularity is now at δ = 0. This metric now consists of a metric on S2 and a part which is

the metric on a plane (almost).

The metric on a plane with co-ordinates (ρ, ψ) is

ds2 = dρ2 + ρ2 dψ2. (7.29)

At ρ = 0, you need to identify ψ with ψ + 2π. If not, you get a conical singularity; then there is a

defect angle ∆ and ρ = 0 has a δ-function in curvature. In the present case, δ = 0 is a co-ordinate

singularity as long as τ is identified with period
√

3
Λ2π.

This has some interesting physical consequences (see Black Holes course).

We already know that the solution is four-dimensional and has constant curvature

Rabcd ∝ (gacgbd − gadgbc). (7.30)

It has ten Killing vectors, and so must be the metric on S4. You can embed it into R
5. We want

to evaluate the topological quantum numbers.

First try to get the proportionality constant. Contract Rabcd to get

Rac = 3(constant)gac = Λgac, constant =
Λ

3
. (7.31)

The Hirzebruch signature of this space is

τ =
1

96π2

∫

d4x
√
g εabefRabcdR

cdef = 0. (7.32)
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All even-dimensional spheres have Euler character two, all odd-dimensional spheres have χ = 0.

We can compute it explicitly using

χ =
1

128π2

∫

d4x
√
g εabcdεefghR

abefRcdgh. (7.33)

Whilst this is a true formula, it is inconvenient for this calculation. You can show (on the example

sheet) that an equivalent formula gives

χ =
1

128π2

∫

d4x
√
g
(

RabcdRabcd − 4RabRab +R2
)

= 2. (7.34)

The action for the de Sitter instanton is

I = − 1

16π

∫

d4x
√
g (R− 2Λ) = − Λ

8π
· Vol, (7.35)

which is negative!

From Schwarzschildesque co-ordinates, you get
√
g = r2 sin θ. Then the volume of S4 is

Vol =

∫

dτ dr dθ dφ r2 sin θ = 4π

q

3
Λ∫

0

r2dr

2π
q

3
Λ∫

0

dτ =
8π2

3

√

3

λ

(
3

Λ

)2

=
24π2

Λ2
, (7.36)

and the action is

I = −3π

Λ
. (7.37)

The partition function in statistical mechanics would be

Z =

∫

Dφ e−I[φ], (7.38)

where one integrates over all metrics that are periodic in complex time, with period 1
T . It follows

that the temperature of de Sitter space is

T =
1

2π

√

Λ

3
. (7.39)

It is believed, but nobody has proved, that for fixed Λ this is a lower bound of the action, so that

always

I ≥ IdeSitter, (7.40)

with equality only for de Sitter.

7.3 Other Examples

Now we can find other instantons, some of which are interesting, all of which are fun:

1. S2 × S2, a direct product of two two-spheres (of radius a).

The metric is a direct product

ds2 =

(
Metric on S2 0

0 Metric on S2

)

. (7.41)
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These are two Einstein manifolds, satisfying Rab = Λgab. Lect.

19The Ricci tensor also factorises:

Rab =

( 1
a2

· Metric on S2 0

0 1
a2

· Metric on S2

)

. (7.42)

Then the Ricci scalar is 4
a2 , and the metric solves Einstein’s equations with Λ = 1

a2 .

The topological quantum numbers are (Exercise)

χ = 4, τ = 0. (7.43)

The action is negative:

I = − 1

16π

∫

d4x
√
g (R− 2Λ) = − Λ

8π

∫

d4x
√
g = − Λ

8π
(4πa2)2 = −2πΛa4 = −2π

Λ
. (7.44)

2. Fubini-Study Metric on CP
2 (a compact manifold)

This is

ds2 =
dr2

(

1 + Λr2

6

)2 +
1

4
r2

(

1

1 + Λr2

6

(dψ ± cos θ dφ)2 + dθ2 + sin2 θ dφ2

)

1

1 + Λr2

6

. (7.45)

If Λ = 0, then this is just flat space.

For Λ > 0, it has finite volume and is non-singular.

The topological quantum numbers are

χ = 3, τ = 1. (7.46)

The action is again negative,

I = − 9π

4Λ
. (7.47)

It has interesting property of its curvature, regarding the Weyl tensor Cabcd. Consider the

Weyl two-form

Cab =
1

2
Cabcddx

c ∧ dxd. (7.48)

Then for CP
2, the Weyl two-form is (anti-)self-dual,

∗Cab = ±Cab, (7.49)

depending on the choice of sign in the metric.

All of the examples presented here are of great interest in string theory.

3. K3 is the unique simply connected compact four-manifold that satisifies Rab = 0.

The proof of this does not rely on the construction of a metric; the metric is not known. We

know that the topological quantum numbers are

χ = 24, τ = ±16. (7.50)
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The curvature form must be either self-dual or anti-self-dual.

There is a 58-parameter family of solutions of Rab = 0.

To see this, consider the Betti numbers: Since K3 is simply connected, b1 = 0, so

χ = 2 − 2b1 + b+2 + b−2 = 2 + b+2 + b−2 , τ = b+2 − b−2 , (7.51)

which tells you that

b+2 = 19, b−2 = 3. (7.52)

There are 19 self-dual harmonic two-forms with components F Iab (I = 1, . . . , 19) and three

anti-self-dual harmonic two-forms with components GJab (J = 1, 2, 3).

Assume that we have a metric g which solves

Rab[g] = 0. (7.53)

Under a slight deformation of g, if

Rab[g + ǫh] = 0, ǫ≪ 1, (7.54)

then g + ǫh is a new solution of the Einstein equations.

The condition for this (cf. gravitational waves, GR course) is the following differential equa-

tion

−2hab − 2Racbdh
cd = 0, (7.55)

where h is not of the form ∇(aξb), which would just be a co-ordinate transformation. These

two conditions can be summarised as

∇ahab = 0. (7.56)

We know that F Iab and GJab obey

∇aF
Iab = 0, F Iab =

1

2
εabcdF Icd; ∇aG

Jab = 0, GJab = −1

2
εabcdGJcd. (7.57)

You can construct

hab = GJacF
Ic
b +GJbcF

Ic
a, (7.58)

which generically will give 57 independent perturbations, one for each combination of I and

J .

This is transverse, ∇ahab = 0, so not a co-ordinate transformation, and satisfies

−2hab − 2Racbdh
cd = 0. (7.59)

There must be one more such deformation. Since no scale is associated with this metric, it

can be multiplied by a constant. If gab obeys Rab = 0, then so does λgab for any constant λ.

The interesting thing to show is that this hab actually satisfies the wave equation (see example

sheet).

If the curvature is self-dual, this tells you something about holonomy.
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A vector at any given point p can be parallelly transported around a closed loop C. Then the

components of the vector after and before parallel transport, written in some orthonormal

basis, satisfy a relation

V a(C, p) = Ma
b(C)V b(p). (7.60)

What are the properties of the matrix M? Parallel transport does not change the norm, so

M(C) is a Lorentz transformation. This is because one uses a metric-preserving connection.

Therefore in the Euclidean case,

M ∈ SO(4). (7.61)

What is remarkably true for any metric with self-dual (or anti-self-dual) curvature is that

M ∈ SU(2). (This is a consequence of supersymmetry.)

4. Another example of huge importance in string theory is the Eguchi-Hanson metric on

a non-compact manifold. This is an attempt to construct the analogue of the Yang-Mills

intanton.

You start from the assumption that curvature should go to zero on an enormous S3 near

infinity. You start with a metric on R
4:

ds2 =
1

f(r)
dr2 +

1

4
r2
(
dθ2 + sin2 θ dφ2 + f(r)(dψ ± cos θ dφ)2

)
, (7.62)

where θ, φ, ψ are Euler angles on S3 with ranges

0 ≤ θ ≤ π, 0 ≤ φ < 2π, 0 ≤ ψ < 4π (7.63)

which cover all of S3, and 0 ≤ r <∞.

This looks very reasonable. The function f can be determined to be

f(r) = 1 −
(a

r

)4
, (7.64)

where a is an arbitrary scale. This falls off very fast as r → ∞, so the metric is asymptotically

flat. There is a problem at r = a, which is identified as a co-ordinate singularity.

You can look at the (r, ψ) plane to discover this is a conical singularity. What is the condition

that the singularity at r = a is removed? We have done this many times, it tells you that the

period of ψ is 2π.

But we set the period of ψ to be 4π before. You can take the solution to be asymptotically

locally Euclidean, such that the boundary at infinity is not S3 but S3/Z2, a three-sphere

with antipodal points identified. (This is useful in string theory.)

The topological quantum numbers of this metric are

χ = 0, τ = ±1, (7.65)

where the given formulae need boundary corrections.

The curvature is again self-dual (or anti-self-dual). The action (which also requires boundary

corrections) is zero.
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It can be generalised to the Multi-Eguchi-Hanson metric, which is of the form

ds2 =
1

V (~x)
(dψ + ωidx

i)2 + V (~x)δijdx
i dxj . (7.66)

This metric looks like the multi-monopole metric in Kaluza-Klein theory, but with t =

constant. Whereas in Kaluza-Klein theory we had

V = 1 + λ

k∑

i=1

1

|~x− ~xi|
, (7.67)

for the Multi-Eguchi-Hanson metric, we delete the one:

V = λ
k∑

i=1

1

|~x− ~xi|
, (7.68)

where as usual,
~∇V = ~∇× ~ω. (7.69)

k = 1 is flat space, k = 2 is the Eguchi-Hanson metric; k > 2 is a Multi-Eguchi-Hanson

metric. These have self-dual curvature, boundary S3/Zk−2, and zero action.

8 Positive Energy

8.1 Geometry of Surfaces
Lect.

20Consider a (d − 1)-dimensional surface Σ, embedded in a d-dimensional manifold (possibly space-

time). If the surface is characterised by an equation f(x) = 0, the unit normal to the surface

is

na = N ∂af, (8.1)

where N is a normalisation factor. In a Riemannian manifold, one can always normalise na such

that nan
a = 1.

In Lorentzian signature, you can have a timelike na (then Σ is called spacelike), a spacelike na (then

Σ is called timelike), or a null na (then Σ is called null). We will ignore the case where nan
a = 0

since it is more difficult.

We can assume in the following that

nana = ±1. (8.2)

We need other quantities to characterise the geometry of Σ: We can define a symmetric rank two

tensor h, called the first fundamental form for historical reasons, by

hab = δab ∓ nanb. (8.3)

It has the following properties.
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1. h is a projection.

habh
b
c = (δab ∓ nanb)(δ

b
c ∓ nbnc)

= δac ∓ nanc ∓ nanc + na nbn
b

︸︷︷︸

±1

nc

= δac ∓ nanc = hac. (8.4)

2. In d dimensions, the trace of h is

haa = δaa ∓ nana = d− 1. (8.5)

3. h is orthogonal to n in the following sense:

habna = (δab ∓ nanb)na = nb ∓ nan
a

︸ ︷︷ ︸

±1

nb = 0. (8.6)

You can deduce that any vector Y a defined on Σ can be decomposed into two parts:

Y a = δabY
b = habY

b ± nanbY
b, (8.7)

which is a part tangential to Σ and a part perpendicular to Σ. Indeed, the first part is orthogonal

to na, while the second is annihilated by h.

Absolutely any vector or tensor can be decomposed in this way. In particular, you can project the

metric tensor into the surface Σ. You get

hach
b
dgab = hachad = hcd. (8.8)

You can consider h as the induced metric on Σ.

There is also a second fundamental form, which describes how n changes as one moves around

Σ:

Kcd = hach
b
d∇anb. (8.9)

This is symmetric too: Since na = N∇af , we have

∇anb = N∇a∇bf + ∇aN∇bf = N∇a∇bf +
∇aN

N
nb. (8.10)

Then

Kcd = hach
b
d

(

N∇a∇bf +
∇aN

N
nb

)

= hach
b
dN∇a∇bf, (8.11)

since h annihilates n. This is symmetric for a torsion-free connection.

The covariant derivative of n will have components tangential to Σ and perpendicular to Σ:

∇anb = (hca ± ncna)(h
d
b ± ndnb)∇c∇d

= Kab + (±ncnahdb ± hcan
dnb)∇cnd + ncnan

dnb∇cnd

= Kab ± ncnah
d
b∇cnd

= Kab ± ncna(δ
d
b ± nbn

d)∇cnd

= Kab ∓ naωb, (8.12)
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where we have used

nd∇cnd =
1

2
∇c(n

dnd) = 0 (8.13)

and

ωb = −nc∇cnb (8.14)

is sometimes called the acceleration vector.

There is a notion of covariant derivative in Σ, which is defined by projecting the covariant derivative

of the d-dimensional manifold into Σ:

(d−1)∇eT
a...

b... = he
′

eh
a
a′ . . . h

b′
b . . .∇e′T

a′...
b′... (8.15)

That may seem a bit perverse, but it is actually quite useful.

If you take ∇ to be the symmetric metric connection,

(d−1)∇(d−1)
a ∇bf = ha

′

ah
b′
b∇a′(h

x
b′∇xf)

= ha
′

ah
x
b∇a′∇xf + ha

′

ah
b′
b(∇a′h

x
b′)(∇xf)

= ha
′

ah
x
b∇a′∇xf + ha

′

ah
b′
b(∇a′(δ

x
b′ ∓ nxnb′))(∇xf)

= ha
′

ah
x
b∇′

a′∇xf ∓ ha
′

ah
b′
bn
x(∇a′nb′)(∇xf), (8.16)

where we used hb
′

bnb′ = 0. The first term is symmetric, the second term is proportional to Kab,

which we know is symmetric.

So (d−1)∇a is a symmetric connection and its torsion vanishes. It also turns out to be a metric

connection:

(d−1)∇chab = hgch
e
ah

f
b∇ghef

= hgch
e
ah

f
b∇g(gef ∓ nenf )

= ∓hgcheahf bnf∇gne ∓ hgch
e
ah

f
bne∇gnf = 0. (8.17)

Thus (d−1)∇ is the unique symmetric metric connection of h. One can find the curvature of it by

calculating
(

(d−1)∇(d−1)
a ∇b −(d−1) ∇(d−1)

b ∇a

)

Vc
!
=

(d−1)
Rabc

dVd (8.18)

for a vector Vc lying in Σ, i.e. satisfying ncVc = 0. Doing this calculation requires a certain amount

of concentration:

(d−1)Rabc
dVd = hpah

q
bh
r
c∇p(h

x
qh
y
r∇xVy) − (a↔ b) (8.19)

= hpah
q
bh
r
c∇p((δ

x
qδ
y
r ∓ nxnqδ

y
r ∓ δxqn

ynr + nxnqn
ynr)∇xVy) − (a↔ b).

Since h annihilates n, the only contributions can come from

(d−1)Rabc
dVd = hpah

q
bh
r
c (δ

x
qδ
y
r∇p∇xVy ∓ nx(∇pnq)δ

y
r∇xVy ∓ δxqn

y(∇pnr)∇xVy) − (a↔ b)

= hpah
x
bh
y
c∇p∇xVy ∓ hpah

q
b(∇pnq)h

y
cn
x∇xVy ∓ hpah

x
bh
r
c(∇pnr)n

y∇xVy − (a↔ b)

= hpah
x
bh
y
cRpxyzV

z ∓ 2K[ab]h
y
cn
x∇xVy ∓ 2hp[ah

x
b]h

r
c(∇pnr)n

y∇xVy. (8.20)

The second term is zero, for the third term use

ny∇xVy = ∇x(n
yVy) − Vy∇xn

y = −Vy∇xn
y, (8.21)
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so that

(d−1)Rabc
dVd = hpah

x
bh
y
cRpxyzV

z ± 2hp[ah
x
b]h

r
c(∇pnr)Vy∇xn

y

= hpah
x
bh
y
cRpxyzV

z ± 2Kc[ah
x
b]Vy∇xn

y

= hpah
x
bh
y
cRpxyzV

z ± 2Kc[ah
x
b]δ

y
zV

z∇xny

= hpah
x
bh
y
cRpxyzV

z ± 2Kc[ah
x
b](h

y
z ± nynz)V

z∇xny

= hpah
x
bh
y
cRpxyzV

z ± 2Kc[aKb]zV
z

= (hpah
x
bh
y
cRpxyz ±KcaKbz ∓KcbKaz)V

z. (8.22)

We have obtained Gauss’ equation Lect.

21
(d−1)Rabcd = hpah

q
bh
r
ch
s
dRpqrs ∓KacKbd ±KbcKad. (8.23)

For the Ricci tensor, we obtain

(d−1)Rbd = hac (d−1)Rabcd = hqbh
s
dh
prRpqrs ∓KKbd ±KbcK

c
d. (8.24)

You can also find a formula for the Ricci scalar:

(d−1)R = hbd (d−1)Rbd

= hprhqsRpqrs ±K2 ±KbcK
bc

= (gpr ∓ npnr)(gqs ∓ nqns)Rpqrs ∓K2 ±KbcK
bc

= R∓ 2npnrRpr ∓K2 ±KbcK
bc. (8.25)

This is very useful if you want to divide up spacetime into space and time. There is another useful

equation, the Codazzi equation. This comes from taking the divergence of K:

(d−1)∇aKc
a −(d−1) ∇cK = hf ah

e
ch
a
g∇fKe

g − hbc∇b(h
ad∇and)

= hf gh
e
c∇f (h

g
xh

y
e∇yn

x) − hbc∇b(h
ad∇and)

= hf xh
y
c∇f∇yn

x − hbch
ad∇b∇and

= hf xh
y
c(∇f∇yn

x −∇y∇fn
x)

= hf xh
y
cRfy

x
zn

z = hycRyzn
z. (8.26)

We have used the fact that the connection (d−1)∇ preserves h.

Two obvious uses for this formalism are the canonical formulation of general relativity (ADM

formalism), and the positive energy theorem, which we will do next.

8.2 Spinors in Curved Spacetime

In Minkowski space, a spinor ψ is a four-component object which transforms in the following way:

Under a Lorentz transformation

x→ x′ = Lx, (8.27)

it transforms as

ψ →
(

1 +
1

2
γµνΛ

µν + . . .

)

ψ, (8.28)
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where

γµν =
1

2
(γµγν − γνγµ) =

1

2
[γµ, γν ] (8.29)

and Λµν are the parameters of an infinitesimal Lorentz transformation. The matrices Jµν = 1
2γµν

are the generators of the Lorentz group in the spinor representation, the satisfy

[Jµν , Jρσ] = −ηµρJνσ + ηνρJµσ + ηµσJνρ − ηνσJµρ. (8.30)

What happens in an arbitrary spacetime? At each point, you can always construct the tangent space

by finding the vierbeins satisfying gab = ea
µeb

νηµν . Then under a local Lorentz transformation of

the vierbeins, a spinor field transforms like a Minkowski space spinor:

ψ →
(

1 +
1

2
γµνΛ

µν(x) + . . .

)

ψ. (8.31)

Since you have a flat metric at each point, you define as before

{γµ, γν} = 2ηµν · 1, (8.32)

such that γ0 is anti-Hermitian and γi are Hermitian.

In practice, a useful representation of the γ-matrices is

γ0 =

(
0 −1

1 0

)

, γi =

(
0 σi

σi 0

)

, (8.33)

where σi are the Pauli matrices. These matrices do not depend on the co-ordinates.

You can as always turn the Lorentz index into a spacetime index by contracting with e:

γa = eaµγ
µ. (8.34)

Then the matrices γa generally depend on co-ordinates.

You cannot accommodate spinors withour using either vielbeins or a basis of one-forms.

You want some notion of a covariant derivative of a spinor. This should be a quantity Daψ

which transforms as a spinor under local Lorentz transformations, and a covector under co-ordinate

transformations.

It is easier to invent Dψ, a spinor-valued one-form, and treat ψ as a spinor-valued 0-form. This is

Dψ = ∂aψ dx
a +

1

4
γµνω

µνψ. (8.35)

As usual, under a Lorentz transformation of ψ, generated by Λ, the first term gives ∂Λ terms,

which are compensated by the connection. If ω is torsion-free, we have

dEµ = −ωµν ∧ Eν , (8.36)

and under a Lorentz transformation E → LE you get (schematically)

LdE + dLE = −ω ∧ LE. (8.37)
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Adding a connection term cancels the ∂Λ terms you get under a Lorentz transformation.

There is a Ricci identity for spinors:

DDψ =

(

d+
1

4
γρσω

ρσ∧
)(

dψ +
1

4
γµνω

µνψ

)

=
1

4
γµνdω

µνψ − 1

4
γµνω

µνdψ +
1

4
γρσω

ρσdψ +
1

16
γρσγµνω

ρσ ∧ ωµνψ

=

(
1

4
γµνdω

µν +
1

32
[γρσ, γµν ]ω

ρσ ∧ ωµν
)

ψ

=

(
1

4
γµνdω

µν +
1

16
(ηµργνσ − ηνργµσ − ηµσγνρ + ηνσγµρ)ω

ρσ ∧ ωµν
)

ψ

=

(
1

4
γµνdω

µν +
1

4
γνσωµ

σ ∧ ωµν
)

ψ

=

(
1

4
γµνdω

µν +
1

4
γµνω

µτ ∧ ωτ ν
)

ψ =
1

4
γµνR

µνψ, (8.38)

where Rµν is just the curvature 2-form. You could turn this into components:

(DaDb −DbDa)ψ =
1

4
Rabµνγ

µνψ =
1

4
Rabcdγ

cdψ. (8.39)

The Dirac equation is

(γaDa +m)ψ = 0. (8.40)

An idea of great technological importance is that of a constant spinor:

Daψ = 0, (8.41)

these are 16 equations. If a constant spinor exists, one must have DaDbψ = 0 and hence

Rabcdγ
cdψ = 0. (8.42)

Thus curvature is an obstruction to having a constant spinor. Lect.

22We are trying to find constant spinors in Minkowski spacetime, i.e. solutions of

∇aǫ = 0. (8.43)

We use the γ matrices that we defined before. This is best done in spherical co-ordinates, where

the metric is

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2 (8.44)

We pick a basis of one-forms:

E0 = dt, E1 = dr, E2 = r dθ, E3 = r sin θ dφ (8.45)

As usual we calculate the components of the connection one-form using

dEα = −ωαβ ∧ Eβ . (8.46)
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The nonvanishing connection components are

ω2
1 =

1

r
E2, ω3

2 =
1

r
cot θE3, ω3

1 =
1

r
E3. (8.47)

You find that the possible spinors are the following

ǫ =







eiθ/2(Aeiφ/2 +Be−iφ/2)
e−iθ/2(Aeiφ/2 −Be−iφ/2)
eiθ/2(Ceiφ/2 +De−iφ/2)
e−iθ/2(Ceiφ/2 −De−iφ/2)






, (8.48)

where A,B,C and D are complex constants.

There is something inherently spinorial about this. If you rotate φ 7→ φ+ 2π around the z-axis, ǫ

will go to −ǫ. That is characteristic of a spinor which is not single-valued in spacetime.

Under a rotation φ 7→ φ + 4π, the spinor transforms into itself. This reflects the fact that spinors

are not representations of SO(3, 1), but rather its universal cover.

8.3 Definition of Mass

In general relativity, conserved quantities are only associated with Killing vectors. It is difficult to

give a definition of energy.

We consider asymptotically flat spacetimes, which have Penrose diagram

@
@

@
@

@

�
�

�
�

�

�
�

�
�

�

@
@

@
@

@

Σ

Here Σ is some spacelike surface.

You would like to invent a Gaussian integral; we need to find a two-form to integrate over the S2

at infinity.

For stationary spacetimes there is a notion of energy, since we have a Killing vector ka ∂
∂xa = ∂

∂t .

k then defines a one-form and you can integrate

1

8π

∫

S2
∞

∗dk = M for Schwarzschild. (8.49)

All that is required for this definition is a metric asymptotic to the Schwarzschild metric,

ds2 = −
(

1 − 2M

r
+ . . .

)

dt2 +

(

1 − 2M

r
+ . . .

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
(8.50)

The one-form k associated with the Killing vector is

k =

(

−1 +
2M

r
+ . . .

)

dt, (8.51)
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then

dk =

(

−2M

r2
+ . . .

)

dr ∧ dt =
2M

r2
dt ∧ dr + . . . ,

∗dk =
2M

r2
r2 sin θ dθ ∧ dφ+ . . . = 2M sin θ dθ ∧ dφ+O

(
1

r

)

. (8.52)

Hence ∫

S2
∞

∗dk =

∫

S2
∞

2M sin θ dθ ∧ dφ = 8πM, (8.53)

which works for any stationary metric.

We need to apply the divergence theorem to this:

M = − 1

4π

∫

S2
∞

dSab∇akb = − 1

4π

∫

Σ
dΣb∇a∇akb, (8.54)

where Σ is any surface asymptotic to a two-sphere. Since

2kb = −∇a∇bka = −∇b∇aka −Raback
c = −Rbckc, (8.55)

where we have used Killing’s equation ∇(akb) = 0, this becomes

M =
1

4π

∫

Σ
dΣbRbck

c. (8.56)

You can pick the surface such that k is everywhere normal to Σ. Then

M =
1

4π

∫

Σ
dΣRbck

bkc = 2

∫

Σ
dΣ

(

Tab −
1

2
Tgab

)

kakb (8.57)

by the Einstein equations. This is the closest you can get to something like a Gaussian integral in

general relativity. For a perfect fluid,

Tab = (p + ρ)uaub + pgab, (8.58)

where ρ is the energy density of the fluid, p its pressure and u its velocity. If you pick an orthonormal

frame, where uµ = (1, 0, 0, 0),

Tµν =







ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p






, T = 3p− ρ. (8.59)

For kµ = (1, 0, 0, 0), the mass is

M = 2

∫

Σ
dΣ

(

ρ+
1

2
(3p − ρ)

)

=

∫

Σ
dΣ(ρ+ 3p). (8.60)

Why should M be positive? If not, perpetual motion machines using gravity seem possible. This

would be a sign of instability in the theory.

In Newtonian theory (+ special relativity), the total energy would be

rest mass energy + kinetic energy + potential energy. (8.61)
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Since potential energy is negative and scales with M2, there is no guarantee that this is bounded

by the positive contributions.

In general relativity, an example of a spacetime with negative energy is given by the Schwarzschild

metric

ds2 = −
(

1 − 2M

r

)

dt2 +

(

1 − 2M

r

)−1

dr2 + r2 dθ2 + r2 sin2 θ dφ2 (8.62)

M is just a constant of integration, and the spacetime with negative M is still a solution of Rab = 0

locally. It contains a naked singularity at r = 0.

8.4 Energy Conditions

We must require the energy-momentum tensor to satisfy certain conditions. Possible conditions

are

• Weak Energy Condition

T abtatb ≥ 0 (8.63)

for any timelike vector t. This means the energy density must be positive in any frame. In

an orthonormal frame in which the matter is at rest,

T µν =







ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p







(8.64)

is isotropic in space. We can therefore take t to be

tµ = (cosh θ, sinh θ, 0, 0). (8.65)

Then we have

ρ cosh2 θ + p sinh2 θ ≥ 0. (8.66)

Setting θ = 0, we see we must have ρ ≥ 0; in the limit θ → ∞ we get ρ ≥ −p. Almost all

known forms of matter obey this condition. It is not very useful for proving theorems.

• Dominant Energy Condition

This states that T 00 ≥ |T ab| in any orthonormal frame, or

ρ ≥ |p| ≥ 0. (8.67)

Another way of expressing this is to say that

wa = T abtb (8.68)

is not spacelike for arbitrary timelike or null vectors tb. Examples of use are

(i) If the dominant energy condition holds, the event horizon of a black hole is spherical in

d = 4.

69



(ii) If the dominant energy condition holds, energy in general relativity is positive (see

below.)

Examples:

1. The condition holds for all plausible classical matter including a cosmological constant.

2. The condition is not true in QFT. Consider the Casimir effect which has negative energy

density.

• Strong Energy Condition Lect.

23This is useful for singularity theorems. The condition is

Rabt
atb ≥ 0, (8.69)

where ta is an arbitrary timelike or null vector, and is a geometrical condition rather than a

physical one. You can translate this into a condition on Tab via the Einstein equations:

(

Tab −
1

2
Tgab

)

tatb ≥ 0. (8.70)

If you pick t to be a unit vector as before, then you can turn this into conditions on the

pressure and energy density:

p+ ρ ≥ 0, 3p+ ρ ≥ 0. (8.71)

This proves positivity of mass for static spacetimes, where ka is everywhere timelike, and

M =

∫

dΣ (ρ+ 3p). (8.72)

The strong energy condition does not hold for a positive cosmological constant, which has

ρ > 0, p = −ρ. (8.73)

This messes up some singularity theorems.

8.5 Proof of Positive Energy

We want to prove that energy is positive in general. We suppose our spacetime is asymptotically

flat, and contains a spacelike surface Σ that does not contain singularities. This will have an

induced metric hab and an outward normal ta, which we assume is normalised. We assume the

surface is asymptotic to a two-surface with volume element

dSab =
1

2
(tarb − tbra)dS. (8.74)

Asymptotically, we have ta ∼ (1, 0, 0, 0) and ra ∼ (1, 0, 0, 0) (in spherical polar co-ordinates). Then

dS01 ∼ 1

2
r2 sin θ dθ dφ, dS10 ∼ −1

2
r2 sin θ dθ dφ, all others vanish. (8.75)
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All that is needed is to find a vector field Xa such that X ∼ m
r2

in the r-direction. Then

I = − 1

8π

∫

S2
∞

dSab taXb (8.76)

will correspond to mass. The idea is to turn this into an integral over Σ and find something that

is positive, applying the divergence theorem:

I = − 1

16π

∫

S2
∞

dSab (taXb − tbXa)

= − 1

16π

∫

Σ
d3x

√
hta∇b(taXb − tbXa)

= − 1

16π

∫

Σ
d3x

√
h
(

(ta∇bta)Xb + tata∇bXb − (ta∇btb)Xa − tatb∇bXa

)

= − 1

16π

∫

Σ
d3x

√
h
(

−∇bXb − (ta∇btb)Xa − tatb∇bXa

)

, (8.77)

where we write dΣa = d3x
√
h ta and we have used tata = −1. Since hab = gab + tatb, we can write

this as

I =
1

16π

∫

Σ
d3x

√
h
(

hab∇aXb + taXa∇btb

)

. (8.78)

If we choose a vector field X that lies in Σ everywhere, the second term vanishes:

I =
1

16π

∫

Σ
d3x

√
h
(

hab∇aXb

)

. (8.79)

To show that this is positive, you have to invent something that turns this into an integral over a

square of soemthing. The only possibility is to use a spinor to do this:

Xa = ǫ†∇aǫ. (8.80)

Then

hab∇aXb = hab∇aǫ
†∇bǫ+ habǫ†∇a∇bǫ (8.81)

To get an X which actually lies in Σ, we project it:

Xa = habǫ†∇bǫ. (8.82)

The motivation to do things this way came from supergravity.

We must invent an equation for ǫ to satisfy. Remember we need Xr ∼ m
r2

near infinity. A first

guess would be ǫ ∼ r−1/2, but does not quite work. We rather assume boundary conditions

ǫ→ constant as r → ∞. (8.83)

It is possible to find such an ǫ near infinity.

We only need a spinor in the surface Σ. Consider the Dirac equation γa∇aǫ = 0 which does not

only describe things in Σ, so take its projection into Σ. This is the Witten equation

habγa∇bǫ = 0. (8.84)
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The rest of this is an awful calculation. We write

ǫ =







ǫ1
ǫ2
ǫ3
ǫ4






. (8.85)

You can pick one of the spinors that are covariantly constant in flat space:

ǫ1 = ei(θ+φ)/2, ǫ2 = ei(φ−θ)/2, ǫ3 = ǫ4 = 0. (8.86)

The metric on Σ, near infinity, must look like the Schwarzschild metric,

ds2Σ =

(

1 +
2M

r
+ . . .

)

dr2 + r2(dθ2 + sin2 θ dφ2). (8.87)

If you solve the Witten equation in powers of 1
r , you find

ǫ1 = ei(θ+φ)/2

(

1 − 2M

r
+O

(
1

r2

))

, ǫ2 = ei(φ−θ)/2
(

1 − 2M

r
+O

(
1

r2

))

, ǫ3 = ǫ4 = 0.

(8.88)

Then near infinity, Xr is

Xr = hrbǫ
†∇bǫ = e−i(θ+φ)/2 2M

r2
ei(θ+φ)/2 +

2M

r2
+ . . . =

4M

r2
+ . . . (8.89)

Then indeed

M = − 1

16π

∫

S2
∞

dSab t
aXb, (8.90)

so we can take the integral I as a defintion of mass.

How do you know that such a solution to the Witten equation exists? Let us write

W = habγa∇b, (8.91)

so that we try to find a solution of Wǫ = 0. You can write ǫ = ǫ0 + ǫ1, where ∇aǫ0 = 0 in flat

space. Then we want

Wǫ1 = −Wǫ0, (8.92)

where the right-hand side is fixed. You can find the Green’s function of W , call it G. Then

ǫ1(x) = −
∫

d3x
√
hG(x, x′)(Wǫ0(x

′)). (8.93)

Since this method seems to be able to prove existence of any kind of solution you can think of, it

is not a rigorous proof, which however apparently exists. Now let us go back to

M =
1

16π

∫

Σ
d3x

√
hhab∇aXb, Xb = habǫ

†∇aǫ. (8.94)
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Square the Witten equation to get

0 = hcdγc∇d

(

habγa∇bǫ
)

= hcdγch
abγa∇d∇bǫ+ hcdγcγa(∇bǫ)(∇dh

ab)

= hcdhab (gca + γca)∇d∇bǫ+ hcdγcγa(∇bǫ)(∇dh
ab)

= hdb∇d∇bǫ+ hcdhabγca∇[d∇b]ǫ+ hcdγcγa(∇bǫ)(∇dh
ab)

= hdb∇d∇bǫ+
1

8
hcdhabγcaRdbefγ

ef ǫ+ hcdγcγa(∇bǫ)(∇dh
ab), (8.95)

where we have used the Ricci identity. The first term is a sort of Laplacian projected into Σ. We

will use this to show that the mass integral is positive: Lect.

24
M =

1

16π

∫

Σ
d3x

√
hhab∇a

(

hcbǫ
†∇cǫ

)

=
1

16π

∫

Σ
d3x

√
h
(

hab(∇aǫ
†)hcb∇cǫ+ habhcbǫ

†∇a∇cǫ+ hab (∇ah
c
b) ǫ

†∇cǫ
)

(8.96)

Since the Dirac conjugate in a curved spacetime must be taken to be

ǭ = ǫ†γata, (8.97)

we have

ǭγbtb = ǫ†γaγbtatb = ǫ†tata = −ǫ†. (8.98)

Hence

(∇aǫ)
† = −∇aǫγ

btb = −∇aǭγ
btb = −∇a(ǫ

†γctc)γ
btb = ∇aǫ

† − ǫ†γc(∇atc)γ
btb, (8.99)

and

M =
1

16π

∫

Σ
d3x

√
h
(

hac(∇aǫ)
†∇cǫ+ hacǫ†γd(∇atd)γ

btb∇cǫ+ hacǫ†∇a∇cǫ+ hab (∇ah
c
b) ǫ

†∇cǫ
)

.

(8.100)

The first term is positive, and only zero if ∇aǫ = 0 everywhere. For the remaining terms, use the

squared Witten equation to get

M =
1

16π

∫

Σ
d3x

√
h
(

hac(∇aǫ)
†∇cǫ+ hacǫ†γd(∇atd)γ

btb∇cǫ+ hab (∇ah
c
b) ǫ

†∇cǫ

−1

8
ǫ†hcdhabγcaRdbefγ

ef ǫ− hcdǫ†γcγa(∇bǫ)(∇dh
ab)

)

. (8.101)

First consider the term involving the Riemann tensor:

−1

8
ǫ†hcdhabγcaRdbefγ

ef ǫ = −1

8
ǫ†
(

gcd + tctd
)(

gab + tatb
)

γcγaγeγfRdb
ef ǫ

= −1

8
ǫ†
(

Rcaefγcγaγeγf + 2tctdRd
aefγcγaγeγf

)

ǫ. (8.102)

From the Bianchi identity,

Rd
aefγaγeγf = −

(

Rd
efa +Rd

fae
)

γaγeγf

= −Rdefa (γeγfγa + 2gaeγf − 2gafγe) −Rd
fae (γfγaγe + 2gefγa − 2gafγe)

= −2Rd
aefγaγeγf − 6Rd

fγf , (8.103)
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hence

Rd
aefγaγeγf = −2Rd

fγf (8.104)

and

−1

8
ǫ†hcdhabγcaRdbefγ

ef ǫ = −1

8
ǫ†
(

−2R− 4tctdRd
fγcγf

)

ǫ

=
1

8
ǫ†
(

2R+ 4tctd
(

8πTd
f +

1

2
Rδd

f

)

γcγf

)

ǫ

= 4πTd
f
(

ǫ†tcγcγf ǫ
)

td, (8.105)

where we used the Einstein equations. Now

wf := ǫ†tcγcγf ǫ (8.106)

is a timelike vector (check), and so if dominant energy is satisfied, this term is positive. There are

three other terms in M which cancel:

hacǫ†γd(∇atd)γ
btb∇cǫ+ hab (∇ah

c
b) ǫ

†∇cǫ− hcdǫ†γcγa(∇bǫ)(∇dh
ab)

= hacǫ†γd(∇atd)γ
btb∇cǫ+ hab∇a (tctb) ǫ

†∇cǫ− hcdǫ†γcγa(∇bǫ)∇d

(

tatb
)

= hacǫ†γd(∇atd)γ
btb∇cǫ+ habtc (∇atb) ǫ

†∇cǫ− hcdǫ†γcγa(∇bǫ)t
a
(

∇dt
b
)

− hcdǫ†γcγa(∇bǫ)t
b (∇dt

a)

= hacǫ†γdKadγ
btb∇cǫ+ habtcKabǫ

†∇cǫ− hcdǫ†γcγa(∇bǫ)t
aKd

b − hcdǫ†γcγa(∇bǫ)t
bKd

a

= ǫ†γdKc
dγ

btb∇cǫ+ tcKǫ†∇cǫ− ǫ†γcγa(∇bǫ)t
aKcb −Kcaǫ†γcγa(∇bǫ)t

b = 0. (8.107)

One is left with

M =
1

16π

∫

Σ
d3x

√
h
(

hac(∇aǫ)
†∇cǫ+ 4πTd

fwf td
)

. (8.108)

You can interpret the first part as the energy of the gravitational field, and the second as the energy

of matter. The amazing thing is the way is proof is done is based on supergravity.

The result that M ≥ 0 as long as dominant energy holds is absolutely true in classical general

relativity.

It must mean that gravitational energy is not localised: Imagine some matter distribution in a

region on the surface Σ, then you could deform Σ slightly to a new surface Σ′ not including this

region. M would be the same for Σ and Σ′, but the contributions from the two terms could be

quite different.

The partition between “gravitational” energy and “matter” energy is different on different surfaces.

So one sees that gravitational energy cannot be localised.

Finally,

M = 0 ⇒ ∇aǫ = 0, Tab = 0, (8.109)

so if spacetime is asymptotically flat with no horizons and zero mass, it must be flat space.

- END -
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