
CHORD FRB beamformer

Kendrick Smith

November 4, 2022

Contents

1 Executive summary 3

2 Beamforming algorithm 4
2.1 Setting up the problem . 4
2.2 Proposed O(D logD)∗ algorithm . 4
2.3 Proof of the main theorem . 6

3 Short FFTs with tensor cores 8
3.1 Introduction . 8
3.2 Zero padding, spectator indices, and register assignments . 8
3.3 FFT algorithm . 9
3.4 In/out notation for tensor core MMAs . 9
3.5 Implementation . 10
3.6 Register usage . 12
3.7 Computational cost . 13

4 First FRB beamforming kernel 15
4.1 Specification . 15
4.2 Outline . 16
4.3 Pseudocode . 18
4.4 Compile-time constants . 19
4.5 Shared memory layout . 20
4.6 Copying global memory to shared memory (Fsh1) . 22
4.7 Reading shared memory (Fsh1) into registers (Freg1) . 24
4.8 Writing shared memory (Fsh2) from registers (Freg1) . 24
4.9 Reading shared memory (Fsh2) into registers (Freg2) . 26
4.10 First FFT . 29
4.11 Second FFT . 31
4.12 Writing the I array to global memory . 32
4.13 Computational cost . 34
4.14 Discussion . 36

5 Second FRB beamforming “kernel” 37
5.1 Introduction . 37
5.2 Case 1: non-factorizable beam locations . 37
5.3 Case 2: factorizable beam locations . 38
5.4 Computational cost and discussion . 38

A Proposed dish layout 42

1

B GPU kernel preliminaries 43
B.1 Register assignment notation . 43
B.2 Local transpose operation . 43
B.3 Warp transpose operation . 44

C Float16 tensor core reference 45
C.1 Float16 m16n8k8 . 45
C.2 Float16 m16n8k16 . 45
C.3 Sparse float16 m16n8k16 . 45

2

1 Executive summary

The FRB beamformer is the most complicated and expensive computation on the GPU correlator. I estimate
that it will take about half of the compute time, and about half of the human (programming) time. This
monster document describes algorithmic planning for the FRB beamformer. So far we haven’t started
implementation, but Erik will start soon. This would be a great time to get feedback!

In §2, we describe our beamforming algorithm in mathematical form. It has the following properties:

• Computational cost is O(D logD)∗, where D is the number of dishes.

The asterisk means that we are making an approximation, by neglecting terms which are suppressed
by inverse powers of the time downsampling factor Tds. This turns out to be a good approximation in
CHORD, even if the number of beams is large (say B ∼ 5000).

• Beamformed sky locations are arbitrary, and can be either tracking or non-tracking.

• Spatial kernels are exact, with no interpolation artifacts.

• Float16 arithmetic is used for all intermediate results. (At the very end of the computation, the
beamformed intensities will be quantized to int4 or int8 for network transmission.)

This is a very appealing set of properties! However, there is one big restriction:

• We assume that the dishes partially populate a regular M -by-N grid. Here, (M,N) = (24, 24) for full
CHORD (Appendix A). The CHORD pathfinder will either use (M,N) = (8, 8) or (M,N) = (8, 12).
We will also consider HIRAX, with either (M,N) = (16, 16) or (M,N) = (16, 20).

In subsequent sections, we plan the GPU implementation.

• In §3, we describe an extremely fast algorithm for doing short float16 FFTs with tensor cores. The
algorithm is implemented as an “inline” function which operates on a few registers, and can be coa-
lesced into a larger kernel. This FFT implementation is the computational foundation for the FRB
beamformer.

For technical reasons that will be explained later, we factorize the beamformer into two GPU kernels:1

• The first kernel (§4) computes beamformed intensities on a regular grid of sky locations which is
oversampled by a factor 2, and writes them to global GPU memory. This is the most expensive and
complicated step. For both full CHORD and the CHORD pathfinder (A40 GPUs assumed), we predict
it will take ∼14% of GPU resources (see Table 3 in §4.13).

• The second kernel (§5) resamples the beamformed intensities on a specified set of sky locations. For full
CHORD, we estimate that the cost will be ∼2% or ∼6% of total GPU resources (A40 GPUs assumed),
depending on whether the spatial beam pattern is “factorizable” or “non-factorizable”.2

The estimated total cost (∼16% or ∼20%) is significantly lower than our earlier estimates, even with a
complete set of ∼5000 beams, and with arbitrary beam locations allowed. If our cost estimates prove
to be accurate, for the FRB beamformer and other GPU kernels in progress (visibility matrix, baseband
beamformer, upchannelization), it seems likely that we will be able to use A10 GPUs instead of A40 GPUs,
decreasing the cost of the correlator substantially.

1We’ll also need a third kernel, to put the intensities in an appropriate form for network transmission, by transposing and
quantizing. The third kernel isn’t specified in this document, since we haven’t decided on details of the packet format yet. But
I expect that the third kernel will be easy to write, and its running time will be small.

2We say that a spatial beam pattern is factorizable if the set of 2-d beam locations {(θ, θ′)} is the Cartesian product of 1-d
sets {θ} × {θ′} (see Figure 1 in §2). Note that Kiyo’s beamforming paper [1] uses the term “factorizable” to mean something
else!

3

2 Beamforming algorithm

In this section, we present our beamforming algorithm in mathematical form, deferring details of the GPU
implementation to later sections (§3–§5). We will slightly simplify by considering a single frequency channel,
neglecting polarization, and neglecting gains.

2.1 Setting up the problem

The inputs to FRB beamforming are:3

• The electric field Eτmn, sampled in time τ on a regular dish grid (m,n). This is a complex-valued array
with shape (Ntime,M,N). Grid positions which are unoccupied by dishes are represented by zeros.

• An integer time downsampling factor Tds.

• A sequence of B beam locations (θβ , θ
′
β), where β ∈ {0, · · · , B − 1} indexes a beam.

We say that a spatial beam pattern is factorizable if the set of 2-d beam locations {(θ, θ′)} is the
Cartesian product of 1-d sets {θ} × {θ′} (Figure 1). Our FRB beamforming algorithm will be a little
faster if the beams are factorizable.

The output is:

• Beamformed intensity Jτ̄β , a real-valued array with shape (Ntime/Tds, B). Here, we use τ̄ to index a
“slow” time sample, after downsampling the “fast” E-array time index τ by a factor Tds.

The beamformed intensity Jτ̄β is computed as follows. First, for each beam β, we define the beamformed

electric field Ẽτβ by:4

Ẽτβ =

M−1∑
m=0

N−1∑
n=0

Eτmn exp

(
2πim

M
θβ +

2πin

N
θ′β

)
(2)

Then Jτ̄β is given by squaring, and downsampling by a factor Tds:

Jτ̄β =

τ̄(Tds+1)−1∑
τ=τ̄Tds

|Ẽτβ |2 (3)

We are interested in algorithms for computing the beamformed intensity Jτ̄β from the electric field Eτmn

and the beam locations (θβ , θ
′
β).

2.2 Proposed O(D logD)∗ algorithm

FFT beamforming. If the beam locations (θβ , θ
′
β) form a suitable regular grid, then beamforming can

be done very efficiently using the FFT algorithm.
As a warmup, suppose that we want to beamform at all integer beam locations (θ, θ′). Note that there

are MN distinct (up to aliasing) integer beam locations, since Eq. (2) implies that Ẽτβ is invariant under
θ → θ +M or θ′ → θ′ +N . In this case, beamforming could be done straightforwardly, by using a 2-d c2c
FFT to compute Ẽτβ (Eq. (2)).

3We denote time indices by τ rather than t, and beam indices by β rather than b. This is to avoid notational confusion in
later GPU-centric sections, where GPU threads are indexed by t, and bytes within a register are indexed by b.

4In Eq. (2) and throughout these notes, we are using a normalized definition of the sky location (θ, θ′) which is related to
true sky location as follows. Let n̂ be a unit 3-vector pointing toward the true sky location. Let σ, σ′ be 3-vectors representing
dish displacements along the NS and EW axes (with |σ| = 6.3 m, and |σ′| = 8.5 m), and let λ be the radio wavelength. Then:

θ =
M(n̂ · σ)

λ
θ′ =

N(n̂ · σ′)

λ
(1)

4

2 4 6 8 10 12

2

4

6

8

10

12
′

0 2 4 6 8 10 12

0

2

4

6

8

10

12

′

Figure 1: Visual illustration of a factorizable (left) and non-factorizable (right) set of beam locations {(θ, θ′)}.

Next, suppose we want to beamform at all half-integer beam locations (θ, θ′). Then, to compute Ẽτβ , we
could zero-pad the m,n axes by a factor 2, and take a 2-d FFT with shape (2M, 2N). Since the half-integer
case will turn out to be fundamental to our algorithm, we introduce special notation for it. We define:

Ẽτpq =

M−1∑
m=0

N−1∑
n=0

Eτmn exp

(
2πimp

2M
+

2πinq

2N

)
where 0 ≤ p < 2M and 0 ≤ q < 2N (4)

The shape-(Ntime, 2M, 2N) complex array Ẽτpq represents the beamformed electric field (2) at all half-integer
beam locations (θ, θ′) = (p/2, q/2). Note that the RHS of Eq. (4) is a 2-d c2c FFT, zero-padded to shape
(2M, 2N). We define the half-integer beamformed intensity Iτ̄pq by:

Iτ̄pq =

τ̄(Tds+1)−1∑
τ=τ̄Tds

|Ẽτpq|2 (5)

a real-valued array of shape (Ntime/Tds, 2M, 2N).

Main theorem. In §2.3, we will prove the following “main theorem”. The half-integer beam locations
are a complete basis, in the sense that the beamformed intensity Jτ̄β at an arbitrary location (θβ , θ

′
β) is a

linear combination of intensities Iτ̄pq at half-integer locations. More precisely, we will show that:

Jτ̄β =

2M−1∑
p=0

2N−1∑
q=0

UM
p (θβ)U

N
q (θ′β) Iτ̄pq (6)

where we give two expressions for the function UN
q (θ):

UN
q (θ) =

1

N

N∑
s=0

As cos

(
π(2θ − q)s

N

)
where As =

{
1 if 0 < s < N
1/2 if s = 0 or s = N

(7)

=
1

2N
sin
(
π(2θ − q)

)
cot
(π(2θ − q)

2N

)
(8)

The second expression (8) is more compact, but degenerates to (0/0) if (2θ − q) is an integer multiple of
(2N). The first expression (7) is slower, but evaluates straightforwardly for all values of θ. This may be
preferable in a vectorized setting (either a GPU kernel, or a simd CPU computation).

Algorithm. Our FRB beamforming algorithm is as follows:

1. For each beam (θβ , θ
′
β), we precompute the weights UM

p (θβ), U
N
q (θ′β) using Eq. (7) or (8).

5

2. Using FFT beamforming, we compute the intensity Iτ̄pq at half-integer sky locations (Eq. 5).

3. We compute (or “resample”) the beamformed intensity Jτ̄β at specified sky locations (θβ , θ
′
β) using the

main theorem (6). This resampling step does not use spatial interpolation and is exact.

We considered a few different beamforming algorithms, and decided that this algorithm should fastest, on
Ampere GPUs with CHORD parameters.

The intuition for why this algorithm is fastest is simple: it does the minimum possible computation (a
shape-(2M, 2N) FFT) to compute beamformed intensities in a complete basis. This creates complications
(the kernel UM

p (θβ), U
N
q (θ′β) is non-sparse, and requires trig evaluations), but all the complication happens

at coarse time resolution, where computational cost turns out to be subdominant.

Factorizability. The computation of Jτ̄β using the main theorem (6) is faster if the beam locations are
factorizable. To see this, note that in the factorizable case, the beam index β can be reinterpreted as an
index pair β = (γ, γ′). The first beam coordinate θβ only depends on the first index γ, and the second beam
coordinate θ′β only depends on the second index γ′. Then we can factor Eq. (6) into two steps as follows:

Kτ̄γq =

M−1∑
p=0

UM
p (θγ)Iτ̄pq (9)

Jτ̄γγ′ =

N−1∑
q=0

UN
q (θ′γ′)Kτ̄γq (10)

This two-step method factorizes the resampling computation into independent resampling steps along the
two spatial axes. This only works if the beam pattern is factorizable.

Computational cost. Assuming D = O(MN) dishes, B beams, and time downsampling factor Tds,
the computational cost per fast time sample is:

Cost =

{
O
(
D logD

)
+O

(
(B1/2D +D1/2B)/Tds

)
if beam locations are factorizable

O
(
D logD

)
+O

(
BD/Tds

)
if beam locations are arbitrary

(11)

where we have split computational cost into (FFT + resampling) terms. In the GPU-centric sections of this
note (§3–§5), we will estimate computational cost more precisely. See Table 3 in §4.13, and Table 4 in §5.4.
For full CHORD, we estimate that the (FFT + resampling) cost is:

Cost =

{
(14 + 2)% of total GPU resources if beam locations are factorizable
(14 + 6)% of total GPU resources if beam locations are arbitrary

(12)

assuming a 128×A40 correlator. Thus, terms which are suppressed by 1/Tds (the resampling terms) are
subdominant, as claimed previously in §1.

The FRB beamformer should still be fast if the spatial beam pattern is non-factorizable. This allows
tracking beams to be implemented straightforwardly if desired. For tracking beams, we would adjust the
beam positions (θβ , θ

′
β) every ∼1 second or so (between kernel launches). This may require writing some

small GPU kernels to recompute phase matrices – see §5.4 for discussion.

2.3 Proof of the main theorem

To reduce notational clutter, we state and prove a “1-d” version of the main theorem with one spatial
dimension, one time index, downsampling factor Tds = 1, and one beam at sky location θ. The 2-d main
theorem stated previously in Eq. ((6) follows by applying the 1-d version to both spatial axes, and summing
over 0 ≤ τ < Tds.

Theorem. Let {En}0≤n<N be a complex 1-d array, and define:

J(θ) =
∣∣Ẽ(θ)

∣∣2 where Ẽ(θ) =

N−1∑
n=0

En exp

(
2πinθ

N

)
(13)

6

Then J(θ) is given by:

J(θ) =

2N−1∑
q=0

Uq(θ) Iq where Iq =

∣∣∣∣∣
N−1∑
n=0

En exp

(
2πiqn

2N

)∣∣∣∣∣
2

(14)

where Uq(θ) was defined previously in Eqs. (7), (8).

Proof. Expanding the definition (13), we write J(θ) as a double sum:

J(θ) =

N−1∑
n=0

N−1∑
n′=0

EnE
∗
n′Fn−n′(θ) where Fs(θ) = exp

(
2πisθ

N

)
(15)

Now a little trick. We want to expand Fs(θ) in a Fourier series in its integer index s. This requires Fs(θ) to
be periodic in s, which isn’t formally true given the definition (15). However, we note that Fs(θ) only appears
in the double sum for −N < s < N . Therefore, we can replace Fs(θ) by the following quantity Gs(θ), which
is equal to Fs(θ) for −N < s < N , and is (2N)-periodic in the integer index s (i.e. Gs(θ) = Gs+2N (θ)):5

Gs(θ) =

{
cos(2πθ) if s ≡ N (mod 2N)

exp(2πiuθ/N) if s ≡ u (mod 2N) with −N < u < N
(16)

Since Gs(θ) is (2N)-periodic in s, we can apply a length-(2N) FFT. We denote the Fourier transform (in s)
of Gs(θ) by Uq(θ), for consistency with previous notation. Here, 0 ≤ q < 2N is the conjugate wavenumber
to 0 ≤ s < 2N , and the functional argument θ does not participate in the FFT. The quantities Gs(θ) and
Uq(θ) are related by:

Gs(θ) =

2N−1∑
q=0

Uq(θ) exp

(
2πisq

2N

)
where Uq(θ) =

1

2N

2N−1∑
s=0

Gs(θ) exp

(
−2πisq

2N

)
(17)

Now we simplify Eq. (15) for J(θ) as follows:

J(θ) =

N−1∑
n=0

N−1∑
n′=0

EnE
∗
n′Gn−n′(θ) replacing Fs(θ) → Gs(θ) in Eq. (15)

=

N−1∑
n=0

N−1∑
n′=0

EnE
∗
n′

2N−1∑
q=0

Uq(θ) exp

(
2πi(n− n′)q

2N

)
plugging in Eq. (17) for Gs(θ)

=

2N−1∑
q=0

Uq(θ) Iq recognizing definition (14) of Iq

This proves the main theorem, except for the task of showing that Uq(θ) is given by the expressions in Eqs.
(7), (8). This follows from a short calculation, plugging the definition (16) of Gs(θ) into the definition (17)
of Uq(θ).

6

5The proof still works if we replace cos(2πθ) → 0 in the first line of (16). Then, instead of the function Uq(θ) defined in Eqs.
(7), (8), we would get the function Vq(θ) defined by

Vq(θ) =
1

2N

sin[π(2θ − q)(2N − 1)/(2N)]]

sin[π(2θ − q)/(2N)]

I slightly prefer Uq(θ) to Vq(θ) since it has the following property. If θ = q′/2 is a half-integer, then Uq(θ′) = δqq′ , as you would
intuitively expect.

6The main theorem was also proved (by a different argument!) by Kiyo in his beamforming paper [1]. We have included a
short self-contained proof for completeness. Note that Kiyo’s paper uses Vq(θ) [see previous footnote] instead of Uq(θ).

7

3 Short FFTs with tensor cores

Note: Throughout this section, and the rest of these notes, we will make heavy use of the
register assignment notation from Appendix B.1.

3.1 Introduction

In the FRB beamformer, we will need fast c2c float16 FFTs, zero-padded by a factor 2. The input Xn is a
length-N float16+16 array, and the output Yq is a length-(2N) float16+16 array:

Yq =

N−1∑
n=0

Xn exp

(
2πinq

2N

)
where 0 ≤ q < 2N (18)

In this section, we will describe a fast tensor core FFT implementation. We assume that N is known at
compile time, is divisible by 4, and satisfies 8 ≤ N ≤ 32.

The input array Xn and output array Yq will be held in registers in a single warp, in a register as-
signment described below (§3.2). The input array uses one register/thread, and the output array uses two
registers/thread. Thus FFT could be implemented as a __device__ inline function with one __half2

input, and two __half2 outputs, which does not access global or shared memory. This function could be
written and tested independently of the FRB beamformer.

3.2 Zero padding, spectator indices, and register assignments

The purpose of this section is to define register assignments for the input X-array and output Y -array. We’ll
do this in Eqs. (25) and (26) below, but first we need to explain some details: spectator indices and zero
padding. First we define:

r =
⌈
log2(N)

⌉
(19)

If r ≤ 4, then we will do 25−r FFTs in parallel, by distributing 25−r instances of the input array Xn across
32 threads in a warp. Formally, we introduce a spectator index 0 ≤ s < 25−r, and “promote” the input and
output arrays to 2-d arrays X2d

ns , Y
2d
qs . The FFT is given by:

Y 2d
qs =

N−1∑
n=0

X2d
ns exp

(
2πinq

2N

)
where 0 ≤ q < 2N (20)

If N is not a power of two, then we will zero-pad the n and q indices to powers of two. It will be convenient
to do the zero-padding in a slightly strange way as follows. First, we split the input index n into high/low
indices (c, d), and split the output index q into high/low indices (u, v), by defining:

n =
N

4
c+ d where 0 ≤ c < 4 and 0 ≤ d <

N

4
(21)

q = 8u+ v where 0 ≤ u <
N

4
and 0 ≤ v < 8 (22)

Then we zero-pad by extending the d, u indices to 0 ≤ d < 2r−2 and 0 ≤ u < 2r−2. Formally, we “promote”
the input and output arrays to 3-d zero-padded arrays:

X3d
cds =

{
X2d

(N/4)c+d,s if 0 ≤ d < (N/4)

0 if (N/4) ≤ d < 2r−2 where
0 ≤ c < 4
0 ≤ d < 2r−2

0 ≤ s < 25−r
(23)

Y 3d
uvs =

{
Y 2d
8u+v,s if 0 ≤ u < (N/4)
0 if (N/4) ≤ u < 2r−2 where

0 ≤ u < 2r−2

0 ≤ v < 8
0 ≤ s < 25−r

(24)

8

Our FFT implementation will operate on the zero-padded input array X3d
cds, and return the zero-padded

output array Y 3d
uvs. These arrays have total sizes 32 and 64 respectively, and can be distributed across a

single warp with 1 and 2 registers/thread respectively. We will use the following register assignments:

[float16 X3d
cds] b ↔ ReIm t0t1t2t3t4 ↔ c0c1d0 s0 · · · s4−r d1 · · · dr−3︸ ︷︷ ︸

2 bits

(25)

[float16 Y 3d
dvs] b ↔ v0 r ↔ ReIm t0t1t2t3t4 ↔ v1v2 u0 · · ·ur−3 s0 · · · s4−r︸ ︷︷ ︸

3 bits

(26)

These equations can also be viewed as defining register mappings for the 2-d arrays X2d
ns , Y

2d
qs , in which some

GPU threads store zeros.

3.3 FFT algorithm

The general idea of the FFT algorithm is to factorize a length-(MN) FFT as the composition of two
FFTs with lengths M and N . Usually, this idea is applied recursively to factorize a length-2n FFT as the
composition of n length-2 FFTs. Here, we will factorize a length-(2N) FFT as the composition of two FFTs
with lengths 8 and (N/4). These FFTs are small enough that they can be done with a single tensor core
MMA instruction.

The “3-d” variables X3d
cds and Y 3d

uvs have been defined in a way which makes this factorization explicit.
To derive an expression for the FFT in these variables, we start with Eq. (20) and write n = (N/4)c+ d and
m = 8u+ v (as in Eqs. (21), (22)). After a little algebra we get:

Y 3d
uvs =

(N/4)−1∑
d=0

exp

(
8πidu

N

)
exp

(
πidv

N

) 3∑
c=0

exp

(
πicv

4

)
X3d

cds (27)

By evaluating the RHS from right to left, we get an algorithm for computing Y 3d
uvs from X3d

cds:

Zdvs =

3∑
c=0

Γ(1)
cv X3d

cds where Γ(1)
cv = exp

(
πicv

4

)
(28)

Wdvs = Γ
(2)
dv Zdvs (no sum on d or v) where Γ

(2)
dv =

{
exp

(
πidv
N

)
if d < (N/4)

0 if d ≥ (N/4)
(29)

Y 3d
uvs =

2r−2−1∑
d=0

Γ
(3)
duWdvs where Γ

(3)
du =

{
exp

(
8πidu
N

)
if d < (N/4) and u < (N/4)

0 if d ≥ (N/4) or u ≥ (N/4)
(30)

One small subtlety here: when going from Eq. (27) to Eqs. (28)–(30), we have padded the indices d, u to run

over 0, · · · , (2r−2 − 1), instead of 0, · · · , (N/4). The definitions of Γ
(2)
dv and Γ

(3)
du in Eqs. (29), (30) have been

appropriately zero-padded for consistency.

3.4 In/out notation for tensor core MMAs

ReIm in/out notation. Consider a matrix multiplication C = AB, where all 3 matrices are complex.
To do this matrix multiplication on tensor cores, we will need to add extra ReIm indices. In the simplest
example where A,B,C are 1-by-1 “matrices”, the complex multiplication C = AB could be implemented as:(

Re(C)
Im(C)

)
=

(
Re(A) −Im(A)
Im(A) Re(A)

)(
Re(B)
Im(B)

)
(31)

This example generalizes to arbitrary-shape matrices as follows. The matrices B and C get a length-2
ReIm axis in a straightforward way, whereas the matrix A gets two length-2 axes ReImin and ReImout

(corresponding respectively to column and row indices in (31)).

9

For notational clarity, we temporarily denote the original complex matrix by Ac, and its real counterpart
with length-2 axes (ReImin, ReImout) by Ar. Then Ar and Ac are related by:

Ar[Reout,Rein, · · ·] = ReAc[· · ·]
Ar[Reout, Imin, · · ·] = −ImAc[· · ·]
Ar[Imout,Rein, · · ·] = ImAc[· · ·]
Ar[Imout, Imin, · · ·] = ReAc[· · ·] (32)

where (· · ·) denotes all index bits of Ac (either row indices, column indices, or spectator indices). For an
example of this notation, see Eq. (39) below.

Spectator bit in/out notation. Consider an 8× 8 matrix multiply:

C︸︷︷︸
8×8

= A︸︷︷︸
8×8

B︸︷︷︸
8×8

(33)

Suppose we want to do several such matrix multiplications, for different choices of matrix B, but with the
same choice of A throughout. Also suppose we want to use the m16n8k16 MMA (Appendix C.2), in which
some matrix dimensions are 16. Then we can do two matrix multiplications C = AB and C ′ = AB′ with
one m16n8k16 MMA, as follows: (

C
C ′

)
︸ ︷︷ ︸

16×8

=

(
A

A

)
︸ ︷︷ ︸

16×16

(
B
B′

)
︸ ︷︷ ︸

16×8

(34)

To formalize this, we introduce a length-2 spectator axis s, and combine the matrices Bjk and B′
jk into

a single array Bjks (and likewise for C). The matrix A gets two length-2 spectator indices sin, sout, and
depends on these indices only through an overall Kronecker delta δsinsout .

This example can be generalized to other situations in which a tensor core MMA is “wider” than the
matrix multiplication of interest. For example, consider this matrix multiply:

C︸︷︷︸
4×8

= A︸︷︷︸
4×4

B︸︷︷︸
4×8

(35)

We can do four such matrix multiplies (for the same choice of A) with one m16n8k16 MMA as follows:
C0

C1

C2

C3


︸ ︷︷ ︸

16×8

=


A

A
A

A


︸ ︷︷ ︸

16×16


B0

B1

B2

B3


︸ ︷︷ ︸

16×8

(36)

To formalize this, we introduce a length-4 spectator axis. The B and C matrices would each get two spectator
bits s0, s1. The A-matrix would get four spectator bits sin0 , sin1 , sout0 , sout1 , and would depend on these indices
through two Kronecker deltas δsin0 sout

0
δsin1 sout1

.
We mention in advance that this use of spectator bits leads to sparse matrices. The A-matrices in Eqs.

(34), (36) have 50% and 25% sparsity respectively. This will allow us to use sparse tensor core MMAs
(Appendix C.3) for speed.

3.5 Implementation

In this section, we’ll describe implementation of the FFT algorithm in Eqs. (28)–(30). Conceptually, this is
straightforward: we compute (28) using a tensor core MMA, then compute (29) using __half2 FMAs, then
compute (30) using a tensor core MMA. However, the index gymnastics are surprisingly complicated!

First step: computing Z using Eq. (28). We start with X3d
cds in register assignment from Eq. (25):

[float16 X3d
cds] b ↔ ReIm t0t1t2t3t4 ↔ c0c1d0 s0 · · · s4−r d1 · · · dr−3︸ ︷︷ ︸

2 bits

(37)

10

To compute Z = Γ(1)X, we apply a m16n8k8 MMA (Appendix C.1). In notation from that appendix,
matrices (Aij , Bjk) correspond to (Γ(1), X3d), and tensor core indices i, j, k correspond to:

i0i1i2i3 ↔ v0v1v2 ReImout j0j1j2 ↔ ReImin c0c1 k0k1k2 ↔ d0 s0 · · · s4−r d1 · · · dr−3︸ ︷︷ ︸
2 bits

(38)

Under this index correspondence, one can check that the X3d
cds register assignment (37) matches the tensor

core B-array register assignment (157). This is the reason for our choice of X-array register assignment,
given previously in Eq. (25) without motivation.

Similarly, we deduce the necessary register assignment for Γ
(1)
cv from Eq. (38) and the tensor core A-array

register assignment (156):

[float16 Γ(1)
cv] b ↔ ReImin r ↔ ReImout t0t1t2t3t4 ↔ c0c1v0v1v2 (39)

We assume that Γ(1) has been precomputed at the beginning of the kernel, and loaded into persistent registers
using this register assignment. Finally, we deduce the register assignment for the output array Zdvs from
Eq. (38) and the tensor core C-array register assignment (158):

[float16 Zdvs] b0 ↔ d0 r ↔ ReIm t0t1t2t3t4 ↔ s0 · · · s4−r d1 · · · dr−3︸ ︷︷ ︸
2 bits

v0v1v2 (40)

Second step: computing W using Eq. (29). We assume that Γ
(2)
dv (defined in (29)) has been

precomputed and stored in persistent registers, with the same register assignment as Zdvs (Eq. (40)):

[float16 Γ
(2)
dv] b0 ↔ d0 r ↔ ReIm t0t1t2t3t4 ↔ s0 · · · s4−r d1 · · · dr−3︸ ︷︷ ︸

2 bits

v0v1v2 (41)

A notational point here: since Γ
(2)
dv does not depend on the spectator index s, the spectator bit assignment

t0 · · · t4−r ↔ s0 · · · s4−r on the RHS of (41) indicates that the data is independent of thread indices t0 · · · t4−r.

To compute Wdvs using Eq. (29), we multiply the complex arrays Γ
(2)
dv and Zdvs elementwise. For both of

these arrays, the ReIm index bit is mapped to a register (r ↔ ReIm). Therefore, the complex multiplication
can be done straightforwardly using four __half2 FMAs. The output is the W -array, in the same register
assignment as the Z-array (40):

[float16 Wdvs] b0 ↔ d0 r ↔ ReIm t0t1t2t3t4 ↔ s0 · · · s4−r d1 · · · dr−3︸ ︷︷ ︸
2 bits

v0v1v2 (42)

Third step: computing Y using Eq. (30). Finally, to compute Y = Γ(3)W , we apply a m16n8k16

MMA. A complication here: the MMA is sparse (Appendix C.3) if r ≤ 4, and dense (Appendix C.2) if r = 5.
In both cases, the MMA matrices (A,B) correspond to (Γ(3),W), and the correspondence between MMA
index bits (i, j, k) and FFT index bits is:

i0i1i2i3 ↔ u0 · · ·ur−3 sout0 · · · sout4−r︸ ︷︷ ︸
3 bits

ReImout

j0j1j2j3 ↔ d0 sin0 · · · sin4−r d1 · · · dr−3︸ ︷︷ ︸
2 bits

ReImin

k0k1k2 ↔ v0v1v2 (43)

In both dense and sparse cases, one can check that the W -array register assignment (42) matches the tensor
core B-array register assignment. Similarly, we deduce the register assignment for the output array Y 3d

dvs

from the tensor core C-array register assignment. In both dense and sparse cases, the result is:

[float16 Y 3d
dvs] b0 ↔ v0 r ↔ ReIm t0t1t2t3t4 ↔ v1v2 u0 · · ·ur−3 sout0 · · · sout4−r︸ ︷︷ ︸

3 bits

(44)

11

This register assignment for the Y -array was given previously in Eq. (26) without derivation.

The only remaining detail is the register assignment for Γ
(3)
du . Here, we distinguish 3 cases, depending on

the value of r = ⌈log2(N)⌉.

• Case 1: r=5. In this case, there are no spectator bits in the FFT, and the MMA is dense (Appendix

C.2). We deduce the register assignment for Γ
(3)
du from the index correspondence (43) and the tensor

core A-matrix register mapping (159):

[float16 Γ
(3)
du] b0 ↔ d0 r0r1 ↔ ReImout,ReImin t0t1t2t3t4 ↔ d1d2u0u1u2 (45)

• Case 2: r=4. There is one spectator bit s0 in the FFT. As explained near Eq. (34) above, the Γ
(3)
du

array gets two extra indices sin0 , sout0 , with a Kronecker delta δsin0 sout0
. Under the index correspondence

(43), this becomes a Kronecker delta δi2j1 in the MMA matrix Aij .

In Appendix C.3, we show how to use a sparse m16n8k16 MMA for speed, in a case where Aij contains
a delta function of the form δinj1 . Here, we summarize the conclusions by writing down the (Asp, E, f)
operands to the sparse MMA. The E operand has the “universal” value given in Eqs. (171)–(173), and
the f operand is given by f = 2.

To derive the Asp operand, we combine the general register mapping (170) with the index correspon-

dence (43). We find that the Asp operand is Γ
(3)
du with register mapping (two registers/thread):

[float16 Γ
(3)
du] b0 ↔ d0 r0 ↔ ReImout t0t1t2t3t4 ↔ d1,ReImin, u0, u1, s0 (46)

where in this context, the spectator bit assignment t4 ↔ s0 on the RHS of (46) means that the register
contents are independent of thread index t4.

• Case 3: r=3. There are two spectator bits s0, s1 in the FFT. As explained near Eq. (36) above, the

Γ
(3)
du array gets four extra indices (sin0 , sout0 , sin1 , sout1), with Kronecker deltas δsin0 sout0

δsin1 sout1
. Under the

index correspondence (43), these become Kronecker deltas δi1j1δi2j2 in the MMA matrix Aij .

In Appendix C.3, we show how to use a sparse m16n8k16 MMA for speed, in a case where Aij contains
a delta function of the form δinj1 . Here, we summarize the conclusions by writing down the (Asp, E, f)
operands to the sparse MMA. The E operand has the “universal” value given in Eqs. (171)–(173), and
the f operand is given by f = 1.

To derive the Asp operand, we combine the general register mapping (170) with the index correspon-

dence (43). We find that the Asp operand is (Γ
(3)
du δsin1 sout1

) with register mapping (two registers/thread):

[float16 Γ
(3)
du δsin1 sout

1
] b0 ↔ d0 r0 ↔ ReImout t0t1t2t3t4 ↔ sin1 ,ReImin, u0, s0, s

out
1 (47)

where in this context, the spectator bit assignment t3 ↔ s0 on the RHS of (46) means that the register
contents are independent of thread index t3. Note that the Kronecker delta δsin1 sout1

is still included.

We assume that Γ
(3)
du (defined in (30)) has been precomputed and stored in registers, in the appropriate

register assignment (either Eq. (45), (46), or (47), depending on the value of r).

3.6 Register usage

The constant matrices Γ(i) are loaded into registers at the beginning of the kernel, and held persistently
throughout. I think it will be easiest to compute Γ(i) on the CPU, and pass the arrays to the kernel using
either GPU global memory or constant memory. In this section we compute the number of registers needed
to store the Γ(i).

One more detail: in the FRB beamformer, we will need to store Γ(i) matrices for two FFT sizes (denoted
M,N), and it may be possible to share Γ(i) registers between the two FFTs. Then the register counting
works as follows:

12

• By Eq. (39), we need 2 registers for Γ(1). Since the definition (28) of Γ(1) does not depend on N , these
registers are shared between the two FFTs.

• By Eq. (41), we need 2 registers for Γ(2), and these registers cannot be shared between the two FFTs
(unless M = N).

• The Γ(3) registers cannot be shared between the two FFTs (unless M = N). Each Γ(3) matrix needs
either 2 or 3 registers, depending on whether the MMA is sparse or dense. (In the dense case, Eq. (45)
may suggest that 4 registers are needed, but note that the (Rein, Reout) register stores the same value
as the (Imin, Imout) register, by Eq. (32).) The first FFT uses a sparse MMA if M ≤ 16, and likewise
for the second FFT with M → N .

• If either M ≤ 16 or N ≤ 16, then we need one more register for E.

For future reference in the FRB beamformer (§4), it will be useful to count registers for the following specific
choices of (M,N):

Number of registers RFFT =


7 if (M,N) = (8, 8) [2Γ(1) + 2Γ(2) + 2Γ(3) + E]
11 if (M,N) = (8, 12) [2Γ(1) + 4Γ(2) + 4Γ(3) + E]
7 if (M,N) = (16, 16) [2Γ(1) + 2Γ(2) + 2Γ(3) + E]
12 if (M,N) = (16, 20) [2Γ(1) + 4Γ(2) + 5Γ(3) + E]
7 if (M,N) = (24, 24) [2Γ(1) + 2Γ(2) + 3Γ(3)]

(48)

where in square brackets, we have “shown our work” by counting the number of registers of each type (Γ(1),
Γ(2), Γ(3), E).

3.7 Computational cost

All cycle-counting assumes GPU architecture 8.6 (RTX3090, A40, A10), not architecture 8.0 (A100, A30).
The computational cost of the FFT implementation in §3.5 can be computed as follows.

• The first step does an m16n8k8 MMA (2 SM-cycles).

• The second step does four __half2 FMAs (4× 0.5 = 2 SM-cycles).

• The third step does either a dense m16n8k16 MMA (4 SM-cycles) if N > 16, or a sparse m16n8k16

MMA (2 SM-cycles) if N ≤ 16.

Thus, the total SM-cycle count is 8 if N > 16, or 6 if N ≤ 16. This sequence of operations performs 25−r

FFTs in parallel, where r = ⌈log2(N)⌉, due to spectator indices. The number of SM-cycles per FFT is shown
in the first row of Table 1. In the second row of Table 1, we convert this to FFTs/second, assuming the
nominal A40 value of 84× (1.7× 109) SM-cycles/second.

To help interpret this number, in the bottom row of Table 1, we convert to an inferred Tflop count,
assuming the following optimistic counting of flops per FFT (derivation omitted):

Flops/FFT =

{
m2m+4 if N = 2m

2m+3p(2m+ p) if N = 2mp,where p is a small odd prime
(49)

FFT length N 8 12 16 20 24 28 32
SM-cycles/FFT 1.5 3 3 8 8 8 8
GigaFFTs/sec 97 49 49 18 18 18 18
Inferred Tflops 37 33 50 26 32 45 47

Table 1: Cycle-counting analysis for short FFTs with tensor cores, assuming an A40 GPU. All FFTs are
c2c, and zero-padded by a factor 2, so that the input and output arrays have lengths N and 2N respectively.

13

Table 1 can be summarized by the statement that FFT performance is comparable to the nominal scalar
float16 compute capacity of an A40 (37 Tflops), but a few times slower than the nominal tensor float16
compute capactity (150 Tflops). This level of performance is much faster than cufft, and a few times
faster than SFFT7, which have additional overhead from loads/stores or shuffling register assignments. Our
implementation avoids this overhead by using tensor core MMAs, which shuffle register assignments as a
side effect. Of course, all “results” in this section are really performance predictions, since we don’t have an
implementation yet!

7https://github.com/KAdamek/SMFFT

14

4 First FRB beamforming kernel

The first FRB beamforming kernel computes beamformed intensities Ifτ̄pq on a regular grid of half-integer
beam locations, from the electric field Eτfπd. The indices are as follows:

• τ indexes a “fast” time sample, and τ̄ indexes a “slow” time sample, after downsampling by a factor
Tds (a kernel parameter; see §4.1).

• p, q index half-integer beam locations.

• f indexes a frequency channel.

• π indexes polarization (not p, to avoid confusion with the index p in the second bullet point).

• d indexes a dish.

The output array Ifτ̄pq is written to global memory. Subsequently, the second FRB beamforming kernel (§5)
will read this array (representing intensities on a regular grid), and compute intensities at a specified set of
sky locations.

In this section, we will not specify a global memory layout for the output I-array. The optimal memory
layout will be dictated by the second FRB beamforming kernel, and will depend on cublas experiments
which are hard to predict in advance (see §5). The first FRB beamforming kernel in this section should be
able to accommodate a variety of I-array memory layouts, without affecting performance significantly.

4.1 Specification

Inputs:

• Number of dishes D, and dish grid size parameters (M,N). The dishes are assumed to be a subset of
an M -by-N regular grid. Throughout §4, we will consider the following cases:

– Case 1. (D,M,N) = (64, 8, 8). [CHORD pathfinder, square]

– Case 2. (D,M,N) = (64, 8, 12). [CHORD pathfinder, rectangular]

– Case 3. (D,M,N) = (256, 16, 16). [HIRAX, square]

– Case 4. (D,M,N) = (256, 16, 20). [HIRAX, rectangular]

– Case 5. (D,M,N) = (512, 24, 24). [Full CHORD]

The CHORD pathfinder will probably be rectangular (case 2), but a square pathfinder (case 1) is still
a possibility. For HIRAX, both square (case 3) and rectangular (case 4) options are being considered.

The parameters (D,M,N) are compile-time parameters, i.e. we’ll compile a separate kernel (using
C++ templates or a Julia code generator) for each choice of (D,M,N).

• Time downsampling factor Tds, not assumed to be a power of 2 (e.g. Tds could be odd). In Table 3,
we give realistic values of Tds for each of cases 1–5. We also give values for the number of frequency
channels F , and the input sampling rate ts.

• The 4+4 bit electric field Eτfπd in global memory, with memory layout suggested by the index ordering.

• The dish gridding d → (m,n), defining 2-d integer grid coordinates (m,n) for each dish d. This
information would be specified in one or more integer-valued arrays passed as kernel arguments. Feel
free to choose whatever array arguments and memory layouts are convenient (see discussion in §4.8).

Early in the kernel (§4.8), we will re-index (or “grid”) the electric field array as d → (m,n). We will
denote the gridding operation implicitly, via choice of indices: Eτfπd denotes the ungridded electric
field, and Eτfπmn denotes the gridded electric field.

15

• Complex float16+16 weights Wfπmn applied to the gridded electric field before beamforming. These
will be computed externally using real-time calibration and noise estimation logic, and passed to the
FRB beamforming kernel (just like the baseband beamforming kernel.) Feel free to choose whatever
memory layout is convenient (see discussion in §4.10).

Outputs:

• The beamformed intensity array Ifτ̄pq on a regular complete grid

Ifτ̄pq =

Tds(τ̄+1)−1∑
τ=Tdsτ̄

2∑
π=1

∣∣Ẽτfπpq

∣∣2 0 ≤ p < 2M and 0 ≤ q < 2N (50)

where Ẽτfπpq is the FFT of the gridded electric field Eτfπmn (more precisely, a two-dimensional c2c
FFT along spatial axes mn → pq, zero-padded by a factor 2):

Ẽτfπpq =

M−1∑
m=0

N−1∑
n=0

Wfπmn Eτfπmn exp

(
2πimp

2M
+

2πinq

2N

)
(51)

Note the weight factor Wfπmn in this equation.

The intensity array Ifτ̄pq is written to global memory, but the intermediate quantity Ẽτfπpq is not. As
discussed above, this document doesn’t define a global memory layout for the I-array. In particular,
the index ordering Ifτ̄pq is arbitrary and is not intended to suggest a preferred memory layout!

4.2 Outline

Warps and threadblocks. We use one threadblock per frequency channel. In the rest of §4, we will
restrict attention to a single threadblock, and leave the frequency index f implicit.

The number of warps per threadblock W is a compile-time constant, which depends on (D,M,N) as
shown in Table 2. The number of threadblocks per SM will need some experimentation (see §4.14).

Bank-confict free gridding. In a previous version of the FRB beamformer, the gridding operation
Ed → Emn had shared memory bank conflicts, whose severity depended on the details of the mapping
d → (m,n) from dishes to grid locations. This was unfortunate, since it introduced a complicated dependency
between several CHORD subsystems (cabling between dishes and FPGA inputs, cabling between FPGAs
and GPU nodes, etc.)

In this version of the FRB beamformer, we use an alternative gridding algorithm which is always bank
conflict free, but requires an extra shared memory read-write cycle. I decided this “two-pass” gridding
algorithm was preferable, since the overhead of the extra read-write cycle is pretty small (a few percent of
the total FRB beamformer cost; see Table 3), and it avoids the logistical challenge of tracking a complicated
dependency between subsystems.

Outer and inner blocks. The outermost loop in the FRB beamformer reads the E-array in “outer
blocks” of Touter time samples. The value of Touter is a compile-time constant, which depends on (D,M,N)
as shown in Table 2.

Within the outermost loop, we do an inner loop over “inner blocks” of Tinner time samples. The value
of Tinner is also a compile-time constant, shown in Table 2. The value of Tinner is always a divisor of Touter.
(See pseudocode below in §4.3.)

We use this nested-loop structure because our two-pass gridding algorithm requires a large block size
Touter to be efficient (see below), whereas the 2-d FFT requires a smaller block size Tinner to avoid overflowing
shared memory.

E and F arrays. One outer block of electric field data is an 8-bit int4+4 array:

int4+4 E[Touter][2][D]; // (time, pol, dish) (52)

16

Early in the kernel (§4.6), we will repackage this as an int32 array, with 4 times fewer elements:

int32 F[Touter/2][D]; // (time, dish) (53)

We now explain how the F -array is defined. We group elements of the E-array (52) into quadruples, by
either varying the polarization index π, or by varying the time index τ by (±Touter/2). Restricting attention
to one such quadruple, we can view the quadruple as a shape-(2, 2, 2) array

int4 E[2][2][2]; // (tau_hi, pol, ReIm) (54)

where we have introduced the index bit τhi to represent changing the time index τ by (Touter/2) within the
E-array outer block (52). We pack this shape-(2, 2, 2) array into an int32 register F, using the following
shuffled bit assignment:

[int32 F] b0b1b2 ↔ π, τhi,ReIm (55)

If we do this for all quadruples in the E-array outer block (52), then we get the F -array outer block (53).
Note that the outer block time index runs from 0 ≤ τ < Touter in the E-array representation (52), and from
0 ≤ τ < (Touter/2) in the F -array representation (53).

More on the two-pass gridding algorithm. Here is an outline of our two-pass, bank conflict free,
gridding algorithm. For each outer block (Touter time samples):

• We read the E-array from global memory, repackage it as the F -array Fτd from Eq. (53), and write it
to a shared memory array Fsh1[tau][d]. (§4.6)

• We read the Fτd array from shared memory into a register array Freg1[tau,d], in an alternate register
assignment where the thread index t corresponds to the time τ . For this to work effieicntly, Touter/2
(the number of time indices in the F -array) should either be 32, or a little less than 32. If Touter/2 is
less than 32, then the Freg1[] array will be zero-padded, by having some thread indices store zeros in
their registers. (§4.7)

• We write the register array Freg1[tau,d] back to shared memory, in gridded form Fsh2[tau,m,n].
Gridding happens in this step: the source array Freg1[tau,d] is indexed by a dish d, and the destina-
tion array Fsh2[tau,m,n] is indexed by a grid location (m,n). There are no bank conflicts because the
thread index t corresponds to time τ , and the time index τ is a “spectator” in the gridding operation
d → (m,n). (§4.8)

• Finally, we read the Fsh2[tau,m,n] shared memory array into a register array Freg2[tau,m,n], in
yet another register assignment which is matched to the tensor core FFT from §3. (§4.9)

At the end of this two-pass gridding algorithm, the electric field data ends up in a register array Freg2[tau,m,n],
not in shared memory. This will let us re-use shared memory for the 2-d FFT, which we now describe.

2-d FFT. We will factorize the 2-d FFT as two 1-d FFTs Emn → Gmq → Ẽpq:

Gτπmq =

N−1∑
n=0

WπmnEτπmn exp

(
2πinq

2N

)
(56)

Ẽτπpq =

M−1∑
m=0

Gτπmq exp

(
2πimp

2M

)
(57)

The 1-d FFTs are done using our tensor core FFT algorithm from §3. After the first FFT (56), we write the
G-array to a shared memory array Gsh[], and read it back “transposed” for the second FFT (57).

After the second FFT, we accumulate the contribution to the intensity array:

Iτ̄pq =
∑
τπ

|Ẽτπpq|2 (58)

The “running” I-array is kept in registers throughout the kernel. Periodically (every Tds time samples), we
write the I-array to global memory, and zero the running I-array. (See pseudocode in §4.3.)

17

4.3 Pseudocode

// Accumulator for intensity array I_{pq}.

// Number of registers/thread RI is a compile-time constant, see sec 4.4.

__half2 I_running[RI] = 0;

int t_running = 0;

for (int t_outer = 0; t_outer < NTIME; t_outer += T_outer) {

// Two-pass gridding algorithm starts here. Read E-array from global memory,

// repackage as F-array, write to shared memory array Fsh1[tau,d].

copy_global_memory_to_Fsh1(); // sec 4.6

__syncthreads();

// Read Fsh1[] into register array Freg1[], with (thread index t) <-> (time tau).

// Number of registers/thread RF1 is a compile-time constant, see sec 4.4.

int Freg1[RF1] = read_Fsh1(); // sec 4.7

__syncthreads();

// Do gridding, by writing Freg1[tau,d] to shared memory array Fsh2[tau,m,n].

write_Fsh2(Freg1); // sec 4.8

__syncthreads();

// Read Fsh2[] array to register array Freg2[], in an FFT-friendly layout.

int Freg2[RF2] = read_F2(); // sec 4.9 (see sec 4.4 for values of RF2)

__syncthreads();

// This loop is unrolled, since t_inner will index the Freg2[] register array.

#pragma unroll

for (int t_inner = 0; t_inner < T_outer; t_inner += T_inner) {

// Do first 1-d FFT for one inner block. The input data is in registers

// (Freg2[]), and the output G-array (sec 4.2) is written to shared memory.

do_first_fft(Freg2, t_inner); // sec 4.10

write_G_to_shared_memory(); // sec 4.10

__syncthreads();

for (int t = 0; t < T_inner; t++) {

// do_second_fft() reads the G-array from shared memory for a single

// time sample and polarization, does the FFT to compute Etilde, and

// accumulates |E^2| into I_running. (sec 4.11)

for (int pol = 0; pol < 2; pol++)

I_running += do_second_fft(t,pol); // sec 4.11

if (++t_running == T_ds) {

write_I_running_to_global_memory(); // sec 4.12

I_running = 0;

t_running = 0;

}

}

__syncthreads();

}

}

18

4.4 Compile-time constants

Case 1 Case 2 Case 3 Case 4 Case 5 Notes
Input parameters (template arguments in C++)

Number of dishes D 64 64 256 256 512
Dish grid size (M,N) (8,8) (8,12) (16,16) (16,20) (24,24)
Warps/threadblock W 4 6 16 20 24
Threadblocks/SM B 4–8? 3–5? 1–2? 1 1 See discussion in §4.4
Outer time Touter 64 48 64 40 48
Inner time Tinner 8 6 8 5 4

Derived compile-time parameters
(Mpad, Npad) (8,8) (8,16) (16,16) (16,32) (32,32) Pad M,N to powers of 2
Freg2[] layout (§4.9)
Mt [Eq. (100)] 4 2 2 1 1 Mt = 32/Npad

Mw [Eq. (104)] 2 2 8 4 24 Mw = gcd(M/Mt,W)
Tw [Eq. (104)] 2 3 2 5 1 Tw = W/Mw

Mr [Eq. (105)] 1 2 1 4 1 Mr = M/(MtMw)
Tr [Eq. (105)] 16 8 16 4 24 Tr = Touter/(2Tw)

Fsh1[] strides
ΣF1 [Eq. (65)] 260 260 257 257 257 (D==64) ? 260 : 257

Fsh2[] strides
ΣF2 [Eq. (70)] 292 290 546 545 801 32(M + 1) +Mt

Gsh[] strides
ΣG1 [Eq. (74)] 132 98 258 161 257 2MpadTinner + (32/Npad)
ΣG0 [Eq. (75)] 1064 1576 4144 5168 8256 NpadΣG1 +Mpad

Registers/thread
Freg1[] RF1 [Eq. 93] 16 11 16 13 22 ⌈D/W ⌉
Freg2[] RF2 [Eq. 106] 16 16 16 16 24 MrTr

W -array RW [Eq. 117] 2 4 2 8 2 2Mr

I-array RI [Eq. 129] 1 1 1 1 2 MpadN/(16W)
FFT constants RFFT 7 11 7 12 7 See Eq. (48) in §3
Misc Rmisc 15 15 15 15 15 See discussion in §4.4
Total 41 47 41 52 50 max(RF1, RF2) +Rother

Shared memory (bytes)
Fsh1[] [Eq. (66)] 8320 8320 32896 32896 65792 DΣF1/4
Fsh2[] [Eq. (71)] 9344 13920 34944 43600 76896 4NΣF2

Gsh[] [Eq. (77)] 8512 12608 33152 41344 66048 8Σg0

Bottom-line 9344 13920 34944 43600 76896 max(Fsh1, Fsh2, Gsh)

Table 2: Compile-time constants for first FRB kernel. Cases 1+2 are square and rectangular versions of the
CHORD pathfinder (rectangular is more likely). Cases 3+4 are square and rectangular versions of HIRAX.
Case 5 is full CHORD. These compile-time constants satisfy a large number of consistency relations (compile-
time asserts). See discussion near Eq. (59). For a complete list of compile-time asserts, see Eqs. (59), (78),
(83), (88), (98), (107), (110), (121).

19

Threadblocks per SM. The number of threadblocks per SM (specified in __launch_bounds__) is a
compile-time constant B. In cases 4 and 5, B = 1 is the only option, since the number of warps per
threadblock W is > 16. In cases 1–3, there is a tradeoff: if B is too large, then the kernel may run out of
registers and emit spill code, leading to poor performance. On the other hand, if B is too small, then the
kernel will have poor occupancy. In Table 2, we have listed a plausible range for B in cases 1–3, but pinning
down the optimal of B will need experimentation after the kernel has been written.

Counting “miscellaneous” persistent registers. In Table 2, we have counted registers used to
hold arrays (RF1, RF2, RW , RI) and FFT constants (RFFT). In addition, there are some “miscellaneous”
registers used to store state as follows:

• Global memory pointers (E, I): 4 registers (2 registers/pointer).

• Other kernel arguments (E-array τ -stride, total number of time samples, time downsampling factor
Tds): 3 registers.

• Loop counters (touter, tinner, t): 3 registers.

• Other persistent state (S from §4.8, Fsh2_offset and Fsh2_mask from §4.9, Gsh_write_offset from
§4.10, Gsh_read_offset from §4.11): 5 registers.

for total register count Rmisc = 15 (shown in Table 2). This value of Rmisc is intended to be a ballpark
count, not an exact count!

Compile-time asserts. The compile-time constants in Table 2 satisfy a large number of consistency
relations (compile-time asserts). We list compile-time asserts which have been assumed so far:

// Size restrictions for 1-d FFTs on tensor cores (sec 3).

static_assert((M >= 8) && (M <= 32) && ((M % 4) == 0));

static_assert((N >= 8) && (N <= 32) && ((N % 4) == 0));

// Definition of F-array assumes T_outer is even.

static_assert((Touter % 2) == 0);

// Each outer block is an integer number of inner blocks.

static_assert(Touter % Tinner == 0);

(59)

More compile-time asserts will emerge in Eqs. (78), (83), (88), (98), (107), (110), (121) below. I wrote a
python script which checks all of these compile-time asserts. The python script also checks that all shared
memory access is bank conflict free, using the shared memory layouts described in the next section. (There
are six shared memory access patterns to check, corresponding to reading/writing the Fsh1[], Fsh2[], and
Gsh[] arrays.) Let me know if sharing this python script would be useful!

4.5 Shared memory layout

The shared memory layout consists of 3 arrays which overwrite each other:

union {

int Fsh1[];

int Fsh2[];

__half2 Gsh[];

};

(60)

Each of these 3 arrays has its own shared memory layout which we describe individually below.
Warning: these shared memory layouts are complicated! But, they were the simplest layouts I could find

which are bank conflict free in all cases. Eliminating bank conflicts in the FRB beamforming kernel turned
out to be a major challenge!

20

Fsh1 shared memory layout. The Fsh1[] array in the shared memory layout (60) stores the outer
chunk after gridding Fτd. The logical dimensions of this array are:

int Fsh1[T_outer/2][D]; // (tau, dish) (61)

In shared memory, we pad the time axis to length 32. We also split the dish index 0 ≤ d < D into “high”
and “low” parts:

d = 8dhi + dlo where 0 ≤ dhi <
D

8
and 0 ≤ dlo < 8 (62)

Thus, the padded array dimensions in shared memory are:

int Fsh1[32][D/8][8]; // (tau, dhi, dlo) (63)

We use the following Fsh1[] shared memory strides, to avoid bank conflicts in §4.6, §4.7:(
τ -stride, dlo-stride, dhi-stride

)
=
(
1, 32,ΣF1

)
(64)

where we define the compile-time constant:

ΣF1 =

{
260 if D = 64 (cases 1+2)
257 if D ∈ {256, 512} (cases 3–5)

(65)

The shared memory footprint of the Fsh1[] array is:

Fsh1[] shared memory footprint = ΣF1

(
D

8

)(
4 bytes

)
(66)

F2 shared memory layout. The Fsh2[] array in the shared memory layout (60) stores the gridded
outer chunk Fτmn. The logical dimensions of this array are:

int Fsh2[T_outer/2][M][N]; // (tau, m, n) (67)

In shared memory, we pad the time axis to length 32. The padded dimensions are:

int Fsh2[32][M][N]; // (tau, m, n) (68)

We use the following Fsh2[] shared memory layout, to avoid bank conflicts in §4.8, §4.9:(
τ -stride, m-stride, n-stride

)
=
(
1, 33,ΣF2

)
(69)

where we define the compile-time constant ΣF2 by:

ΣF2 = 32(M + 1) +Mt where Mt =
32

N rounded up to a power of two
(70)

(The motivation for the notation Mt is explained near Eq. (100) below.) The shared memory footprint of
the Fsh2[] array is:

Fsh2[] shared memory footprint = (NΣF2)
(
4 bytes

)
(71)

G shared memory layout. The __half2 Gsh[] array in the shared memory layout (60) stores the
intermediate FFT array Gτπmq from Eq. (56). The logical dimensions of this array are:

__half2 Gsh[T_inner][2][M][2*N]; // (tau, pol, m, q) (72)

where we use a __half2 to store the real and imaginary parts of Gτπmq. In shared memory, we pad the
(M,N) axes to powers of 2. The padded dimensions are:

float16+16 Gsh[T_inner][2][M_pad][2*N_pad] where Mpad = 2⌈log2(M)⌉ and Npad = 2⌈log2(N)⌉ (73)

21

We also use the following messy shared memory layout, designed to avoid bank conflicts in §4.10, §4.11.
First we define compile-time constants:

ΣG1 = 2MpadTinner +
32

Npad
bit-reversed q1-stride, see pseudocode below (74)

ΣG0 = NpadΣG1 +Mpad q0-stride, see pseudocode below (75)

It is easiest to specify the shared memory layout using the following cuda pseudocode:

__device__ inline __half2 *Gsh_address(int tau, int pol, int m, int q)

{

// Compile-time constants (see above)

constexpr int Sigma_G1 = 2*Mpad*Tinner + (32/Npad);

constexpr int Sigma_G0 = Npad*Sigma_G1 + Mpad;

int q0 = (q & 1); // lowest bit of q (either 0 or 1)

int qr = (q >> 1); // remaining bits of q (satisfying 0 < qr < N_pad)

int qr_brev = brev(qr); // bit-reversed (satisfying 0 < qr_brev < N_pad)

extern __shared__ __half2 shmem_base[];

return (shmem_base + m // m has stride 1

+ pol * Mpad // pol has stride Mpad

+ tau * (2*Mpad) // tau has stride (2 Mpad)

+ qr_brev * Sigma_G1 // qr_brev has stride (Sigma_G1)

+ q0 * Sigma_G0); // q0 has stride (Sigma_G0)

}

(76)

The shared memory footprint of the Gsh[] array is:

Gsh[] shared memory footprint = (2Σg0)
(
4 bytes

)
(77)

Compile-time asserts. In this section, we have made the following assumptions:

// Assumed in Fsh1[] and Fsh2[], where we zero-pad from length (Touter/2) to 32.

static_assert(Touter <= 64);

// Assumed in Fsh1[], when defining stride Sigma_{F1}.

static_assert((D==64) || (D==256) || (D==512));

// Ensure that Fsh2[] stride is large enough that array elements don’t "collide"

static_assert(Sigma_F2 >= 33*M);

(78)

4.6 Copying global memory to shared memory (Fsh1)

In this step, we copy an “outer block” of electric field data, consisting of Touter time samples, from global
memory to the Fsh1[tau,d] array in shared memory. This step appears in the outermost loop of the kernel
(see pseudocode in §4.3). Note that the outer block is stored in global memory in the E-representation (52),
but we write it to shared memory in the F -representation (53), so we need to do some bit-shuffling.

E→F shuffle. First, we describe a thread-local operation which reshuffles electric field data from its
E-representation (52) to its F -representation (53). The input and output will consist of 4 registers/thread.

When data is read from global memory in the E-representation, each register contains four dishes:

[int4 Ed] b0b1b2 ↔ ReIm, d0, d1 (79)

22

Recall from §4.2 that we group E-array elements into quadruples, by either varying the polarization index π,
or by varying the time index by (±Touter/2). Suppose that on a single thread, we have one such quadruple
of E-array registers:

[int4 Eτπd] b0b1b2 ↔ ReIm, d0, d1 r0r1 ↔ τhiπ (80)

where the index bit τhi denotes varying the time index τ by (Touter/2). (This notation was previously used
near Eq. (54).)

To convert to the F -representation, we will need to perform a thread-local bit shuffling operation, whose
input is the four registers in Eq. (80), and whose output is the same data in the following bit/register
assignment:

[int4 Eτπd] b0b1b2 ↔ π, τhi,ReIm r0r1 ↔ d0d1 (81)

I leave to you the nontrivial problem of finding the fastest way to get from (80) to (81)! (We exchanged a
few emails on this, with subject “bit-shuffling operation for FRB beamformer”.) Note that the ReIm bit
needs to move from b0 to b2, which costs cycles. However, the assignment b2 ↔ ReIm will save cycles later
(see “Unpacking int4 to float16” in §4.10).

Note that, by the definition of the F -array in Eqs. (53), (55), the 4 registers in Eq. (81) are the same
thing as the F -array elements for 4 dishes:

[int32 Fd] r0r1 ↔ d0d1 (82)

We will call the thread-local operation which goes from (80) to (82) the E → F shuffle.
Using the E → F shuffle as a building block, we now return to the higher-level task of copying global

memory to shared Fsh1[]. We split this into two cases as follows.

Cases 1+2. In these cases, one can check using Table 2 that the following compile-time asserts are
satisfied:

// Cases 1+2 only

static_assert(D == 64);

static_assert(T_outer % 8 == 0);

static_assert((T_outer/8) % W == 0);

(83)

Since Touter is a multiple of 8, we split the time index 0 < τ < Touter into “high”, “middle”, and “low” parts:

τ =
Touter

2
τhi + 4τmid + τlo 0 ≤ τhi < 2, 0 ≤ τmid <

Touter

8
, 0 ≤ τlo < 4 (84)

We define a tile to be a single τmid value (with 64 dishes, 2 polarizations, 2 τhi values, and 4 τlo values).
Since W divides Ntiles = (Touter/8), we can parallelize by assigning tiles to warps (possibly in a several-to-one
way). For the rest of “Cases 1+2”, we will describe how a single tile is processed by a single warp.

First, we load the tile into registers, with register assignment (8 registers/thread):

[int4 Eτπd] b0b1b2 ↔ ReIm, d0, d1 r ↔ d2d3τhi t0t1t2t3t4 ↔ d4d5πτ
lo
0 τ lo1 (85)

A little thought shows that this can be done with two 16-byte cache-aligned load instructions. (Recall that
16-byte load instructions have higher memory bandwidth than the usual 4-byte load instructions.)

Next, we do a warp transpose operation (Appendix B.3) on indices d3, π, obtaining register assignment:

[int4 Eτπd] b0b1b2 ↔ ReIm, d0, d1 r ↔ d2τhiπ t0t1t2t3t4 ↔ d4d5d3τ
lo
0 τ lo1 (86)

Next, we do the E → F shuffle above, obtaining an F -array tile with register assignment:

[int32 Fτd] r ↔ d0d1d2 t0t1t2t3t4 ↔ d4d5d3τ
lo
0 τ lo1 (87)

Note that the F -array does not contain the τhi index bit, since the F -array has half as many time samples
as the E-array (Eqs. (52), (53)).

Finally, we write the F -registers to the Fsh1[tau,d] array in shared memory, using eight 32-bit stores.
One can check that these stores are bank conflict free, using the Fsh1[] shared memory layout in Eq. (64).

23

Cases 3–5. In these cases, one can check using Table 2 that the following compile-time asserts are
satisfied:

// Cases 3-5 only

static_assert(D % 256 == 0);

static_assert(T_outer % 2 == 0);

static_assert(((D/256) * (T_outer/2)) % W == 0);

(88)

Since Touter is a multiple of 2, we split the time index 0 < τ < Touter into “high” and “low” parts:

τ =
Touter

2
τhi + τlo where 0 ≤ τhi < 2 and 0 ≤ τlo <

Touter

2
(89)

We define a tile to be 256 dishes, and a single τlo value (with 2 τhi values and 2 polarizations). Since W
divides Ntiles = (D/256) (Touter/2), we can parallelize by assigning tiles to warps (possibly in a several-to-one
way). In the rest of this subsection, we will describe how a single tile is processed by a single warp.

First, we load the tile into registers, with register assignment (8 registers/thread):

[int4 Eτπd] b0b1b2 ↔ ReIm, d0, d1 r ↔ d2d3τhi t0t1t2t3t4 ↔ d4d5d6d7π (90)

This can be done with two 16-byte cache-aligned load instructions. Next, we do a warp transpose operation
(Appendix B.3) on indices d3, π, obtaining register assignment:

[int4 Eτπd] b0b1b2 ↔ ReIm, d0, d1 r ↔ d2πτhi t0t1t2t3t4 ↔ d4d5d6d7d3 (91)

Then we do the E → F shuffle above, obtaining an F -array tile with register assignment:

[int32 Fd] r ↔ d0d1d2 t0t1t2t3t4 ↔ d4d5d6d7d3 (92)

Note that the F -array does not contain the τhi index bit, since the F -array has half as many time samples
as the E-array (Eqs. (52), (53)).

Finally, we write the F -registers to the Fsh1[] array in shared memory, using eight 32-bit stores. One
can check that these stores are bank conflict free, using the Fsh1[] shared memory layout in Eq. (64).

4.7 Reading shared memory (Fsh1) into registers (Freg1)

In this step, we read the shared memory array Fsh1[] into the register array Freg1[], for one outer block
consisting of Touter time samples. This step appears in the outermost loop of the kernel (see pseudocode in
§4.3).

The destination register array has logical dimensions int32 Freg1[Touter/2][D], to be distributed
across all threads in the threadblock. To distribute the array, we assign dishes to warps in round-robin
fashion. Each time index τ = 0, · · · , (Touter/2) − 1 is assigned to the corresponding thread index t =
0, · · · , (Touter/2)−1. Thread indices t = (Touter/2), · · · , 31 will read junk data, from shared memory addresses
which were not initialized in §4.6. This turns out to be harmless (briefly, the junk data does get written to
Fsh2[] in §4.8, but will not be read back into Freg2[] in §4.9).

The number of registers in the Freg1[] array is:

(
Number of registers/thread RF1

)
=

⌈
D

W

⌉
(93)

The shared memory load instuctions needed to read Fsh1[]→Freg1[] are bank conflict free, since the
Fsh1[] array has τ -stride 1 (Eq. (64)).

4.8 Writing shared memory (Fsh2) from registers (Freg1)

In the previous step (§4.7), we read one outer block of electric field data into a register array Freg1[tau,d].
In this step, we write this data to the shared memory array Fsh2[tau,m,n]. Note that dish gridding
d → (m,n) happens in this step, since the input data is ungridded (indexed by a dish d), whereas the output

24

data is gridded (indexed by a grid location m,n). This step appears in the outermost loop of the kernel (see
pseudocode in §4.3).

Some grid locations (m,n) are not occupied by dishes. We will set the corresponding Fsh2[tau,m,n]

elements to zero.
We define two integer-valued length-(MN) arrays md, nd as follows. For 0 ≤ d < D, let (md, nd) be the

grid coordinates of dish d. For D ≤ d < MN , let (md, nd) be the unoccupied grid locations, in an arbitrary
order. That is, we treat unoccupied grid locations as dummy dishes D ≤ d < MN whose electric fields are
zero.

For 0 ≤ d < MN , let sd be the offset (relative to the beginning of shared memory) of element (τ,m, n) =
(0,md, nd) in the Fsh2[tau,m,n] shared memory array. Concretely, sd is given by (see Eq. (69)):

sd = 33md +ΣF2 nd (94)

In the GPU kernel, it may help to think of dish gridding as a copy operation Freg1[:,d]→ Fsh2[sd:sd+32]
from registers to shared memory, rather than an index mapping d → (md, nd).

We use one persistent register per thread (denoted S) to store values of sd. On warp 0 ≤ w < W and
thread 0 ≤ t < 32, the value of S is:

S =

{
sw+tW if 0 ≤ t < (MN/W)

arbitrary if (MN/W) ≤ t < 32
(95)

This register assignment is chosen for consistency with the Freg1[] register array from the previous section
(§4.7). Recall that each warp 0 ≤ w < W holds the following dish indices in its Freg1[] array:

d = w + iW where 0 ≤ i < RF (96)

When dish d = w + iW is written to shared memory Fsh2[], a warp shuffle is needed to “broadcast” the
value of sd from thread t = i to all threads. It is easiest to explain this in pseudocode:

int Freg1[RF1]; // Temp registers holding F-array, populated in sec 4.7.

int S; // Persistent register for storing s_d, see above

extern __shared__ int Fsh2[];

int t = threadIdx.x & 0x1f; // thread id 0 <= t < 32

#pragma unroll

for (int i = 0; i < RF1; i++) {

// Freg1[i] contains F-array element for (tau,d)=(t,w+iW).

int sd = __shfl_sync(0xffffffff, S, i); // s_d for d=w+iW

Fsh2[sd+t] = Freg1[i]; // Recall from sec 4.5 that Fsh2[] tau-stride is 1.

}

for (int i = RF1; i < (M*N)/W; i++) {

// Dummy dish: write zero for (tau,d)=(t,w+iW).

int sd = __shfl_sync(0xffffffff, S, i); // s_d for d=w+iW

Fsh2[sd+t] = 0; // Recall from sec 4.5 that Fsh2[] tau-stride is 1.

}

(97)

Note that the shared memory writes are bank conflict free, since the Fsh2[] shared memory layout in Eq.
(69) has τ -stride 1.

At the beginning of the kernel, we need to initialize the persistent S-register in Eq. (95). I’ll leave it
to you to decide how best to implement this, including details such as: whether the conversion (94) from
(m,n) → s happens on the CPU or GPU, and what global memory layout is used to store the array(s) which
pass the dish gridding from the CPU to the kernel.

25

In the pseudocode (97), we made a couple of assumptions which are captured by the following compile-
time asserts:

// Grid locations (M,N) divide evenly between warps.

static_assert((M*N) % W == 0);

// Only one S-register per thread is needed to store the s_d array.

static_assert((M*N)/W <= 32);

(98)

Both assumptions were made for convenience, and could be relaxed. (One more detail: for the pseudocode
(97) to work as written, some threads need to store zeros in the last register of the Freg1[] array, corre-
sponding to dish indices D ≤ d < WRF1.)

4.9 Reading shared memory (Fsh2) into registers (Freg2)

In this step, we read the shared memory array Fsh2[tau,m,n] into the register array Freg2[tau,m,n], for an
“outer” block of Touter time samples (see pseudocode in §4.3). After this step, the shared memory occupied
by Fsh2[] is no longer needed, and can be overwritten by G[] in subsequent steps. The Freg2[] registers
are held persistently throughout “first FFT” and “second FFT” steps in the kernel (§4.10 and §4.11).

Freg2 register assignment. The Freg2 register array is distributed across all (32W) threads in the
kernel, in a nontrivial scheme which takes some time to describe.8

The F -array has logical dimensions

int F[Touter/2][M][N]; // (tau,M,N) (99)

We define a mini-tile to be a subset of the F -array consisting of one τ -index, Mt consecutive m-indices, and
all n-indices 0 ≤ n < N , where:

Mt =
32

Npad
Npad =

(
N rounded up to a power of two

)
(100)

Each mini-tile will be stored in a single warp, with 1 register/thread. The mini-tile register assignment is as
follows. We first split the index 0 ≤ n < N into “high” and “low” parts:

n =
N

4
nhi + nlo where 0 ≤ nhi < 4 and 0 ≤ nlo <

N

4
(101)

When the shape-(Mt, N) mini-tile is stored in registers, we zero-pad the dimensions to (Mt, Npad), by
extending nlo to an index 0 ≤ nlo < (Npad/4). The zero-padded mini-tile is stored with register assignment
(one int32 register/thread):[(32

Npad
×Npad

)
Fmn

]
t0t1t2t3t4 ↔ nhi

0 nhi
1 nlo

0 m0 · · ·m4−ν nlo
1 · · ·nlo

ν−3︸ ︷︷ ︸
2 bits

(102)

where we have defined
ν = log2(Npad) . (103)

Next, we define a mega-tile to be a (Tw ×Mw) grid of mini-tiles, where the compile-time constants Tw,Mw

are defined by:

Mw = gcd
(M

Mt
,W
)

Tw =
W

Mw
(104)

8Here is a brief explanation of why my proposed Freg2[] register assignment is so complicated! The choice of (Mt, Nt)
and mini-tile register assignment (102) is dictated by the input register assignment for the tensor core FFT (§3). See §4.10 for
details on how Freg2 gets “unpacked” to float16 and fed into the tensor core FFT. Then, the choice of (Mw, Tw,Mr, Tr) in
Eqs. (104), (105) is designed to minimize Mr, in order to minimize the number of persistent registers RW needed to store the
W -array (see Eq. (117) below).

26

Each mega-tile consists of W mini-tiles, and is distributed across all W warps in the threadblock, with 1
register/thread. Note that a mega-tile contains Tw τ -indices, (MtMw) m-indices, and all n-indices (with
zero-padding as described above).

Finally, the entire shape-(Touter/2,M,N) F -array is a (Tr×Mr) grid of mega-tiles, where the compile-time
constants Tr,Mr are defined by:

Tr =
Touter/2

Tw
Mr =

M

MwMt
(105)

Each mega-tile in the (Tr ×Mr) grid of mega-tiles is stored in a different register. Thus:(
Number of registers/thread RF2 in the Freg2[] array

)
= TrMr (106)

We have now fully described the Freg2[] register assignment (across all W warps in the kernel). This
scheme implicitly depends on the following compile-time asserts:

// F-array divides evenly into mini-tiles

constexpr int Mt = 32/Npad;

static_assert(M % Mt == 0);

// F-array divides evenly into mega-tiles

constexpr int Mw = gcd(M/Mt, W);

constexpr int Tw = W/Mw;

static_assert((Touter/2) % Tw == 0)

static_assert(M % (Mw*Mt) == 0);

(107)

We checked that these asserts are satisfied for each case 1–5 in Table 2. These asserts imply MtMwMr = M
and TwTr = Touter/2.

Reading from shared memory. So far in this section, we have just described the Freg2[] register
assignment. We now describe the code for reading the shared memory array Fsh2[tau,m,n] into the register
array Freg2[tau,m,m].

Conceptually, this is straightforward. On each thread, we have a (Tr × Mr) array of registers. For
each such register, we read from a shared memory address which depends on the warp index 0 ≤ w < W
and thread index 0 ≤ t < 32. However, there is a technical issue arising from padding the n-index. In
the destination register array Freg2[], some threads store “zero-padded” n-indices N ≤ n < Npad (Eq.
(102)). However, the n-index is unpadded in the source shared memory array Fsh2[] (§4.5). Therefore,
straightforward indexing of the source array will lead to either some threads reading past the end of shared
memory, or warp divergence to suppress load instructions on some threads.

This can be addressed with a technical trick as follows. We call a thread zero-padded if it corresponds
to a zero-padded index N ≤ n < Npad, in the Freg2[] register assignment from Eq. (102). On zero-padded
threads, we compute the shared memory address straightforwardly (which will be “out of bounds”), and
then replace it with an arbitrary in-bounds address in the same shared memory bank. Then we can issue a
shared memory load instruction which is in-bounds, bank conflict free, and warp divergence free, but it will
read “junk” (i.e. arbitrary) data on zero-padded threads. To fix this, we apply a mask which zeros the data
on zero-padded threads.

Here’s some pseudocode to explain the trick better. At the beginning of the kernel (not shown in the

27

pseudocode from §4.3), we initialize two persistent registers Fsh2_offset and Fsh2_mask as follows:

constexpr int Mt = 32/Npad;

int w = (threadIdx.x >> 5); // warp id 0 <= w < W

int t = (threadIdx.x & 0x1f); // thread id 0 <= t < 32

// (mt,nt) = coordinates of thread within (Mt x Npad) mini-tile.

// This complicated logic reflects the mini-tile register assignment above.

int mt = (t >> 3) % Mt; // 0 <= mt < Mt

int nhi = (t & 3); // 0 <= nhi < 4

int nlo = ((t >> 3) / Mt) + ((t >> 2) & 1); // 0 <= nlo < Npad/4

int nt = nhi*(N/4) + nlo; // only valid if (is_padded == false)

bool is_padded = (nlo >= (N/4));

// (tauw,mw) = coordinates of warp within (Tw x Mw) mega-tile.

int tauw = w / Mw; // 0 <= tauw < Tw

int mw = w % Mw; // 0 <= mw < Mw

// s0 = shared memory offset of F-register (0,0)

// [within the (Tr x Mr) register grid on each thread]

//

// Recall from sec 4.5 that the F2[tau,m,n] array has tau-stride 1,

// m-stride 33, and n-stride Sigma_F2 (a compile-time constant).

int s0 = tauw + 33*(mw*Mt+mt) + Sigma_F2*nt; // note m=(mw*Mt+mt) here

// On a zero-padded thread, s0 may be past the end of shared memory. Replace

// s0 by an "in-bounds" offset in the same bank (to avoid bank conflicts later).

int Fsh2_offset = is_padded ? (s0 & 0x1f) : s0;

int Fsh2_mask = is_padded ? 0 : 0xffffffff;

(108)

Then, in the outermost loop of the kernel (see pseudocode in §4.3), we read the shared memory array Fsh2[]

into the register array Freg2[] as follows:

extern int __shared__ Fsh2[];

int *sp = Fsh2 + Fsh2_offset; // Note Fsh2_offset included here.

int Freg2[Tr][Mr]; // destination array of persistent registers

#pragma unroll

for (int tr = 0; tr < Tr; tr++) {

#pragma unroll

for (int mr = 0; mr < Mr; mr++) {

// Offsets from (tr,mr), to be added to Fsh2_offset above.

// Note constexpr here, since loop is unrolled!

constexpr int s = tr + 33*(Mt*Mw*mr);

// The shared memory load sp[s] is in-bounds and bank conflict free.

// But, it reads "junk" data on zero-padded threads, whereas we want zeros.

// We fix this by applying the Fsh2_mask.

Freg2[tr][mr] = sp[s] & Fsh2_mask;

}

}

(109)

One can check that the shared memory loads in this pseudocode are bank conflict free, for each case 1–5 in
Table 2, using the Fsh2[] shared memory layout from Eq. (69).

28

One important comment! The trick in (108), (109) also serves the important purpose of reducing compute
time (in addition to keeping shared memory access in-bounds). After precomputing Fsh2_offset, all shared
memory offsets in the inner loop (109) are compile-time constants. A similar trick may be useful in other
places to save compute time. In particular, we will suggest doing this in §4.10, §4.11 below, by precomputing
Gsh[] offsets.

4.10 First FFT

In this step, we perform the FFT Eτπmn → Gτπmq (see Eq. (56)), for one inner chunk consisting of Tinner

time samples (see pseudocode in §4.3). The input E-array comes from the Freg2[] register array, which
was initialized in the previous step (§4.9). The output G-array is written to shared memory Gsh[].

This step uses the “mega-tile” and “mini-tile” scheme, introduced in the previous step (§4.9), for dis-
tributing (τ,m, n)-indices among threads in the kernel. Here, we add one new compile-time assert:

// Inner block (T_inner time indices) divides evenly into mega-tiles.

assert(Tinner % Tw) == 0;
(110)

The high-level logic of the first FFT is easiest to explain in pseudocode:

// This double-for loop runs over mega-tiles which comprise one inner chunk.

// We unroll the loops, since the loop counters (tau_tile, m_tile) will

// end up indexing the register array Freg2[].

#pragma unroll

for (int tau_tile = 0; tau_tile < T_inner; tau_tile += T_w) {

#pragma unroll

for (int m_tile = 0; m_tile < M; m_tile += M_t*M_w) {

// Inner loop over polarization

#pragma unroll

for (int pol = 0; pol < 2; pol++) {

// Each of these steps is described under its own heading below.

unpack_int4_to_float16();

multiply_W();

do_fft();

write_G_to_shared_memory();

}

}

}

(111)

In the rest of this section, we’ll describe each of the steps in the inner loop. Throughout this discussion, we
focus on a single iteration of the inner loop, on a single warp. Thus, we can pretend that the data consists
of one mini-tile (one τ -index, Mt consecutive m-indices, and all n-indices), for a single polarization index π.
We will usually leave τ, π indices implicit (e.g. the E-array will be denoted Emn).

Unpacking int4 to float16. The (τtile,mtile) values of interest live in one Freg2[] register, with
register assignment (same as Eq. (102) above):

[int32 Fmn] t0t1t2t3t4 ↔ nhi
0 nhi

1 nlo
0 m0 · · ·m4−ν nlo

1 · · ·nlo
ν−3︸ ︷︷ ︸

2 bits

(112)

where nlo, nhi, ν were defined in Eqs. (101), (103). Unpacking the definition (55) of F , this register holds
four int4+4 E-array elements, with register assignment:

[int4 E] b0b1b2 ↔ π, τhi,ReIm t0t1t2t3t4 ↔ nhi
0 nhi

1 nlo
0 m0 · · ·m4−ν nlo

1 · · ·nlo
ν−3︸ ︷︷ ︸

2 bits

(113)

29

Within the inner loop in the pseudocode (111), we are processing a particular value of the index bits
(τhi, π). We extract the appropriate int4 elements from the simd register (113) and convert int4→float16,
obtaining:

[float16 Emn] b ↔ ReIm t0t1t2t3t4 ↔ nhi
0 nhi

1 nlo
0 m0 · · ·m4−ν nlo

1 · · ·nlo
ν−3︸ ︷︷ ︸

2 bits

(114)

Erik and Kendrick had some discussion in #bx-engine-dev around March 18 on how to go from (113)
to (114) efficiently. Note that the index bit assignment b2 ↔ ReIm in (113) is a choice that was made
intentionally, in order to make this step as efficient as possible. (This choice is “baked in” to the definition
of F in Eq. (55), and we also commented on it after Eq. (81), but we couldn’t really justify it until now.)

Multiplying by W. Before FFT-ing the E-array Emn, we must multiply it by the weight array Wmn

(see Eq. (56)). Let’s temporarily assume that Wmn is held in persistent registers on the same warp, with
the same register assignment as the E-array (Eq. (114)):

[float16 Wmn] b ↔ ReIm t0t1t2t3t4 ↔ nhi
0 nhi

1 nlo
0 m0 · · ·m4−ν nlo

1 · · ·nlo
ν−3︸ ︷︷ ︸

2 bits

(115)

Then we can multiply the complex arrays W and E with the cuda intrinsic __hcmadd(), obtaining the
product array (WE) with the same register assignment:

[float16 (WE)mn] b ↔ ReIm t0t1t2t3t4 ↔ nhi
0 nhi

1 nlo
0 m0 · · ·m4−ν nlo

1 · · ·nlo
ν−3︸ ︷︷ ︸

2 bits

(116)

Here and below, we denote the product array by (WE)mn = WmnEmn, rather than introducing separate
notation.

It remains to describe the details of how the W -array gets stored in persistent registers, in the register
assignment (115). First let’s count the total number of registers needed to store the W -array:(

W -array registers per thread RW

)
= 2Mr (117)

where the factor 2 is from polarization. These registers are initialized at the beginning of the kernel (not
shown in pseudocode in §4.3), by reading the W -array from global memory. Note that this is a several-to-one
operation, in the sense that each W -array element gets copied onto Tw threads. Also note that the W -array
register mapping (115) is zero-padded: some threads store zeros.

I’ll leave to you the task of deciding how to implement the W -array initialization, including decisions
such as: What global memory layout is used for the W -array? Does the several-to-one copy operation go
through shared memory or L1 cache? Does the data reordering in the W -array register assignment (115)
happen on the CPU or GPU?9

Doing the FFT. We use the tensor core FFT from §3, to do the FFT (WE)mn → Gmq. The (WE)-
array register assignment (116) is consistent with the register assignment (25) for the FFT input array.
Note that the n-index in (WE)mn corresponds to the “active” n-index in the FFT (25), and the m-index in
(WE)mn corresponds to the spectator s-index in the FFT (25).

After doing the FFT, we get the array Gmq for one mini-tile, with Mt = (32/Npad) m-indices and (2N)
q-indices. The register assignment for Gmq is given by the FFT output assignment given previously in (26).
We first split the index 0 ≤ q < (2N) into “high” and “low” parts:

q = 8qhi + qlo where 0 ≤ qhi < (N/4) and 0 ≤ qlo < 8 (118)

Then the Gmq register assignment is:[
(Mt×2Npad)Gmq

]
b0 ↔ qlo0 r ↔ ReIm t0t1t2t3t4 ↔ qlo1 q

lo
2 qhi0 · · · qhiν−3 m0 · · ·m4−ν︸ ︷︷ ︸

3 bits

(119)

9Now is a good time to mention that in the highest-level interface to the FRB beamformer, we will want the weights array
to be specified in ungridded form (i.e. as Wfπd rather than Wfπmn). I think this detail can be added later. Since the W -array
is small, I think we’ll decide it’s easiest to do the gridding Wfπd → Wfπmn on the CPU, then copy to the GPU and launch
the kernel.

30

where the q-index has been zero padded from length-(2N) to length-(2Npad), by extending the index qhi
from length-(N/4) to length-(Npad/4).

Finally, we do a local transpose (Appendix B.2) to get register assignment:[
(Mt×2Npad)Gmq

]
b0 ↔ ReIm r ↔ qlo0 t0t1t2t3t4 ↔ qlo1 q

lo
2 qhi0 · · · qhiν−3 m0 · · ·m4−ν︸ ︷︷ ︸

3 bits

(120)

Writing G to shared memory. Finally, we write the Gmq (two registers per thread) to the shared
memory array Gsh[]. Using register assignment (120) for the source registers, and shared memory layout
(76) for the destination array Gsh[], the shared memory writes are bank conflict free. This statement is not
obvious at all – I wrote python code to check it for each of our cases 1–5!

Computing Gsh[] shared memory destination offsets may be a source of overhead, since the shared
memory layout (76) is so complicated. I suggest the following: on each thread, precompute the shared
memory offset corresponding to τtile = mtile = π = 0 (in notation following the pseudocode (111)), and store
it in a persistent register Gsh_write_offset. Then, in the unrolled loops in the pseudocode (111), all shared
memory offsets can be obtained from Gsh_write_offset by adding compile-time constants. (The idea is
similar to the trick in Eqs. (108), (109) from the previous section. Note that in this case, there is no issue
with writing past the end of shared memory, since the q-axis of Gsh[] is padded from length 2N to length
2Npad.)

4.11 Second FFT

This step appears in an inner loop over τ, π (see pseudocode in §4.3), and therefore operates on a single time
sample τ and polarization π. In the rest of this section, we will not write τ, π indices explicitly.

In this step, we read the array Gmq from shared memory, perform the FFT Gmq → Ẽpq (see Eq. (57)),

and accumulate |Ẽpq|2 into a running total Ipq. The I-array is held in persistent registers.
We define a tile of the array Gmq to consist of all m-values, and (32/Mpad) q-values. Here, Mpad is M

rounded up to a power of 2. For each of our cases 1–5 in Table 2, the following compile-time asserts are
satisfied:

constexpr int nq_total = 2*N; // total q-indices in G-array

constexpr int nq_tile = 32/Mpad; // q-indices per tile

constexpr int ntiles = nq_total / nq_tile;

static_assert(nq_total % nq_tile == 0); // G-array divides evenly into tiles

static_assert(ntiles % W == 0); // Tiles divide evenly among warps

(121)

In view of these asserts, we can parallelize by dividing tiles among warps. (The number of tiles per warp
turns out to be 1 in cases 1–4, and 2 in case 5.) In the rest of this section, we describe how a single tile is

processed by a single warp. Thus the Gmq array will have shape (M, 32/Mpad), and the Ẽpq array will have
shape (2M, 32/Mpad).

Reading one G-tile from shared memory. We read the Gmq array from shared memory into a
register assignment which is tailored to the tensor core FFT (§3). We split the index 0 ≤ m < M into “high”
and “low” parts:

m =
M

4
mhi +mlo where 0 ≤ mhi < 4 and 0 ≤ mlo <

M

4
(122)

We will sometimes zero-pad length-M arrays to length-Mpad, by extending mlo to an index 0 ≤ mlo <
(Mpad/4). We read Gmq from shared memory, with register assignment (1 register/thread):[(

Mpad × 32

Mpad

)
Gmq

]
b ↔ ReIm t0t1t2t3t4 ↔ mhi

0 mhi
1 mlo

0 q0 · · · q4−µ mlo
1 · · ·mlo

µ−3︸ ︷︷ ︸
2 bits

(123)

where we have defined
µ = log2(Mpad) . (124)

31

Using the Gsh[] shared memory layout previously defined in (76), this 32-bit shared memory load is bank
conflict free. This statement is not obvious at all – I wrote python code to check it for each of our cases 1–5!

As in the previous section (§4.10), computing Gsh[] shared memory offsets may be a source of overhead, so
we may want to precompute a persistent register Gsh_read_offset, to reduce computation in the innermost
loop.

Another issue: if M is not a power of 2 (this only happens in Case 5), then some thread indices in
(120) will correspond to m-indices with M ≤ m < Mpad. We want these threads to store zeros, not “junk”
data read from uninitialized Gsh[] addresses. This could be implemented either by zeroing the appropriate
elements of Gsh[], or with a conditional move instruction after reading the data.

Doing the FFT. We use the tensor core FFT from §3 to do the FFT Gmq → Ẽpq. The G-array register
assignment (123) is consistent with the register assignment (25) for the FFT input array. Note that the
m-index in Gmq corresponds to the “active” n-index in the FFT (25), and the q-index in Gmq corresponds
to the spectator s-index in the FFT (25).

After applying the FFT from §3, we get the array Ẽpq for one tile, with (2M) p-indices and (32/Mpad)

q-indices. The register assignment for Ẽpq is given by the FFT output assignment given previously in Eq.
(26). We first split the index 0 ≤ p < (2M) into “high” and “low” parts:

p = 8phi + plo where 0 ≤ phi < (M/4) and 0 ≤ plo < 8 (125)

Then the Ẽpq register assignment is:[(
2Mpad × 32

Mpad

)
Ẽpq

]
b0 ↔ plo0 r ↔ ReIm t0t1t2t3t4 ↔ plo1 p

lo
2 phi0 · · · phiµ−3 q0 · · · q4−µ︸ ︷︷ ︸

3 bits

(126)
where the p-index has been zero padded from length-(2M) to length-(2Mpad), by extending the index phi
from length-(M/4) to length-(Mpad/4).

Accumulating the I-array. After computing Ẽpq, we accumulate its contribution to

Ipq =
∑

Tds times

∑
2 pols

∣∣Ẽpq

∣∣2 (127)

For each tile, we store one __half2 I-array register/thread, with register assignment:[(
2Mpad × 32

Mpad

)
Ipq

]
b0 ↔ plo0 t0t1t2t3t4 ↔ plo1 p

lo
2 phi0 · · · phiµ−3 q0 · · · q4−µ︸ ︷︷ ︸

3 bits

(128)

This register assignment mirrors the Ẽpq register assignment (126) above. Therefore, we can accumulate
I += |E|^2 using two __half2 FMAs (for the real and imaginary parts).

The total number of I-array registers per thread is:(
I-array registers/thread RI

)
=
(
G-array tiles per warp

)
=

Total q-indices (2N)

(Warps W) (q-indices per tile (32/Mpad))

=
MpadN

16W
(129)

Note that some of the I-array registers end up accumulating zeros, due to zero-padding the p-index from
length-(2M) to length-(2Mpad). (This only happens in case 5.) This may seem wasteful, but I don’t see a
more efficient approach.

4.12 Writing the I array to global memory

Every Tds time samples, we trigger a cyclic counter which writes the Iτ̄pq array to global memory (see
pseudocode in §4.3). The details of this step will depend on what global memory layout is chosen for Iτ̄pq,

32

which in turn will depend on some cublas experiments in the context of the second FRB beamforming kernel
(§5). I leave it to you to work out the details, once the memory layout is chosen!

Some general discussion of issues which may arise (depending on what global memory layout is chosen):

• You may find it helpful to use shared memory when writing Iτ̄pq, in order to “transpose” the I-array
so that each warp writes entire cache lines. In this case, the shared memory layout (60) generalizes to:

union {

int Fsh1[];

int Fsh2[];

struct {

__half2 Gsh[];

__half2 Ish[];

};

};

(130)

where the new shared memory region Ish[] is in a “struct with Gsh[]”, but a “union with Fsh1[]

and Fsh2[]”. This saves a little shared memory, since Fsh2[] is larger than Gsh[] (Table 2 in §4.4).

• You may find that it’s helpful to buffer a few τ̄ samples, before writing Iτ̄pq to global memory. (Espe-
cially in case 5, where the p-index is zero-padded from length 2M to 2Mpad, and some threads store
zeros which we do not want to write to global memory.) In this case, I suggest using buffering in
registers instead of shared memory, since the kernel uses so much shared memory already.

33

4.13 Computational cost

Case 1 Case 2 Case 3 Case 4 Case 5 Notes
Number of dishes D 64 64 256 256 512
Dish grid size (M,N) (8,8) (8,12) (16,16) (16,20) (24,24)
GPU config assumed 16×A40 16×A40 16×A40 16×A40 128×A40
Freq channels/GPU F 2048 2048 1024 1024 256 upchannelized
Input sampling ts (µs) 27.3 27.3 41.0 41.0 27.3 upchannelized
Downsampling factor Tds 40 40 25 25 40
Output sampling tf (ms) 1.09 1.09 1.02 1.02 1.09
Global memory BW [GB/s]
Read E-array 9.6 9.6 12.8 12.8 9.6 2FD/ts
Write I-array 0.96 1.44 2.05 2.56 1.08 8FMN/tf

Shared memory BW [GB/s]
Write Fsh1[] 9.6 9.6 12.8 12.8 9.6 2FD/ts
Read Fsh1[] 9.6 12.8 12.8 20.5 12.8 128FD/(Touterts)
Write Fsh2[] 9.6 19.2 12.8 25.6 14.4 128FMN/(Touterts)
Read Fsh2[] 9.6 19.2 12.8 25.6 14.4 2FMNpad/ts
Write Gsh[] 76.8 154 102 205 115 16FMNpad/ts
Read Gsh[] 76.8 115 102 128 115 16FMpadN/ts

SM-cycles per FFT
M -FFT CM 1.5 1.5 3 3 8 From Table 1
N -FFT CN 1.5 3 3 8 8 From Table 1

Compute [giga SM-cycles/sec]
E → F shuffle (Eq. 131) 0.96 0.96 1.28 1.28 0.96 0.2FD/ts
S warp shuffle (Eq. 132) 0.15 0.3 0.2 0.4 0.23 2FMN/(Touterts)
FFT1 unpack (Eq. 133) 0.3 0.6 0.4 0.8 0.45 0.0625FMNpad/ts
FFT1 __hcmadd (Eq. 134) 0.45 0.90 0.60 1.2 0.68 0.094FMNpad/ts
FFT1 loc trans (Eq. 135) 0.3 0.6 0.4 0.8 0.45 0.125FMNpad/ts
First FFT 1.8 3.6 2.4 6.4 3.6 2FMCN/ts
Second FFT 3.6 5.4 4.8 6.0 7.2 4FNCM/ts
FFT2 FMA (Eq. 136) 0.3 0.45 0.4 0.5 0.45 0.0625FMpadN/ts
Total 7.9 12.8 10.5 17.4 14.0

Bottom-line costs, as percentage of total GPU resources
Global memory BW 1.8% 1.8% 2.5% 2.6% 1.8% 600 GB/sec assumed
Shared memory BW 2.1% 3.5% 2.7% 4.5% 3.0%
Compute 5.4% 8.8% 7.2% 11.9% 9.6%
Total 9.2% 14.1% 12.4% 18.9% 14.4%

Table 3: Computational cost estimates for first FRB beamforming kernel. These estimates do not include
the cost of the second FRB beamforming kernel (see §5). Cases 1+2 are square and rectangular versions
of the CHORD pathfinder (rectangular is more likely). Cases 3+4 are square and rectangular versions of
HIRAX. Case 5 is full CHORD. Note that we have assumed upchannelization by a factor 16, i.e. F and ts
are 16 times larger than their usual values.

Some notes on Table 3:

• The “E → F shuffle” was introduced in §4.6 (see Eqs. (80), (82)). According to Erik’s email (sub-
ject “bit-shuffling operation for FRB beamformer”) this operation takes 28 instructions, with 4 regis-
ters/thread (512 bytes total) in/out. Let’s assume 50 SM-cycle throughput, since some instructions
will take more than 1 clock cycle. This gives the cost estimate:(

50
SM-cycles

shuffle

)(
512

bytes

shuffle

)−1(
2FD

ts

bytes

sec

)
=

0.2FD

ts
SM-cycles/sec (131)

34

Note that in cases 1 and 2, there is an extra warp transpose between Eqs. (85) to (86), but we don’t
include it separately, since the cost is subdominant (∼4 SM-cycles versus ∼50).

• The “S warp shuffle” is the call to __shfl_sync() in the pseudocode (97), used to “broadcast” one
value of sd to all threads in a warp. We need one call to __shfl_sync() (2 SM-cycles) to write 128
bytes (one register/thread) to Fsh2[]. Therefore the cost is:(

2
SM-cycles

shuffle

)(
128

bytes

shuffle

)−1(
128FMN

Touterts

bytes

sec

)
=

2FMN

Touterts

SM-cyles

sec
(132)

• “FFT1 unpack” refers to the step where Freg2[] is unpacked to Emn, just before the first FFT
(Eqs. (113), (114)). According to a #bx-engine-dev conversation around March 18, a version of this
unpacking operation with 4 output registers/thread takes 3.5 SM-cycles. Therefore, we will assume 1
SM-cycle per output register (32 E-array elts):(

1
SM-cycle

output reg

)(
32

E-array elts

output reg

)−1(
2FMNpad

ts

E-arr elts

sec

)
=

0.0625FMNpad

ts
SM-cycles/sec

(133)

• “FFT1 __hcmadd” is the (WE) multiplication in Eq. (116). According to my microbenchmark,
__hcmadd throughput is 1.5 SM-cycles per instruction. Therefore the cost is:(

1.5
SM-cycles

hcmadd

)(
32

F -arr elts

hcmadd

)−1(
2FMNpad

ts

F -arr elts

sec

)
=

0.094FMNpad

ts
SM-cycles/sec

(134)

• “FFT1 loc trans” is the local transpose after the first FFT (Eq. (120)). According to my microbench-
mark, a local transpose costs 1 SM-cycle (operating on 2 registers/thread, or 64 Gmq-array elements).
Therefore the cost is:(

1
SM-cycle

loc trans

)(
64

G-arr elts

loc trans

)−1(
4FMNpad

ts

G-arr elts

sec

)
=

0.0625FMNpad

ts

SM-cycles

sec
(135)

• “FFT2 FMA” refers to the __half2 FMA needed to accumulate |Ẽpq|2 into Ipq (Eq. (127)). The cost
is:(

0.5
SM-cycles

FMA

)(
32

Ẽ-arr elts

FMA

)−1(
4FMpadN

ts

Ẽ-arr elts

sec

)
=

0.0625FMpadN

ts
SM-cycles/sec

(136)

35

4.14 Discussion

Frequency-dependent upchannelization. The FRB beamforming kernel will operate on an upchan-
nelized version of the E-array. In several places (kernel specification in §4.1, and Table 3 in §4.13), we have
implicitly assumed frequency-independent upchannelization factor U = 16. In fact, U will be frequency-
dependent, and this may require some changes (e.g. frequency-dependent Tds). I expect these changes to be
minor, so let’s postpone until after we’ve written an upchannelization kernel, when we’ll have a better sense
for what specific changes to make.

Register arrays and unrolled loops. In this design document, we have proposed storing several arrays
in registers (Freg2, W , I) and unrolling long loops. We’ve been finding (in the context of the baseband
beamformer) that this can lead to issues such as instruction cache misses, or mysteriously large register
counts. I’m worried that these issues will be worse in the FRB beamformer, but let’s see how it goes!

16-bit overflows. This may be an issue, both in testing and in production. I’m just leaving this note
so we don’t forget about it!

Precomputing shared memory offsets in persistent registers. I’m a big fan of doing this, since
it only uses one register, and often speeds up kernels! I proposed doing this in three places (at the end of
§4.9, §4.10, §4.11) but it may be useful elsewhere.

Shared memory bank conflicts. I think I checked carefully that the first FRB beamforming kernel
has no bank conflicts, but I’m worried about a bug in the math. Can the profiler check for bank conflicts at
runtime? If not, then I’d suggest adding a runtime check. I think something like this should work (haven’t
actually tried it):

template<typename T>

__device__ inline void assert_bank_confict_free(const T *p)

{

static_assert(sizeof(T)==4);

extern __shared__ char shmem_base[];

ptrdiff_t n = reinterpret_cast<const char *>(p) - shmem_base;

assert((n >= 0) && (n < 128*1024)); // ’p’ points to shared memory

assert(n % 4 == 0); // ’p’ is 32-bit aligned

int bank = (n >> 2) & 0x1f; // 0 <= bank < 32

unsigned int flags = __reduce_or_sync(0xffffffff, 1U << bank);

assert(flags == 0xffffffffU); // no bank conflicts

}

36

5 Second FRB beamforming “kernel”

5.1 Introduction

The second FRB beamforming kernel computes the beamformed intensities

Jfτβ =
∑
pq

UM
p (θfβ)U

N
q (θ′fβ) Ifτpq (137)

with notation as follows:

• Indices 0 ≤ p < 2M and 0 ≤ q < 2N index half-integer beam locations, as in §4.

• Index 0 ≤ f < F indexes a frequency channel.

• Index 0 ≤ τ < Ntime indexes a “slow” time sample (after downsampling by a factor Tds in the first
kernel). In this section, all time samples are “slow”, so we do not use the τ , τ̄ notation from §4.

• Index 0 ≤ β < B indexes a beam, and (θfβ , θ
′
fβ) denotes the sky location of beam β in frequency

channel f .

• The function UN
q (θ) was defined in Eqs. (7), (8).

• The array Ifτpq has been computed and written to global memory by the first FRB beamforming
kernel.

See Table 4 for baseline values of the parameters (F,M,N), and the time sampling rate tf .
We propose using float16 for all arrays in sight (I, J, U , etc). You should feel free to choose whichever

memory layouts are most convenient/efficient, for all of these arrays.10

Erik had the nice suggestion of computing Eq. (137) using cublasHgemm, rather than writing a custom
cuda kernel. For this reason, we have titled this section with “kernel” in quotes. This makes the task much
easier, but the details are still nontrivial. There are two cases to consider, depending on whether the beam
locations (θfβ , θ

′
fβ) are factorizable.

5.2 Case 1: non-factorizable beam locations

In this case the beam locations (θβ , θ
′
β) are arbitrary. We define the array Wfpqβ by:

Wfpqβ = UM
p (θfβ)U

N
q (θ′fβ) (138)

In the rest of this section, we leave the “spectator” f -index implicit, and introduce the notation ρ = (p, q)
to denote a (p, q) index pair by a single index ρ. Thus we will denote the I, J,W arrays as

Ifτpq → Iτρ Jfτβ → Jτβ Wfpqβ → Wρβ (139)

Using the above notation, we can write Eq. (137) as a matrix multiply:

Jτβ =
∑
ρ

IτρWρβ (140)

To do this matrix multiply with cublasHgemm, we need to store the array Wρβ in GPU global memory. For
now, let’s assume that Wρβ has been precomputed and stored persistently in GPU global memory, between
launches of the FRB beamforming kernel. (See §5.4 for discussion of how W gets computed.)

I’ll leave it to you to experiment to find the optimal way of doing the matrix multiply (140) with
cublasHgemm, including details such as: what are the best global memory layouts for the I, J,W arrays?
Should we launch all calls to cublasHgemm on the same stream (one call for each frequency channel), or use
multiple streams for more parallelism?

10Note that the J-array will eventually be quantized to either 4 or 8 bits, and converted to the FRB packet format for
network transmission, but for now let’s just write the J-array to global memory in float16. We can do the quantization and
packet-formatting in a separate GPU kernel later.

37

5.3 Case 2: factorizable beam locations

In the factorizable case, the beam index β can be reinterpreted as an index pair β = (γ, γ′). The first beam
coordinate θfβ only depends on the first index γ, and the second beam coordinate θ′fβ only depends on the
second index γ′. Thus we can write Eq. (137) as (with implicit frequency index f):

Jτγγ′ =
∑
pq

UM
p (θγ)U

N
q (θ′γ′) Iτpq (141)

Or, introducing the slightly more compact notation Upγ = UM
p (θfγ) and U ′

qγ′ = UN
q (θ′fγ′), as:

Jτγγ′ =
∑
pq′

Upγ Iτpq U
′
qγ′ (142)

In this form, we see that we need to multiply three matrices (UT IU ′) for each time index τ (and for each
frequency index f).

Here’s an idea for avoiding a separate call to cublasHgemm for each time index τ . First, reinterpret the
3-d array Iτpq as a 2-d array Ipa, where a = (τ, q) is an index pair. Then do the following matrix multiply
with a single cublasHgemm call:

Vγa =
∑
p

UpγIpa (143)

Next, reinterpret the 2-d array Vγa as a 3-d array Vγτq, and then as a 2-d array Vbq, where b = (γ, τ) is an
index pair. Then do the following matrix multiply with a single cublasHgemm call:

Jbγ′ =
∑
q

VbqUqγ′ (144)

Then reinterpret the 2-d array Jbγ′ as a 3-d array Jτγγ′ . Note that making this idea work with cublas puts
a lot of constraints on array memory layouts!

I’ll leave it to you to experiment to find the optimal way of doing the matrix multiply (142) with
cublasHgemm, including details such as: what are the best global memory layouts for the I, J, U, U ′ arrays?
Should we launch all calls to cublasHgemm on the same stream (one call for each frequency channel), or use
multiple streams for more parallelism?

5.4 Computational cost and discussion

Details of Table 4. Computational cost estimates for the second FRB kernel are shown in Table 4. Note
that the quantities (F,M,N, tf , tk) are defined in the top few rows of the table. In the next few paragraphs,
we explain how memory bandwidth and computational cost are estimated.

In the non-factorizable case, global memory bandwidth and compute requirements are calculated as
follows.

Global memory BW (non-factorizable case, bytes/s) =

(
8FMN

tf

)
︸ ︷︷ ︸

Read I

+2

(
8FBMN

tk

)
︸ ︷︷ ︸

Read W

+

(
2FB

tf

)
︸ ︷︷ ︸
Write J

(145)

Flops (tensor float16, non-factorizable case) =
8FMN

tf
(146)

In the factorizable case, we do two matrix multiplies (Eqs. (143), (144)) for each frequency f and time τ :

V = UT I J = V U ′ (147)

38

Case 1 Case 2 Case 3 Case 4 Case 5 Notes
Dish grid size (M,N) (8,8) (8,12) (16,16) (16,20) (24,24)
GPU config assumed 16×A40 16×A40 16×A40 16×A40 128×A40
Freq channels/GPU F 2048 2048 1024 1024 256 upchannelized
Time sampling tf (ms) 1.09 1.09 1.02 1.02 1.09 downsampled

Non-factorizable beams (§5.2)
Number of beams B 640 960 2560 3200 5760 10MN assumed
Kernel cadence tk (sec) 1 1 1 1 1 see discussion
I-array size (GB) 0.96 1.44 2.05 2.56 1.08 8FMNtk/tf
W -array size (GB) 0.67 1.5 5.4 8.4 6.8 8FBMN bytes
U -array size (GB) 0.08 0.16 0.34 0.47 0.28 4FB(M +N)
Cost (% GPU resources)
I + J global mem BW 0.6% 0.8% 1.2% 1.5% 0.6% See Eq. (145)
W global mem BW 0.1% 0.3% 0.9% 1.4% 1.1% See Eq. (145)
Compute 0.4% 0.9% 3.5% 5.5% 4.1% See Eq. (146)
Total 1.1% 2.0% 5.6% 8.4% 5.9%

Factorizable beams (§5.3)
Beam grid size (Bx, By) (32,32) (32,48) (64,64) (64,80) (96,96) (4M, 4N)
U -array size (GB) 0.004 0.007 0.008 0.011 0.005 4F (BxM +ByN)
Cost (% GPU resources)
I + J global mem BW 0.8% 1.2% 1.7% 2.1% 0.9% See Eq. (148)
V global mem BW 0.6% 1.0% 1.4% 1.7% 0.7% See Eq. (148)
Compute 0.1% 0.1% 0.3% 0.4% 0.2% See Eq. (149)
Total 1.5% 2.3% 3.3% 4.2% 1.8%

Table 4: Computational cost estimates for second FRB beamforming kernel. These estimates do not include
the cost of the first FRB beamforming kernel (see §4). Cases 1+2 are square and rectangular versions of the
CHORD pathfinder (rectangular is more likely). Cases 3+4 are square and rectangular versions of HIRAX.
Case 5 is full CHORD. The beam counts (B in the non-factorizable case, and (Bx, By) in the factorizable
case) are rough guesses, to be refined later with detailed survey optimization.

Global memory bandwidth and compute requirements are calculated as follows:

Global memory BW (factorizable case, bytes/s) =

(
8FMN

tf

)
︸ ︷︷ ︸

Read I

+2

(
4FBxN

tf

)
︸ ︷︷ ︸
Read/write V

+

(
2FBxBy

tf

)
︸ ︷︷ ︸

Write J

(148)

Flops (tensor float16, factorizable case) =

(
8FBxMN

tf

)
︸ ︷︷ ︸

V=UT I

+

(
4FBxByN

tf

)
︸ ︷︷ ︸

J=V U ′

(149)

In Eq. (148), we have neglected the global memory bandwidth required to read U,U ′, which should be small.

Kernel cadence tk (non-factorizable case only). In the non-factorizable case, the kernel cadence
tk (time between cublas calls) matters, since it determines the W memory bandwidth in Eq. (145). The
choice of tk is a tradeoff: if tk is too small, then the kernel will be inefficient since the W memory bandwidth
will be large (this could be fixed by writing a custom kernel, see below). If tk is too large, then more GPU
memory will be needed to buffer the I-array (see next paragraph), and the triggering latency of the FRB
search will increase. In Table 4, we have assumed tk = 1 sec as a rough guess.

I expect that we’ll end up using a tk which is larger than the “natural” E-array chunk size used by most
of the GPU kernels. For concreteness, suppose that tk = 1 sec, whereas most of the kernels process E-array
data in 125 ms chunks. Then we would still run the first FRB beamforming kernel at 125 ms cadence, and
buffer eight I-array chunks before launching the second FRB beamforming kernel. The I-array buffer size

39

is shown in Table 4 (“I-array size”). We might end up needing to multiply this buffer size by 2, depending
on how buffers are managed in kotekan.

I asked Andre whether it would be a problem to run the first and second FRB beamforming kernels at
different cadence. He didn’t see a fundamental problem with this, but we had some discussion about how
best to implement it. (See #bx-engine-dev thread around 13 Oct 2022. The issues raised on this thread
shouldn’t affect writing the GPU kernel itself, only integration with kotekan.)

We emphasize that in the non-factorizable case, the kernel cadence tk cadence shouldn’t matter much,
and should be able to use kotekan’s “natural” cadence.

Should we write a GPU kernel to compute W from U? (Non-factorizable case only.) In
the non-factorizable case (§5.2), the W -array (138) must be stored in GPU global memory. How does the
W -array get computed? There are two options: either we could compute W on the CPU and copy to the
GPU, or write a GPU kernel which computes the W -array from the U -array using Eq. (138). Here are some
thoughts on the tradeoffs:

• If we decide to use tracking beams, then we need to compute W on the GPU, since the W -matrix
would get recomputed every tk ∼ 1 sec, and copying from the CPU to GPU would use too much PCIe
bandwidth.

• In the non-tracking case (where W doesn’t change), we might decide that the W -array is too large to
store persistently on the GPU (see “W -array size” in Table 4). In this case we’d loop over frequency
channels (or “tiles” consisting of a few frequency channels), and compute W for each channel on-the-fly,
before running the second FRB beamforming kernel. Then we’d need to compute the W -array on the
GPU, to avoid using too much PCIe bandwidth.

Note that in either this scenario, or the one from the previous bullet point, the W -array will be written
to global memory in every kernel iteration. The cost of this extra step is estimated in Table 4 (“W
global mem BW” row).

• If neither of the conditions in the previous two bullet points apply, then I think both options (computing
W on the CPU or GPU) are viable.

Should we write custom kernels, instead of using cublas? Here are my thoughts on what might
be gained by writing custom kernels:

• In the non-factorizable case, I think that a custom kernel could avoid storing the W -array in global
memory (only the U -array). Instead, the kernel would hold U -array elements in registers, and compute
W -array elements “on the fly” when needed, using Eq. (138). I started designing a kernel along these
lines (before Erik pointed out that we could just use cublas), and it looked like it would work, but it
was pretty complicated.

Such a kernel would have the following advantages: it would eliminate the large W -array memory
footprint, avoid the memory bandwidth of reading the W -array, and eliminate the need for a tk which
is larger than kotekan’s “natural” cadence (further reducing GPU memory usage, and also reducing
triggering latency of the FRB search).

My feeling is that these advantages aren’t essential at first, but may be worth writing a custom kernel
eventually. So I propose that we start with a cublas-based approach, and (if we settle on using non-
factorizable beams, see discussion below) implement a custom kernel at some point in the future, when
we have time.

• In the factorizable case, I think that a custom kernel could avoid reading/writing the intermediate
V -array, by coalescing the matrix multiplication J = UT IU ′ into a single kernel. The cost of read-
ing/writing V is estimated in Table 4 (“V global mem BW” row), and is pretty small (around 1% of
total GPU resources). So my feeling is that a custom kernel is a low priority in the factorizable case.

• This analysis assumes that there are no cublas performance surprises, and that a cublas implementation
gets close to the cost estimates in Table 4. If we do get performance surprises, we may revisit this
analysis and decide to write a custom kernel.

40

Should we use factorizable or non-factorizable beams? Throughout this section, we’ve been
agnostic on the question of whether we’d use factorizable or non-factorizable beams in the CHORD FRB
search. For now, I think we should implement both options, to give ourselves the flexibility to decide later in
the project. The decision will depend on whether we decide to use tracking beams, and whether constraining
beams to be factorizable increases the cost of the FRB search.

It’s also possible that we’ll end up running two versions of the FRB beamformer, one to feed the FRB
search (as the name suggests!), and one to feed a pulsar search. In this case, the pulsar search would use
non-factorizable (tracking) beams, whereas the FRB search might use either factorizable or non-factorizable
beams. We’d implement this by running one instance of the first beamforming kernel (§4), and two instances
of the second kernel (§5).

References

[1] K. W. Masui et al., Algorithms for fft beamforming radio interferometers, arxiv:1710.08591.

41

A Proposed dish layout

Figure 2: Proposed CHORD dish layout. The layout is a subset of a 22-by-24 regular grid. Dish spacing is
6.3m East-West and 8.5m North-South. Provisional and subject to change in the future!

42

B GPU kernel preliminaries

In previous kernel design documents, we’ve developed some concepts which we now re-use in every kernel:
register assignment notation, local transposes, and warp transposes. In order to make this design document
self-contained, I included appendices which explain these concepts. This is all cut-and-paste from other
design documents, so you’ll probably skip this appendix entirely!

B.1 Register assignment notation

Throughout these notes, we will frequently encounter situations where an array has been distributed among
threads of a warp, and/or among registers on each thread, and/or (if the datatype is smaller than 32 bits)
packed into the bytes of registers. In this section, we will introduce notation to keep track of this type of
register assignment.

It’s easiest to explain our register assignment notation by example. One of the arguments of the m16n8k16
float16 tensor core MMA (see §C.2) is a 16-by-16 float16 matrix Aij , distributed among threads in a single
warp. Each matrix entry has a “logical” location (i, j) in the matrix Aij , and a “physical” location as two
bytes in a register somewhere. We describe both logical and physical locations using index bits as follows.

A logical location is described by integers 0 ≤ i < 16 and 0 ≤ j < 16, which we represent by their binary
digits i =

[
i3i2i1i0

]
2
and j =

[
j3j2j1j0

]
2
. Thus, we label “logical” locations by 8 index bits i3i2i1i0j3j2j1j0.

A physical location is indexed by a 5-bit thread id t =
[
t4t3t2t1t0

]
2
, a 2-bit register id r =

[
r1t0

]
2
which

indexes one of four registers on each thread, and a 1-bit byte id b0 which indexes the location of the float16
within the 32-bit register. Thus, we label “physical” locations by 9 index bits t4t3t2t1t0r1r0b0.

Our register assignment notation works by writing down the correspondence between logical and physical
index bits:

[(16× 16) float16 Aij] b0 ↔ j0 r0r1 ↔ i3j3 t0t1t2t3t4 ↔ j1j2i0i1i2 (150)

This one-line equation compactly describes how the matrix entries Aij are distributed among registers in
the 32 threads which comprise one warp. Some comments on this notation:

• We show the array and its datatype in square brackets, and the number of “byte” index bits bi will be
consistent with the datatype (e.g. two bits b1b0 for int8, one bit b0 for float16).

• The number of registers per thread is 2R, where R is the number of “register” bits ri. The example
(150) uses four registers per thread.

• For complex-valued arrays, we sometimes use a real datatype, and add an extra logical index bit
“ReIm” to indicate how the real/imaginary parts are distributed.

B.2 Local transpose operation

Suppose we have a situation where each thread holds two registers, and each register stores four 8-bit
quantities. In our register assignment notation, we write:

b1b0 ↔ XY r ↔ Z (151)

to indicate that the three “physical” index bits b1b0r correspond to “logical” index bits XY Z, where the
meaning of the logical bits depends on the larger context. (We have omitted the physical thread index bits
t4t3t2t1t0, since the operation we will describe is thread-local.)

Now suppose that we want to change the register assignment, by swapping the roles of physical index
bits b0 and r, to get the register assignment:

b1b0 ↔ XZ r ↔ Y (152)

We will call this a “local transpose” operation, since it shuffles data between different registers of the same
thread.

43

Similarly, we might want to transpose physical index bits b1 and r, so that we obtain the register
assignment:

b1b0 ↔ ZY r ↔ X (153)

Either of the local transpose operations defined in Eqs. (152), (153) can be implemented with two calls to
the __byte_perm() cuda intrinsic. According to my benchmark, __byte_perm() has a throughput of two
instructions per cycle (i.e. one local transpose per cycle).

One last comment: to implement the E → F shuffle operation from §4.6, we may need local transposes
on 4-bit boundaries. Such a local transpose can’t be implemented with __byte_perm(), but could be
implemented with two bit-shift instructions and one LOP3 instruction.

B.3 Warp transpose operation

Now suppose we have a situation where each thread in a warp holds two 32-bit registers:

r ↔ X t4t3t2t1t0 ↔ Y4Y3Y2Y1Y0 (154)

where we are now keeping track of the 5-bit thread index t = [t4t3t2t1t0]2, but not keeping track of byte
index bits (i.e. we are treating register contents as 32-bit, not 4×8-bit).

Suppose that we want to transpose index bits r and ti, so that we obtain the register assignment:

r ↔ Yi t4t3t2t1t0 ↔ Y4 · · · X︸︷︷︸
replacing Yi

· · ·Y0 (155)

This can be done efficiently with one warp shuffle instruction as follows:11

int in0 = ...; // contents of register 0

int in1 = ...; // contents of register 1

int i = ...; // thread index bit 0 <= i < 5

int bit = 1 << i;

bool flag = (threadIdx.x & bit) != 0;

int src = flag ? in0 : in1;

int dst = __shfl_xor_sync(0xffffffff, src, bit);

// Compiles to conditional move, not warp-divergent branch.

(flag ? out0 : out1) = dst;

We will call this a “warp transpose” operation, since it shuffles data between different threads in the same
warp.

11Based on my microbenchmarks, the code below will be warp shuffle limited, i.e. the computation of bit/flag and the
conditional assignments involving src/dst are faster than the warp shuffle and can run in parallel. I also find that warp shuffle
throughput is 16 shuffles per clock cycle (where a warp shuffle involving all 32 threads in a warp is defined as 32 shuffles). A
puzzle here is that this contradicts nvidia’s throughput tables at https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#maximize-instruction-throughput, which claim 32 shuffles per cycle. If you have any insight on how to get 32
shuffles per cycle, that would be really valuable, since the FRB search kernels are sometimes warp shuffle bound. (For the
beamforming kernel which is the subject of this note, the cost of warp shuffles turns out to be small (Table 3), but I thought
the larger issue was worth mentioning.

44

C Float16 tensor core reference

C.1 Float16 m16n8k8

The PTX instruction mma.sync.aligned.m16n8k8.row.col.f16.f16.f16.f16 performs the following ma-
trix multiplication C = AB:

[(16× 8) float16 Aij] b0 ↔ j0 r0 ↔ i3 t0t1t2t3t4 ↔ j1j2i0i1i2 (156)

[(8× 8) float16 Bjk] b0 ↔ j0 t0t1t2t3t4 ↔ j1j2k0k1k2 (157)

[(16× 8) float16 Cik] b0 ↔ k0 r0 ↔ i3 t0t1t2t3t4 ↔ k1k2i0i1i2 (158)

This instruction performs 2048 flops, and costs 2 SM-cycles on an A40.

C.2 Float16 m16n8k16

The PTX instruction mma.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 performs the following ma-
trix multiplication C = AB:

[(16× 16) float16 Aij] b0 ↔ j0 r0r1 ↔ i3j3 t0t1t2t3t4 ↔ j1j2i0i1i2 (159)

[(16× 8) float16 Bjk] b0 ↔ j0 r0 ↔ j3 t0t1t2t3t4 ↔ j1j2k0k1k2 (160)

[(16× 8) float16 Cik] b0 ↔ k0 r0 ↔ i3 t0t1t2t3t4 ↔ k1k2i0i1i2 (161)

This instruction performs 4096 flops, and costs 4 SM-cycles on an A40.

C.3 Sparse float16 m16n8k16

Conceptually, the PTX instruction mma.sp.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 performs
an m16n8k16 MMA with the same matrix dimensions as the dense case (§C.2), but the A-matrix has 50%
sparsity. More precisely, each 1×4 submatrix of the 16×16 matrix A has 50% sparsity, as shown in Figure
3. The computational cost of the sparse MMA is 50% of the dense case.

The sparse MMA defines 6 operands (Asp, B,C,D,E, f). In the rest of this section, we explain the details
of these operands.

Definitions of Asp and E. We first describe a reparameterization of the sparse matrix Aij as a pair
of arrays (Asp

ij′J , Eij′J). The float16 array Asp contains the nonzero elements from Aij (and has half the
size), and the int2 array Eij′J describes the sparsity pattern. Both arrays have shape (16, 4, 2).

We split the length-16 column axis of A into (high, low) 2-bit integers (j′, E).

j = 4j′ + E where 0 ≤ j′ < 4 and 0 ≤ E < 4 (162)

Each 1×4 submatrix in A (Figure 3, left panel) is indexed by a pair (i, j′), where 0 ≤ i < 16 and 0 ≤ j′ < 4.
For each such submatrix (i, j′), let Eij′0, Eij′1 be 2-bit integers describing the locations of the nonzero
entries within the 1×4 submatrix. Let Asp

ij′0, A
sp
ij′1 be the corresponding float16 matrix elements. The

reparameterization of the sparse A-matrix by (Asp
ij′J , Eij′J) is shown visually in Figure 3. Formally, the

reparameterization is described by the equation:

Asp[i,j’,J] = A[i, 4j’+E[i,j’,J]] (163)

Register assignments. The register assignments for (Asp
Ij′j , Bjk, Cik) are straightforward to describe:

[(16× 4× 2) float16 Asp
ij′J] b0 ↔ J r0 ↔ i3 t0t1t2t3t4 ↔ j2j3i0i1i2 (164)

[(16× 8) float16 Bjk] b0 ↔ j0 r0 ↔ j3 t0t1t2t3t4 ↔ j1j2k0k1k2 (165)

[(16× 8) float16 Cik] b0 ↔ k0 r0 ↔ i3 t0t1t2t3t4 ↔ k1k2i0i1i2 (166)

45

Note that, in the register assignment (164) for Asp
ij′J , we denoted the j′ index bits by j2j3, rather than j′0j

′
1.

The two are equivalent by Eq. (162). We also note that the B and C sparse register assignments (165), (166)
are the same as their dense counterparts (160), (161).

Finally, we describe the register assignment for Eij′J . The E-array fits into eight 32-bit registers, which
are mapped to thread index bits t2t3t4:

[(16× 4× 2) int2 Eij′J] b0b1b2b3 ↔ Jj2j3i3 t2t3t4 ↔ i0i1i2 (167)

The sparse MMA instruction includes an additional operand 0 ≤ f < 4 which determines which eight
threads in the warp are used, by specifying thread index bits t0t1. Note that in Eq. (167), the j′ index bits
are denoted j2j3, as in (164) above.

A special case which will arise in §3.5. We will be interested in a special case where the 16-by-16
matrix Aij is 50% sparse because it contains a Kronecker delta of the form δinj1 :

Aij = A′
ij3j2j0δj1in where 0 ≤ n < 4 (168)

Here, we are using the usual index bit notation i = [i3i2i1i0]2 and j = [j3j2j1j0]2. Let’s work out the details
of the reparameterization A → (Asp, E), and the register assignments for (Asp, E), in this special case.

First, we leave it to the reader to show that the shape-(16,4,2) arrays Asp
ij′J and Eij′J are given by

Asp
ij′J = A′

ij′1j
′
0J

Eij′J = 2in + J (169)

It follows that the register assignment (164) forAsp is equivalent to the following register assignment for A′

(two registers/thread):

[float16 A′] b0 ↔ j0 r0 ↔ i3 t0t1t2t3t4 ↔ j2j3i0i1i2 (170)

Next we consider the E operand. As defined in (169), the E-array depends on the value of 0 ≤ n < 4. We
define a “universal” E-array by including n as an additional index:

Euni
ij′Jn = 2in + J where i = [i3i2i1i0]2 (171)

with shape (16, 4, 2, 4). We distribute Euni across threads in a warp using register assignment (one regis-
ter/thread):

[(16× 4× 2× 4) int2 Euni
ij′Jn] b0b1b2b3 ↔ Jj2j3i3 t0t1t2t3t4 ↔ n0n1i0i1i2 (172)

This register assignment has been chosen so that one can select a value of n by setting the f -operand of the
sparse MMA to f = n, and setting the E-operand to the register containing Euni. Then the sparse MMA
will use the appropriate E-matrix for the given value of n, in the correct register assignment (167).

Finally, we note that Euni can be initialized with the following code:

int n = threadIdx.x & 3;

int ilo = ((threadIdx.x >> 2) & 7); // value of i, for t=threadIdx.x and b3=0

int ihi = ilo | 8; // value of i, for t=threadIdx.x and b3=1

unsigned int Elo = (ilo & (1<<n)) ? 0x0000eeee : 0x00004444; // low 16 bits

unsigned int Ehi = (ihi & (1<<n)) ? 0xeeee0000 : 0x44440000; // high 16 bits

unsigned int Euni = Elo | Ehi; // one register per thread

(173)

46

Cuda wrapper. For reference, here is my cuda wrapper for the sparse m16n8k8 MMA D = C + AB,
with operands (Asp, B,C,D,E, f) as described above. (The D operand has the same register assignment
(166) as C.)

// Sparse MMA D = A*B + C

template<unsigned int F>

__device__ __forceinline__

void mma_sp_f16_m16_n8_k16(__half2 d[2], const __half2 asp[2], const __half2 b[2],

const __half2 c[2], unsigned int e)

{

asm("mma.sp.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 "

"{%0, %1}, {%2, %3}, {%4, %5}, {%6, %7}, %8, %9;" :

"=r" (*(unsigned int *) &d[0]), "=r" (*(unsigned int *) &d[1]) :

"r" (*(const unsigned int *) &asp[0]), "r" (*(const unsigned int *) &asp[1]),

"r" (*(const unsigned int *) &b[0]), "r" (*(const unsigned int *) &b[1]),

"r" (*(const unsigned int *) &c[0]), "r" (*(const unsigned int *) &c[1]),

"r" (e),

"n" (F)

);

}

Figure 3: This figure from the nvidia documentation depicts the sparse MMA in §C.3. The 16×16 A-matrix
(left) has the property that each 1×4 submatrix is 50% sparse. We split this into two smaller arrays (right):
the Asp array which contains nonzero elements of A, and the E array which describes the location of each
nonzero element within its 1×4 submatrix. The sparse MMA instruction uses (Asp, E) as operands, instead
of A. (Note: the example in the figure also has the property that the same sparsity pattern is repeated
8 times. This property isn’t a requirement – the sparse MMA instruction allows an independent sparsity
pattern for each 1×4 submatrix.)

47

