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1 Executive summary

The GPU correlator receives baseband data in “coarse” frequency channels with width 586 kHZ. In several
places, we’d like to use higher frequency resolution than this.

• For the FRB search, we plan to use a level of upchannelization which is very frequency-dependent. At
the bottom of the CHORD band (300 MHz) we might upchannelize by a factor ∼128, and at the top
of the band (1500 MHz) we might not upchannelize at all!

• For the 21-cm galaxy search (and possibly RRL search?) we will want to compute visibility matrices
after upchannelizing in selected frequency ranges.

In these notes, we describe a flexible GPU upchanelization kernel which ingests E-array (electric field) data,
and outputs E-array data whose frequency resolution is higher by a specified factor U (the time resolution is
coarser by a factor U , so that the number of samples per second is unchanged). The upchannelized E-array
can be passed to the FRB beamformer, or to the “N2 kernel” which computes visibility matrices.

In §2–§3, we’ll describe upchannelization mathematically (setting aside implementation issues for now), and
explore different algorithms:

• We conclude that a simple “two-stage PFB” algorithm which operates independently on coarse fre-
quency channels is a good choice.

• We explore upchannelization artifacts (aliasing and “ripple” effects). While these artifacts will certainly
complicate our downstream analysis pipelines, they don’t seem to be showstoppers.

• We give a useful rule of thumb (42) for choosing the upchannelization factor U for a line emitter search.

• A loose end here: I’d like to do an “end-to-end” simulation of a dispersed FRB, from baseband data
through upchannelization, FRB beamforming, and dedispersion. This is a mini-project that I haven’t
had time for yet!

In §4–§5, we plan the GPU implementation. If you are mainly interested in implementation, and not on the
motivation behind our proposed upchannelization algorithm, then you could start reading in §4.

• In §4, we describe a fast algorithm for doing short power-of-two FFTs on tensor cores. The algorithm
is implemented as an “inline” function which operates on a few registers, and can be coalesced into
a larger kernel. This is an important building block for the upchannelization kernel, and can be
implemented and tested independently.1

• In §5, we describe the larger upchannelization kernel. To give a rough idea of performance, we do
cycle-counting cost estimates in a simple case (upchannelizing all frequencies with M = 4 PFB taps,
upchannelization factor U = 16, and output bit depth K = 4), obtaining:

(Estimated cost) = (1.6%)︸ ︷︷ ︸
input bandwidth

+ (1.6%)︸ ︷︷ ︸
output bandwidth

+ (3.2%)︸ ︷︷ ︸
compute

= 6.4% of GPU resources (1)

assuming full CHORD and an 128×A40 correlator.

1In the FRB beamformer notes, we presented a similar FFT microkernel, but the details are different. There, the FFT
length 8 ≤ N ≤ 32 was a multiple of 4, and the FFT was zero-padded by a factor 2. Here, the FFT length U = 2k is a power
of two, and the FFT is not zero-padded.
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2 High-level specification

In §2 and §3, we’ll describe upchannelization mathematically, and explore different algorithms. If you’re
mainly interested in GPU implementation, you’ll probably want to skip to §4!

2.1 Introduction

Recall that before the electric field data reaches the GPUs, it has been channelized by the FPGAs. We
briefly review channelization as follows. The input to channelization is a real-valued “raw” timestream, or
1-d array:

E0(t0) (2)

where t0 indexes a “fast” (0.417 ns) time sample.
The output from channelization is a complex-valued channelized timestream, or 2-d array:

E1(c, t1) (3)

where c ∈ {0, 1, · · · , 2047} indexes a frequency channel, and t1 indexes a “slow” (4096 · (0.417 ns) = 1.71 µs)
time sample. The channelization operation is an invertible operation which preserves the number of real
degrees of freedom per second (ignoring quantization subtleties).

The simplest channelization algorithm would be to simply split the raw timestream into 4096-sample
chunks, and perform a length-4096 r2c FFT on each chunk (obtaining 2048 complex numbers). Unfortunately,
this simple algorithm has poor spectral leakage, so in CHORD we use a different algorithm: the polyphase
filterbank (PFB), which we review in §3.2.

The FPGA channelization (with 2048 frequency channels) is the first step in the CHORD real-time pro-
cessing. Therefore, all science backends receive data with frequency resolution (∆f) = (1200 MHz)/2048 =
586 kHz by default. For most of the science backends, this default resolution suffices.

However, there are two exceptions (so far!): the 21-cm galaxy search backend and the FRB search
backend need higher frequency resolution.2 Therefore, we plan to implement an upchannelization kernel,
which operates on the coarsely channelized timestream E1(c, t1), to produce a complex-valued upchannelized
timestream, or 3-d array:

E2(c, u, t2) (4)

where c ∈ {0, 1, · · · , 2047} indexes a coarse (586 kHZ) frequency channel, u ∈ {0, 1, · · · , U − 1} indexes a
fine (586/U kHz) frequency subchanel within a coarse channel, and t2 indexes a time sample with duration
(∆t) = U · (1.71 µs).

In this note, we will study the question: what upchannelization algorithm should we use, to go from the
coarsely channelized timestream E1(c, t1) to the upchannelized timestream E2(c, u, t2)?

In the X-engine, we plan to run two upchannelization kernels, with different frequency-dependent up-
channelization factors U : one kernel for the 21-cm galaxy search and one kernel for the FRB search. The
output of each upchannelization kernel will be written to GPU memory, for further processing on the GPU
by a “downstream” kernel: either the FRB beamformer, or a visibility matrix kernel (for the 21-cm galaxy
search). The two downstream kernels have different requirements (upchannelization factor U , bit depth,
and subset of coarse frequencies which is upchannelized). In the next two subsections, we specify these
requirements.

2.2 21-cm galaxy search

Upchannelization factor. For the 21-cm galaxy search, we want to support upchannelization factors
U = 8, 16, 32, 64. Different frequency channels will have different upchannelization factors.

2After these notes were written, we started talking about a third possibility: an RRL (radio recombination line) backend.
An RRL backend would be qualitatively similar to the 21-cm galaxy backend, in the sense that in both cases, the required
data product from the GPU correlator is an upchannelized visibility matrix. However, the frequency ranges of interest and
upchannelization factors are very different.

4



Rationale: Kristine’s spec calls for a redshift-dependent channel width in the range 10–50 kHz. This
corresponds to upchannelization factors in the range 12–60, since our current baseline FPGA creates 600
kHZ channels.

Range of frequency channels. Right now, we should assume that the upchannelization kernel will
run on ∼half of the frequency channels. It is possible that in the future, sometime between the CHORD
pathfinder and full CHORD, the number of frequency channels will be reduced, perhaps to as little as
∼5–10% of the full range.

Rationale: the frequency range depends on the maximum redshift zmax of the 21-cm galaxy search.
Going to high redshift is challenging mainly because of RFI contamination (geosatellites) and large offline
storage/compute costs. In the CHORD pathfinder, we will try searching to high redshift (zmax ∼ 0.7). If
this works well, then we’ll also search to high redshift in full CHORD. If RFI is a showstopper, then we may
reduce zmax for full CHORD.

Bit depth. In our proposed GPU implementation (§4, §5), the upchannelization itself is done in float16.
The only decision is whether to write the E2 array to GPU global memory in int8+8 or int4+4. Using int8+8
is a little more computationally expensive, but may help reduce quantization systematics. It’s tempting to
reduce risk by using int8+8, but I don’t know of any concrete reason why int4+4 would create problems.
Does anyone have a strong feeling either way?

2.3 FRB search

Upchannelization factor. We want to support upchannelization factors U = 2, 4, 8, 16, 32, 64, 128.
Different frequency channels will have different upchannelization factors.

Rationale: Here is a back-of-the-envelope derivation of the optimal upchannelization factor U for the
FRB search. The dispersion delay at frequency f is:

Delay =
D

f2
(5)

where D = 4.15 sec-GHz2 for an FRB with DM 1000. Differentiating, the differential delay across channel
width (∆f) is:

Channel delay =
2D

f3
(∆f) (6)

At back-of-the-envelope level, the upchannelization factor is:

Upchannelization factor U =
Channel delay

Sample width ts
=

2D

f3ts
(∆f) =

5 GHz3

f3
(7)

where we have assumed ts = 1 millisecond and (∆f) = 600 kHz in the last step. Varying f over the
range 300–1500 MHz in (7), we find that U varies over the range 1.5 < U < 185. In practice, U will be
rounded to a power of 2 in each frequency channel. I think we’ll end up rounding 185→128, i.e. the largest
upchannelization factor will be U = 128.

Range of frequency channels. We should assume that the FRB upchannelization kernel will run on
∼90% of the CHORD frequency channels. Rationale: by Eq. (7), the upchannelization factor satisfies U ≥ 2
for f ≤ 1350 MHz, corresponding to ∼90% of the CHORD frequency range.

Bit depth. The issues here are nearly identical to the 21-cm galaxy case (§2.2). The only decision is
whether to write the E2 array to GPU global memory in int8+8 or int4+4. In this case, I think that int4+4
is the right choice, since the FRB beamformer is less sensitive to systematic effects than the 21-cm galaxy
search.
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3 Mathematical specification

3.1 Raw timestream

The raw timestream is a real 1-d array E0(t0), where t0 is an integer. We use the following Fourier transform
convention:

E0(t0) =

∫ 2048

−2048

df E0(f) e
2πift0/4096 (8)

where E0(−f) = E0(f)
∗. In Eq. (8) and throughout this note, Fourier modes are labelled by a real (non-

integer) frequency −2048 ≤ f ≤ 2048. We have chosen the nonstandard Fourier convention (8) so that the
analog frequency f will roughly correspond to a channel index in the coarse PFB (Polyphase FilterBank).

If the statistics of the electric field are time translation invariant, then the two-point function is:〈
E0(f)E0(f

′)∗
〉
= I0(f) δ(f − f ′) (9)

where this equation defines the intensity I0(f). We assume that time translation invariance is a good
approximation on timescales short enough to be relevant for designing the upchannelization algorithm.

3.2 Coarse PFB

In this section we briefly review the polyphase filterbank (PFB) algorithm, which channelizes the raw
timestream E0(t0) to produce the coarsely channelized timestream E1(c, t1). Here, c = 0, 1, · · · , 2048 indexes
a coarse frequency channel, and t1 is a “coarse” time sample index whose cadence is 4096 times slower than
the “raw” index t0. Richard Shaw’s notes3 are also a great reference.

The PFB is very easy to specify: it is defined by the short equation

E1(c, t1) =

MN−1∑
s=0

W1(s)E0(Nt1 + s) e−2πics/N where (M,N) = (4, 4096) (10)

where W1(s) is the “sinc-Hanning” weight function, defined by:4

W1(s) = cos

(
π(s−MN/2)

MN

)2

sinc

(
s−MN/2

N

)
s = 0, · · · , (MN − 1) (11)

The parameter M = 4 is the number of taps in the PFB.
What is not so easy is explaining why the PFB (10) is a good channelization algorithm! We start by

writing the following Fourier-space expression for the PFB, which is derived by plugging (8) into (10):

E1(c, t1) =

∫ N/2

−N/2

df W̃1(c− f)E0(f)e
2πift1 (12)

where W̃1 is the Fourier transformed weight function:

W̃1(f) ≡
MN−1∑
s=0

W0(s) e
−2πifs/N (13)

where f is not assumed to be an integer.
In Figure 1, we show the window function W1(s) and its Fourier transform W̃1(f). The weight function

W1(s) is chosen so that W̃1(f) is as close as possible to the step function:

W̃step(f) ≈
{

1 if (−1/2) < f < (1/2)
0 otherwise

(14)

3https://github.com/jrs65/pfb-inverse/blob/master/notes.ipynb
4I may have some off-by-one errors in Eq. (10), e.g. I’m not sure whether the MN denominator should be (MN − 1). I

didn’t bother tracking these down since they don’t affect any of the results in this note significantly.
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Figure 1: Sinc-Hanning window function W1(s) used in the coarse PFB (left), and its Fourier transform

W̃1(f) (right). By Eq. (10), the right plot gives the response W̃ (c− f) of coarse PFB channel c (an integer)

to analog frequency f (not an integer). The window function is designed so that W̃1(f) approximates the
step function (14).

Why is this desirable? If W̃1(f) were precisely equal to W̃step, then Eq. (12) would imply that coarse channel
c has unit response to frequencies in the nominal range

f ∈
[
c− 1

2
, c+

1

2

]
(15)

and zero response to frequencies outside this range.
The sinc-Hanning weight function (11) has been chosen so thatW1(s) has finite support s = 0, · · · , (MN−

1), and W̃1(f) is as close as possible to W̃step(f). As the number of taps M is increased, the agreement

between W̃1 and W̃step improves. In the limit M → ∞, the upchannelization algorithm becomes perfect, in

the sense that W̃1 → W̃step, and each coarse channel perfectly selects frequencies in its nominal range (15.)

3.3 Upchannelization algorithms

Restriction to width 1. We will say that an upchannelization algorithm is width W if it operates
independently on blocks of W contiguous coarse channels. For now, in this note we restrict attention
to width-1 algorithms, i.e. algorithms which operate independently on individual coarse channels. Our
eventual conclusion will be that width-1 algorithms work pretty well. Higher-width algorithms could improve
sensitivity a little, but would create some minor technical challenges (for discussion see §3.8).

Kernel parameterization. A general width-1 upchannelization algorithm can be written in the form:

E2(c, u, t2) =

S−1∑
s=0

C(u, s)E1(c, Ut2 + s) (16)

where u = 0, · · · , U − 1 indexes a fine channel. Here, U is the upchannelization factor, S is the kernel length
(typically a small integer multiple of U), and C(u, s) is the upchannelization kernel (a complex U -by-S
matrix).

Within this general framework, different upchannelization algorithms correspond to different choices of
kernel C(u, s). In this note, we will consider two upchannelization algorithms:

• Least-squares upchannelization. This algorithm was proposed by Jon Sievers, and I’ll just “de-
scribe” it by leaving a pointer to Jon’s notes.5 Note that Jon’s algorithm generalizes to width W , but

5I don’t think Jon’s notes are on the wiki, but you may have them in your email with filename pfb upchannelization v2.pdf.

Jon’s code is here: https://github.com/sievers/PFB_upchannelization.
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I’m only considering the W = 1 case here.

• Two-PFB upchannelization. Intuitively, we might try to upchannelize by applying a short “second-
stage” PFB independently to each coarse PFB channel. Formally, the second-stage upchannelization
algorithm is defined by:

E2(c, u, t2) =

MU−1∑
s=0

W2(s)E1(c, Ut2 + s) eπis(U−1)/U︸ ︷︷ ︸
“Extra”phase

e−2πius/U (17)

where the motivation for the extra phase eπis(U−1)/U will be explained in §3.4. Note that the second-
stage PFB uses a c2c FFT, whose time coarsening factor U is equal to the number of output frequencies.
(In contrast to the first-stage PFB (10), which uses an r2c FFT whose time coarsening factor N is
twice the number of output frequencies.) Following terminology from §3.2, we will call M the number
of taps in the second PFB. We will use M = 4 taps by default.

The two-PFB upchannelization algorithm (17) is the special case of the general algorithm (16), with
upchannelization kernel C(u, s) given by:

C(u, s) = W2(s) e
πis(U−1)/U︸ ︷︷ ︸
“Extra”phase

e−2πius/U (18)

In subsequent sections, we will try to do calculations in a general way which applies to an arbitrary width-1
upchannelization algorithm (parameterized by kernel C(u, s)), so that we can treat least-squares and two-
PFB upchannelization on the same footing.

3.4 Analog frequency response and aliasing

In this section, we will study the response of the upchannelized timestream to a signal with analog frequency
f (not assumed to be an integer).

In Fourier space, upchannelization takes the following form:

E2(c, u, t2) =

∫
df W̃1(c− f) C̃(u,−f)︸ ︷︷ ︸

R(c,u;f)

E0(f)e
2πifUt2 (19)

where C̃(u, f) is defined by:

C̃(u, f) =
∑
s

C(u, s)e−2πisf (20)

and satisfies C̃(u, f) = C̃(u, f + 1). Eq. (19) is derived by plugging (12) into (16).
The analog response R(c, u; f) defined by Eq. (19) gives the (complex) response of the upchannelized

timestream in coarse channel c = 0, 1, · · · , 2048 and fine channel u = 0, 1, · · · , U − 1, to an electric field with
analog frequency f . We will usually be interested in the intensity response |R(c, u; f)|2.

First plot. One way to explore the intensity response |R(c, u; f)|2 is to choose a few digital channels
(c, u), and plot the respsonse |R(c, u; f)|2 as a function of analog frequency f . We do this in Figure 2.

We see significant aliasing effects, which are largest for fine channels near the edge of a coarse channel.
For example, in the top panel of Figure 2 with U = 4, consider the channel (c, u) = (10, 0). The nominal
frequency range for this channel is 9.5 ≤ f ≤ 9.75. The actual intensity response |R(c, u; f)|2 consists
of a “main” peak roughly covering the nominal range 9.5 ≲ f ≲ 9.75, plus a smaller aliased peak at
10.5 ≲ f ≲ 10.75.

For fine channels near the center of a coarse channel, there is less aliasing. In the bottom panel of Figure
2 with U = 16, the u = 0 fine channel (near the edge of the coarse channel) shows significant aliasing, but for
the u = 6 fine channel (near the center of the coarse channel) the aliased response is tiny (∼ 45 dB smaller
than the main response).
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Aliasing is unavoidable for width-1. The aliasing in Figure 2 is an unavoidable consequence of
using a width-1 upchannelization algorithm, as we now explain. Consider two sinusoidal analog signals at
frequencies f and (f + 1):

E0(t0) = Ae2πift0/N E′
0(t0) = A′e2πi(f+1)t0/N where N = 4096 (21)

These signals are indistinguishable in a single coarse channel due to aliasing. More precisely, by Eq. (12) the
coarsely channelized signals are:

E1(c, t1) = AW̃1(c− f) e2πift1 E′
1(c, t1) = A′ W̃1(c− f − 1) e2πift1 (22)

In a single coarse channel c, the signals are indistinguishable except for the prefactors W̃1(c − f) and

W̃1(c− f − 1). That is, the degeneracy between frequencies f and (f +1) is broken only by the coarse PFB

response W̃1.
The worst aliasing occurs for a frequency f = c− 1/2 such that f and (f +1) are at the edges of a coarse

channel. In this case, the coarse PFB response in channel c is the same for f and (f + 1), the degeneracy is
not broken at all, and the aliasing is perfect. The least aliasing occurs for a frequency f = c at the center
of a coarse channel. In this case, the coarse PFB response does a good job of breaking the degeneracy, by
suppressing frequencies (f ± 1), and there is not much aliasing.

We speculate that higher-width algorithms would help a little, but will not eliminate aliasing completely.
Consider for example the case W = 2, and a pair (c, c + 1) of coarse channels. Each of the three analog
frequencies (f − 1/2, f + 1/2, f + 3/2) will map to a linear combination of two available Fourier modes in
E1. For linear algebra reasons, there must be order-one aliasing.6

Second plot. In Figure 3, we explore the intensity response |R(c, u; f)|2 in a different way. We fix a few
choices of intensity power spectrum I0(f) in panels (a)–(e). For each such choice, we plot the upchannelized
response 〈

|E2(c, u, t2)|2
〉
=

∫
df |R(c, u; f)|2I0(f) (23)

as a function of (c, u). In panels (a)–(d), we show the channelized response to a “narrow-line” signal
I0(f) = δ(f − f0). The aliasing is worst in the case where the input frequency f0 is at the edge between
two coarse channels (case (d)). In this case, the input signal aliases equally into four digital channels (two
channels with f ≈ f0 and two channels with f ≈ f0 ± 1)! We will let the reader think through the details of
how this behavior follows from the general discussion of aliasing above. In panel (e), we show the channelized

response to a “broad” Gaussian line I0(f) ∝ e−(f−f0)
2/2σ2

f centered on the edge between coarse channels,
showing interesting aliasing behavior.

Explanation of “extra” phase in the two-PFB algorithm. A loose end: we now explain the
“extra” phase in the two-PFB algorithm (17). First recall (Eq. (15)) that the nominal frequency range of
coarse PFB channel c is:(

Nominal frequency range of coarse channel c
)
=

[
c− 1

2
, c+

1

2

]
(24)

What about a fine channel (c, u)? We will let the reader convince themselves of the following statements. If
the extra phase is included in Eq. (17), then:(

Nominal frequency range of fine channel (c, u)
)
=

[
c− 1

2
+

u

U
, c− 1

2
+

u+ 1

U

]
(25)

If the extra phase is not included in Eq. (17), then:

(
Nominal freq range of fine channel (c, u)

)
=

{ [
c+ 2u−1

2U , c+ 2u+1
2U

]
if u ̸= U/2[

c− 1
2 , c−

1
2 + 1

2U

]
∪
[
c+ 1

2 − 1
2U , c+ 1

2

]
if u = U/2

(26)

6If we wanted to pull out all the stops to eliminate aliasing in upchannelization, there is a way to it: using an oversampled
PFB in the FPGAs. I’m pretty confident this would work and is the “right” solution, but I haven’t worked out the details.
But, it would increase data rates by 20% throughout most of CHORD! I’m assuming this is a nonstarter, so I haven’t seriously
explored the idea of using an oversampled PFB.
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Figure 2: Intensity response |R(c, u; f)|2 as a function of analog frequency f , for a few choices of fine channel
u within coarse channel c = 10. The nominal frequency range for this coarse channel is 9.5 ≤ c ≤ 10.5. Both
panels use two-PFB upchannelization with M = 4 taps. Top panel. All four fine channels u = 0, 1, 2, 3 in a
single coarse channel, for upchannelization factor U = 4. Bottom panel. Selected fine channels u = 0, 2, 4, 6
in a single coarse channel, for upchannelization factor U = 16.
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Figure 3: Upchannelized response (23) to input power spectrum I0(f). Each panel shows a different choice
of input analog power spectrum I0(f) (dotted line), and the digital channelized intensity is shown as the
sequence of vertical bars. In the first four panels, I0(f) = δ(f−f0) is a “narrow-line” signal whose frequency
f0 is shown as the dotted line. From top to bottom, the input frequency is (a) near the center of both a coarse
channel and a fine channel, (b) at the edge between two fine channels near the center of a coarse channel, (c)
at the center of a fine channel near the edge of a coarse channel, (d) at the edge between two coarse channels.

In the bottommost panel (e), the input signal is a “broad” Gaussian line I0(f) ∝ e−(f−f0)
2/2σ2

centered on
the edge betwen two coarse channels, shown as the dotted line. We use two-PFB upchannelization with
M = 4 taps and upchannelization factor U = 16 throughout.
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Figure 4: This plot is similar to the top panel of Figure 2, but without the “extra” phase in Eq. (17).
Note the weird frequency response for u = 2. Besides exploring the “extra” phase, a second (and more
important) purpose of the plot is to compare the two-PFB (solid curves) and least-squares (dashed curves)
upchannelization algorithms (see §3.3). The two algorithms are qualitatively similar.

Thus, if the extra phase is omitted, the fine channels are permuted (relative to the intuitive ordering u =
0, · · · , U − 1), and fine channel u = U/2 has a weird frequency response.

In Figure 4, we show this visually, by plotting the intensity response |R(c, u; f)|2 for upchannelization
factor U = 4, without the extra phase in Eq. (17). Note the weird frequency response for u = 2, relative to
the top panel of Figure 2.

Another (more important) purpose of Figure 4 is to compare the two-PFB (solid curves) and least-
squares (dashed curves) upchannelization algorithms. Note that our least-squares upchannelization does not
currently include the “extra” phase from Eq. (17). (This is because I’m calling Jon’s code as a “black box”
out of laziness – it should be easy to modify it to include the extra phase if needed.) The main conclusion
from Figure 4 is that the two-PFB and least-squares algorithms are qualitatively similar. In the next section,
we will also compare bottom-line SNR from the two algorithms (Figure 6), and find similar results.

Variance “ripples”. The plots in this section have mainly explored frequency aliasing. In Figure 5, we
explore another effect: frequency “ripples” in the upchannelized timestreams. For each fine channel (c, u),
we plot the variance 〈

|E2(c, u, t2)|2
〉

(27)

as a function of the nominal frequency (c+(2u−U +1)/(2U)) of the fine channel. We compute the variance
(27) using Eq. (38) from the next section, assuming that the raw timestream has a power spectrum I0(f)
which is constant in f .

Figure 5 shows that upchannelization produces frequency “ripples” in the output. This will complicate
downstream analyses but does not necessarily indicate a serious problem, since the ripples can be removed
by applying a channel-dependent normalization. For example, the SNR forecasts in the next section are
not significantly affected by the ripples, since the The SNR forecasts in the next section are normalization-
indepenent will assume optimal matched filtering, which is independent of the channel normalizations.

3.5 Signal-to-noise forecasts for 21-cm galaxies

In the last section, we showed that upchannelization algorithms have nontrivial aliasing behavior (Figures
2, 3) and ripples (Figure 5). At minimum, this will complicate the 21-cm galaxy search. The optimal search
statistic will be a matched filter (not a simple peak-finder), parameterized by a matrix which keeps track of
how signal power at trial frequency f aliases into different digital channels, and a covariance matrix which
keeps track of “ripples” and correlations between frequencies.

However, these extra complications do not necessarily indicate a serious problem. How can we decide
whether there is a “real” problem or not? I decided to ask the following questions:

1. If we search for 21-cm galaxies with an optimal matched filter, what fraction of the SNR is lost due to
upchannelization?
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Figure 5: Variance ⟨|E2(c, u, t2)|2⟩ of the upchannelized timestream, as a function of fine channel (c+ u/U),
for an input signal whose power spectrum I0(f) is independent of frequency. We see that upchannelization
produces frequency “ripples” in the output. We use two-PFB upchannelization with M = 4 taps and
upchannelization factor U = 16.

2. Can aliasing effects produce confusion between 21-cm galaxies at different redshifts?

Setup and forecasting machinery. Suppose we observe a faint steady source with power spectrum
Is(f), in the presence of frequency-independent white noise In. That is, the power spectrum of the electric
field is: 〈

E0(f)E0(f
′)∗
〉
= I0(f)δ(f − f ′) where I0(f) = In + Is(f) (28)

where Is(f) ≪ In. We will usually be interested in the case where Is(f) is a Gaussian emission line profile
with central frequency fmid:

Is(f) ∝ exp

(
− (f − fmid)

2

2σ2
f

)
where σf =

W50

2
√
2 log 2

(29)

where we can parameterize the emission line width either by its RMS σf , or its full width at half maximum
W50 (following ALFALFA [1]).

If we observe T ≫ 1 raw timestream samples E0(t0) without quantization noise, then the optimal SNR
is:

SNR2
opt =

T

2N

∫ N/2

−N/2

df
Is(f)

2

I2n
(30)

We want to compare this with the upchannelized SNR (denoted SNRuc) obtained from an optimal analysis
of upchannelized visibilities, possibly in the presence of quantization noise. The upchannelized visibilities
are defined by:

Vcu =
〈
|E2(c, u, t2)|2

〉
t2

(31)

where E2(c, u, t2) is the upchannelized timestream defined in §3.3. Note that the upchannelized visibilities
may contain less information than the upchannelized timestream E2(c, u, t), since off-diagonal correlations
t2 ̸= t′2 are discarded. We will compute SNRuc as follows:

SNR2
uc = Scu C

−1
cu,c′u′ Sc′u′ (32)

13



where Scu is the mean visibility due to the signal Is(f), and Ccu,c′u′ is the visibility covariance due to the
noise:

Scu =
〈
Vcu

〉
signal only

Ccu,c′u′ = Cov
[
Vcu, Vc′u′

]
noise only

(33)

The signal Scu can be computed straightforwardly from (19):

Scu =

∫
df
∣∣W̃1(c− f)C̃(u, f)

∣∣2 Is(f) (34)

The noise covariance Ccu,c′u′ is more complicated, and we will spend the next few paragraphs computing it.
Between here and Eq. (40) below, we neglect the signal term in (28), and assume I0(f) = In.

First, we compute the two-point function of the raw timestream E0(t0):〈
E0(t0)E0(t

′
0)
〉
= σ2

0 δt0t′0 where σ2
0 = NIn (35)

Then we compute the two-point function of the coarsely channelized timestream E1(c, t1):
7〈

E1(c, t1)E1(c
′, t′1)

∗〉 = σ2
0 ζ1(c− c′, t1 − t′1) + σ2

1δcc′δt1t′1 (36)

where we have modelled quantization noise as an extra Gaussian noise term σ2
1 , and defined:

ζ1(f, τ) ≡
∑
s

W1(s)W1(s+Nτ)e−2πifs/N (37)

Next, we compute the two-point function of the upchannelized timestream E2(c, u, t2):〈
E2(c, u, t2)E2(c

′, u′, t′2)
∗〉 = σ2

0

∑
τ1

ζ1(c− c′, τ1) ζ2(u, u
′, τ1 + Ut′2 − Ut2)

+ σ2
1 δcc′ ζ2(u, u

′, Ut′2 − Ut2)

+ σ2
2δcc′δuu′δt2t′2 (38)

where we have defined:
ζ2(u, u

′, τ) ≡
∑
s

C(u, s)C(u′, s− τ)∗ (39)

Finally, the noise covariance Ccu,c′u′ is given in terms of the two-point function (38) by:

Ccu,c′u′ =
NU

T

∞∑
τ2=−∞

∣∣〈E2(c, u, 0)E2(c
′, u′, τ2)

∗〉∣∣2 (40)

In the rest of this section, we assume zero quantization noise (σ1 = σ2 = 0). We will include quantization
noise in §3.6.

What fraction of SNR is retained after upchannelization? Using the preceding forecasting
machinery, we can answer the first question from the beginning of this section. We define the retention to
be the fraction of SNR which is retained after upchannelization:

(Retention) ≡ SNRuc

SNRopt
(41)

In Figure 6, we plot the retention as a function of central frequency ffmid (defined in Eq. (29)) and upchan-
nelization factor U , for fixed W50 = 0.05 (also defined in (29)).

7We will assume that two-point correlations of the form ⟨E1(c, t1)E1(c′, t′1)⟩, with no complex conjugate on the second factor,
are zero. This is a good approximation everywhere except a few “edge channels” (f = 0, and to a small extent f ∈ {1, N − 1}).
The edge channels may need special treatment in the 21-cm galaxy search, but we disregard them for purposes of forecasting
since they are a tiny fraction of the data.

14



We see that for small U , the retention is poor and contains oscillations. As U increases, the retention
saturates to a non-oscillatory limiting curve. For a given value of W50, we would like to choose U large
enough that saturation has occurred. Based on Figure 6, we propose the following rule of thumb:

U ≳
1.5

Smallest W50 of interest
(42)

This rule of thumb is one of the main results from this note.
It may be surprising that the retention does not approach 1 as U → ∞. Instead, we see in Figure 6

that the retention saturates to a limiting value which is close to 1 if fmid is an integer, and more like 1/
√
2

if fmid is a half-integer. We speculate that this is an inherent limitation of width-one algorithms. Here
is a hand-waving argument. Consider a narrow (W50 ≪ 1) emission line whose frequency is on the edge
between two coarse frequency channels. After the coarse PFB, half (in intensity) of the signal will go into
each coarse channel. If the upchannelization algorithm is width-one, then this statement will still be true
after upchannelization. When we compute the visibilities Vcu (defined in Eq. (31)), we throw away the
cross-correlation between the two channels, and the maximum retention will be 1/

√
2.

In the left/right panels of Figure 6, we compare the retention from the two-PFB and least squares
upchannelization algorithms. The two algorithms are very similar. (Neither one is uniformly better than
the other – if you squint at the plots, you can find values of fmid where one or the other is a little better.
Overall there is not much difference.)

How large are correlations between different redshifts? Next, we answer the second question from
the beginning of this section: in an optimal matched filter analysis, can aliasing effects produce confusion
between 21-cm galaxies at different redshifts?

First a little machinery. Let I
(1)
s (f) and I

(2)
s (f) be emission line profiles corresponding to galaxies at

different redshifts. Let S
(1)
cu and S

(2)
cu be the associated visibilities, computed from I

(i)
s (f) using Eq. (34). We

define a 2-by-2 Fisher matrix Fij by:

Fij = S(i)
cu C−1

cu,c′u′ S
(j)
c′u′ (43)

where Ccu,c′u′ is the visibility covariance as before. Then the correlation between the two galaxy signals is:

r =
F12√
F11F22

(44)

Using this machinery, in Figure 7 we show the correlation coefficient r as a function of the central frequencies

f
(1)
mid, f

(2)
mid. For a narrow profile (W50 ≪ U−1), the correlation coefficient between frequencies (fmid, fmid+1)

can be as large as r = 0.4 (left panel). We note that the correlation coefficient decreases slightly as the
emission line width W50 increases. At the “critical” line width W50 = 1.5/U derived from the rule of thumb
in Eq. (42), the max correlation coefficient is r = 0.3 (right panel).

A correlation coefficient as large as r = 0.3 or r = 0.4 is unlikely to be a concern. If we set a galaxy
detection threshold of 6σ, then the true redshift can be distinguished from its aliased counterparts at 6(1−r)
sigmas. We conclude that redshift correlations are unlikely to be a significant issue for the 21-cm galaxy
search, provided that an optimal matched filter analysis is used.

3.6 Quantization noise

So far our forecasts have assumed zero quantization noise (σ1 = σ2 = 0). In this section, we will study
quantization noise systematically. We will assume that quantization can be fully modelled as an extra source
of Gaussian noise, so that the only issue is choosing realistic values for the parameters σ1, σ2 defined in Eqs.
(36), (38).

Note that we’re assuming negligible roundoff errors in the GPU implementation of the upchannelization
algorithm, so that the only place where quantization arises is when the E1, E2 arrays are created. I think
this assumption is reasonable since the upchannelization itself will be done in either int8 or float16 (see
last paragraph of §3.3).

Also note that we’re assuming that quantization can be fully modelled as Gaussian random noise, and
ignoring more subtle nonlinear effects. I haven’t thought carefully about this, and I think it’s an important
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Figure 6: SNR retention (41) after upchannelization, for a Gaussian emission line with W50 = 0.05.
(Throughout this note, all frequencies are multiples of the coarse PFB width 576 kHz, so W50 = 0.05
really means W50 = (0.05)(576 kHz) = 28.8 kHz.) We show the retention (41) as a function of central
frequency ffmid (defined in Eq. (29)) and upchannelization factor U . Left panel. Two-PFB upchannelization
with M = 4 taps. Right panel. Least-squares upchannelization with M = 4 taps.
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Figure 7: Correlation coefficients between emission line sources with varying central frequencies f
(1)
mid, f

(2)
mid.

The x,y axes in correspond to a uniformly spaced sequence of fmid values between 2.5 and 4.5. We use
two-PFB upchannelization with M = 4 taps and upchannelization factor U = 16. Left panel. Narrow
emission line W50 ≪ (1/U) which is unresolved by upchannelization. Right panel. Critical width emission
line W50 = 1.5/U which is barely resolved by upchannelization.
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loose end. How can we 100% convince ourselves that quantization artifacts are not an issue for the 21-cm
galaxy search?

Setting this difficult question aside for now, we next consider the concrete question of how to choose
a realistic value for the quantization noise σ2

1 . We assume that without quantization noise, the real and
imaginary parts of E1(c, t) each have RMS equal to 2 LSBs (least significant bits):√〈

|E1(c, t1)|2
2

〉
σ1=0

= B1 × (LSB) where B1 = 2 (45)

We also assume that the quantization noise variance (σ2
1/2) for the real and imaginary parts of E1(c, t)

satisfies the simple relation:
σ2
1

2
=

(LSB)2

12
(46)

Combining Eqs. (36), (45), (46), we get the following expression for σ1:

σ2
1 =

1

6B2
1

〈
|E1(c, t1)|2

2

〉
σ1=0

=
σ2
0ζ1(0, 0)

12B2
1

(47)

Similarly, we assume that a realistic value for the quantization noise σ2
2 is:

σ2
2 =

1

6B2
2

〈
|E2(c, u, t2)|2

2

〉
σ2=0

(48)

where B2 = 2 if the upchannelization output (E2-array) is quantized as int4+4. If the E2-array is quantized
as int8+8, then we will assume σ2 is negligibly small (since B2 would be around 30).

In Figure 8, we show the effects of quantization noise on the bottom-line SNR retention defined in (41).
We see that the effects of quantization noise are small.

3.7 Placeholder for a future section on FRBs

Questions to answer here: What does a dispersed pulse look like after upchannelization? How correlated
is the pulse with the matched filter used in tree dedispersion? When we use an upchannelization factor U
which depends on frequency, what U -dependent time offsets do we need to apply, in order to make everything
consistent?

3.8 Summary and discussion

Summary of main results.

• Width-1 upchannelization algorithms produce significant aliasing effects (Figures 2 and 3) and intensity
“ripples” (Figure 5).

• These features will make the 21-cm galaxy analysis more complicated. Rather than a simple peak finder,
we will want to use a matched filter parameterized by a matrix which keeps track of the aliasing in
Figure 3 and correlations between fine channels. However, if an optimal matched filter is implemented,
the impact of aliasing on bottom-line SNR is modest (Figure 6), and aliasing-induced correlations are
also modest (Figure 7). The main effect is a ∼30% drop in sensitivity at frequencies which are close
to a half-integer multiple of the coarse channel width (586 KHz).

• We propose the rule of thumb

U ≳
1.5

Smallest W50 of interest
(49)

for determining the upchannelization factor U (Eq. (42)).

• If quantization can be modelled purely as a source of Gaussian noise, then quantization effects are
small (Figure 8).
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Figure 8: Effect of quantization noise on SNR after upchannelization. We emphasize that we are modelling
quantization purely as an extra source of Gaussian noise. Similarly to Figure 6, this plot shows the SNR
retention (41) as a function of emission line central frequency fmid. Throughout the plot, we use line width
W50 = 0.05, and two-PFB upchannelization with M = 4 taps and upchannelization factor U = 16. Top
curve. SNR retention with no quantization noise. Middle curve. SNR retention with int4+4 quantization
noise from the coarse PFB, computed using Eq. (47). Bottom curve. SNR retention with int4+4 quantization
noise from both coarse and fine PFBs, computed using Eqs. (47), (48).

• We compare two-PFB and least-squares upchannelization algorithms, and find almost no difference
either in aliasing features (Figure 4) or bottom-line SNR (Figure 6). However, we have only considered
the width-1 version of the least-squares upchannelization algorithm.

Loose ends.

• Simulating a dispersed FRB pulse, all the way through the channelization + upchannelization pipeline.
(§3.7)

• Further quantization studies? (§3.6)

Should we explore higher-width algorithms? Throughout this note, we have only considered width-1
upchannelization algorithms. Should we explore higher width W? Here are some thoughts on the tradeoffs:

• I predict that aliasing effects (Figure 2) will be qualitatively similar, but may have smaller amplitude
for W > 1.

• I predict that the bottom-line SNR (Figure 6) will be qualitatively similar, but the 30% drop will occur
less frequently (at frequencies of the form f = (integer ·W + 1/2) rather than half-integers).

• GPU implementation will be more difficult and may require changing the packet format for sending
data between the FPGAs and GPUs.8

8A little elaboration on this non-obvious statement. Currently the packet format is constructed so that the fastest varying
indices are (dish,pol). For an efficient GPU implemetation, we always want to read entire 128-byte cache lines, so the upchan-
nelization kernel must process blocks of 64 dishes and 2 polarizations. Therefore the total memory “footprint” on each GPU
compute unit is 128WUM bytes. If we make the rough guess that the footprint must be ≤ 64 KB before running out of registers
or shared memory, this gives the constraint WUM ≤ 512.
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• Load-balancing computation across GPUs becomes more difficult as W increases, especially for the
FRB search where computational cost and output bandwidth is much larger at the lowest frequencies.
The seriousness of this problem will depend on how constrained we are in assigning coarse frequencies
to GPUs. Note that load-balancing is a potential issue even for width-1 upchannelization, so this is
something we should figure out soon in any case!

We discussed the above bullet points on a telecon, and the general sentiment was that width > 1 algorithms
presented nontrivial technical challenges (load balancing, packet format) but didn’t seem to have a strong
benefit. Therefore, we didn’t end up seriously considering width > 1 upchannelization in CHORD.

Proposed algorithm: two-PFB, width-one upchannelization. Assuming width 1, the results
in this section suggest that there isn’t much difference between PFB upchannelization and least squares
upchannelization. Therefore, the choice should be dictated by computational cost. We’re currently proposing
PFB upchannelization, since we think it will be faster on the GPU. In the next two sections, we will plan a
GPU implementation of PFB upchannelization.
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4 FFT microkernel

In this section, we describe a “microkernel” for computing float16 c2c FFTs entirely in registers of a single
warp (i.e. with no global or shared memory I/O). We assume that the FFT length is a power of 2,
and known at compile time.

The FFT microkernel could be implemented as a __device__ inline function with a few (__half2 &)

arguments. This function would be called by the larger GPU upchannelization kernel described in the next
section (§5).

4.1 Specification, spectator indices, and register assignments

We denote the FFT length by U = 2k. If k is too small, then the FFT arguments will not span the registers
of a single warp. Therefore, we add a spectator index 0 ≤ s < S, where

S = 2max(6−k,0) =

{
(64/U) if U ≤ 64

1 if U ≥ 64
(50)

We denote the input index of the FFT by 0 ≤ τ < U , and the output index by 0 ≤ u < U . Thus the FFT
is defined by:9

Yus =

U−1∑
τ=0

Xτs exp

(
−2πiτu

U

)
(51)

Next we specify register assignments for the X and Y arrays in Eq. (51). We distinguish two cases:

• If U ≤ 32 (equivalently k ≤ 5), then the input/output register assignments are:

[(2k × 26−k) Xτs] b ↔ τk−1 t1t0t2t4t3 ↔ τk−2 · · · τ0, s0 · · · s5−k r ↔ ReIm (52)

[(2k × 26−k) Yus] b ↔ u0 t1t0t2t4t3 ↔ u1 · · ·uk−1, s0 · · · s5−k r ↔ ReIm (53)

• If U ≥ 64 (equivalently k ≥ 6), then the input/output register assignments are:

[(2k × 1) Xτs] b ↔ τk−1 t1t0t2t4t3 ↔ τk−2 · · · τk−6 r ↔ ReIm, τ0 · · · τk−7 (54)

[(2k × 1) Yus] b ↔ u0 t1t0t2t4t3 ↔ u1 · · ·u5 r ↔ ReIm, u6 · · ·uk−1 (55)

The number of registers per thread needed to store the X or Y array is:

Rdata =

{
2 if U ≤ 64

(U/2) if U ≥ 64
(56)

Important note 1: In Eqs. (52)–(55) and throughout this section, we use a permuted ordering t1t0t2t4t3
for thread index bits. For some values of U , this will let us save a few cycles by using sparse tensor core
MMA operations. (This is not obvious in advance – follows from details of the register assignment for the
sparse m16n8k16 tensor core MMA in §C.3.) For clarity, we use bold typeface t1t0t2t4t3 whenever thread
index bits are permuted.

Important note 2: In Eq. (51), we have defined the FFT with a minus sign inside the exp(). There is
a 50% change that I have the wrong sign convention, and it should be a plus. Therefore, I suggest writing
your code with a boolean flag which makes it easy to switch between the two sign conventions in the future.

9In our description of the FFT, we have used slightly weird notation (e.g. it would be less weird to replace (U, τ, u) →
(N,m, n)). However, the weird notation will be convenient in the larger context of the upchannelization kernel (§5).
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4.2 The FFT algorithm

In this section, we recall the idea of the FFT algorithm. Consider an FFT X[τ ] → Y [u] of length 2m+n,
with no spectator indices:

Y [u] =

2m+n−1∑
τ=0

X[τ ] exp

(
−2πiτu

2m+n

)
(57)

where in Eq. (57) and throughout this subsection, we index arrays using square brackets instead of subscripts
(e.g. X[τ ] instead of Xτ ).

The idea of the FFT algorithm is to factorize the FFT (57) into three steps: (1) an FFT of length 2m,
(2) a step where we multiply elementwise by phases, and (3) an FFT of length 2n. First, we write the input
index 0 ≤ τ < 2m+n as:

τ = 2nτhi + τlo where 0 ≤ τlo < 2n and 0 ≤ τhi < 2m (58)

Similarly, we write the output index 0 ≤ u < 2m+n as:

u = 2muhi + ulo where 0 ≤ ulo < 2m and 0 ≤ uhi < 2n (59)

(Note that the roles of m,n are switched in Eqs. (58), (59).)
Using this notation, we can view the FFT as a mapping X[τlo, τhi] → Y [ulo, uhi] between 2-d arrays.

Now, a short calculation shows that the FFT (57) can be factorized into three steps as follows:

W [τlo, ulo] =

2m−1∑
τhi=0

X[τlo, τhi] exp

(
−2πiτhiulo

2m

)
(60)

Z[τlo, ulo] = W [τlo, ulo] exp

(
−2πiτloulo

2m+n

)
(61)

Y [ulo, uhi] =

2n−1∑
τlo=0

Z[τlo, ulo] exp

(
−2πiτlouhi

2n

)
(62)

The first step (60) is a length-2m FFT τhi → ulo, with τlo acting as a spectator index. In the second step
(61), we apply phases elementwise. The third step (62) is a length-2n FFT τlo → uhi with spectator index
ulo.

4.3 In/out notation for tensor core MMAs

ReIm in/out notation. Consider a matrix multiplication C = AB, where all 3 matrices are complex.
To do this matrix multiplication on tensor cores, we will need to add extra ReIm indices. In the simplest
example where A,B,C are 1-by-1 “matrices”, the complex multiplication C = AB could be implemented as:(

Re(C)
Im(C)

)
=

(
Re(A) −Im(A)
Im(A) Re(A)

)(
Re(B)
Im(B)

)
(63)

This example generalizes to arbitrary-shape matrices as follows. The matrices B and C get a length-2
ReIm axis in a straightforward way, whereas the matrix A gets two length-2 axes ReImin and ReImout

(corresponding respectively to column and row indices in (63)).
For notational clarity, we temporarily denote the original complex matrix by Ac, and its real counterpart

with length-2 axes (ReImin, ReImout) by Ar. Then Ar and Ac are related by:

Ar[Reout,Rein, · · · ] = ReAc[· · · ]
Ar[Reout, Imin, · · · ] = −ImAc[· · · ]
Ar[Imout,Rein, · · · ] = ImAc[· · · ]
Ar[Imout, Imin, · · · ] = ReAc[· · · ] (64)
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where (· · · ) denotes all index bits of Ac (either row indices, column indices, or spectator indices). For an
example of this notation, see Eq. (??) below.

Spectator bit in/out notation. Consider an 8× 8 matrix multiply:

C︸︷︷︸
8×8

= A︸︷︷︸
8×8

B︸︷︷︸
8×8

(65)

Suppose we want to do several such matrix multiplications, for different choices of matrix B, but with the
same choice of A throughout. Also suppose we want to use the m16n8k16 MMA (Appendix C.2), in which
some matrix dimensions are 16. Then we can do two matrix multiplications C = AB and C ′ = AB′ with
one m16n8k16 MMA, as follows: (

C
C ′

)
︸ ︷︷ ︸

16×8

=

(
A

A

)
︸ ︷︷ ︸

16×16

(
B
B′

)
︸ ︷︷ ︸

16×8

(66)

To formalize this, we introduce a length-2 spectator axis s, and combine the matrices Bjk and B′
jk into

a single array Bjks (and likewise for C). The matrix A gets two length-2 spectator indices sin, sout, and
depends on these indices only through an overall Kronecker delta δsinsout .

This example can be generalized to other situations in which a tensor core MMA is “wider” than the
matrix multiplication of interest. For example, consider this matrix multiply:

C︸︷︷︸
4×8

= A︸︷︷︸
4×4

B︸︷︷︸
4×8

(67)

We can do four such matrix multiplies (for the same choice of A) with one m16n8k16 MMA as follows:
C0

C1

C2

C3


︸ ︷︷ ︸

16×8

=


A

A
A

A


︸ ︷︷ ︸

16×16


B0

B1

B2

B3


︸ ︷︷ ︸

16×8

(68)

To formalize this, we introduce a length-4 spectator axis. The B and C matrices would each get two spectator
bits s0, s1. The A-matrix would get four spectator bits sin0 , sin1 , sout0 , sout1 , and would depend on these indices
through two Kronecker deltas δsin0 sout

0
δsin1 sout1

.
We mention in advance that this use of spectator bits leads to sparse matrices. The A-matrices in Eqs.

(66), (68) have 50% and 25% sparsity respectively. This will allow us to use sparse tensor core MMAs
(Appendix C.3) for speed.

4.4 Case 1: k=1

Starting in this section, we will use the FFT algorithm (§4.2) recursively, to build up longer FFTs from
shorter FFTs. To compute the shortest “building block” FFTs, we’ll sometimes use tensor core tricks, which
we’ll explain in context as they arise.

In the k = 1 case, we want to go from:

[(2× 32) Xτs] b ↔ τ0 t1t0t2t4t3 ↔ s0s1s2s3s4 r ↔ ReIm (69)

to:
[(2× 32) Yus] b ↔ u0 t1t0t2t4t3 ↔ s0s1s2s3s4 r ↔ ReIm (70)

This can be done with one m16n8k8 MMA (Appendix C.1), whose arguments (A,B,C) correspond to
(X,phases, Y ).10 Here, “phases” means a matrix whose elements are constants of the form cos(2πτu/2k) or
sin(2πτu/2k). When such phase matrices arise, we assume they are precomputed and stored in persistent
registers throughout the upchannelization kernel.

10Since the k = 1 FFT is thread-local, you may be wondering why we use a tensor core MMA instead of straightforward
arithmetic ops. The reason is that the tensor core MMA costs 2 SM-cycles, whereas a straightforward approach would cost 4
SM-cycles (four half2 FMAs and four calls to byte perm(). Similarly, in the remaining cases (§4.5–??), we will sometimes
use tensor core MMAs instead of simpler operations without explicit discussion, in cases where tensor core MMAs turn out to
be faster.
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4.5 Case 2: k=2

We start with the X-array, in register assignment:

[(4× 16) Xτs] b ↔ τ0 t1t0t2t4t3 ↔ τ1s0s1s2s3 r ↔ ReIm (71)

The entire k = 2 FFT can be done with one sparse m16n8k16 MMA, whose arguments (A,B,C) correspond
to (phases, X, Y ). As explained in Appendix C.3, the MMA is sparse because t0 maps to a spectator index
s0. We get the Y -array in the wrong register assignment:

[(4× 16) Yτs] b ↔ s1 t1t0t2t4t3 ↔ s2s3u0u1s0 r ↔ ReIm (72)

To fix the register assignment, we multiply by a 16 × 16 identity matrix using a sparse m16n8k16 MMA
(Appendix C.3). This doesn’t change the array content, but does change the register assignment:

[(4× 16) Yτs] b ↔ u0 t1t0t2t4t3 ↔ u1s0s1s2s3 r ↔ ReIm (73)

4.6 Case 3: k=3,4,5,6

We will factorize the length-2k FFT into a length-8 FFT followed by a length-2k−3 FFT, using the FFT
algorithm (§4.2). We start with the X-array, in register assignment:

bt1t0 ↔ τk−1τk−2τk−3 t2t4t3 ↔ τk−4 · · · τ0, s0 · · · s5−k︸ ︷︷ ︸
3 bits

r ↔ ReIm (74)

We do a length-8 FFT with index bits τk−1τk−2τk−3 → u0u1u2, to get the the W -array (see Eq. (60)). This
can be done using a dense m16n8k16 MMA, whose arguments (A,B,C) correspond to (phases, X,W ). We
get the W -array in register assignment:

bt1t0 ↔ τk−4 · · · τ0, s0 · · · s5−k︸ ︷︷ ︸
3 bits

t2t4t3 ↔ u0u1u2 r ↔ ReIm (75)

The next step is to apply phases elementwise, to get the Z-array (see Eq. (61)). This can be done with
four __half2 FMAs, with 2 registers/thread containing precomputed phases. In the case k = 3, the phase
application step is the identity (i.e. Z = W ) and can be skipped.

Finally, starting from the Z-array in the register assignment (75), we do a length-2k−3 FFT with index
bits τ0 · · · τk−4 → u3 · · ·uk−1, obtaining the Y -array with register assignment:

bt1t0 ↔ u0u1u2 t2t4t3 ↔ u3 · · ·uk−1, s0 · · · s5−k︸ ︷︷ ︸
3 bits

r ↔ ReIm (76)

This final length-2k−3 FFT can be done with an m16n8k16 MMA, whose arguments (A,B,C) correspond to
(phases, Z, Y ). This MMA is dense for k = 6 (Appendix C.2), or sparse for k = 3, 4, 5 (Appendix C.3). In
the case k = 3, this length-2k−3 FFT is the identity (i.e. Y = Z), but as in the previous subsection (§4.5),
we do want to multiply by the identity matrix in order to change the register assignment.

One final comment: if k = 6, then we can use the same precomputed phases in both length-8 FFTs
(saving some registers).

4.7 Case 4: k ≥ 7

We will factorize the length-2k FFT into a length-2k−1 FFT followed by a length-2 FFT, using the FFT
algorithm (§4.2). We start with the X-array, in register assignment:

b ↔ τk−1 t1t0t2t4t3 ↔ τk−2τk−3τk−4τk−5τk−6 r ↔ ReIm, τ0, · · · , τk−7︸ ︷︷ ︸
2k−5 registers

(77)
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First, we do a length-2k−1 FFT with index bits τ1 · · · τk−1 → u0 · · ·uk−2, and treating τ0 as a spectator
index. This length-2k−1 FFT is implemented inductively, eventually reaching the length-64 (k = 6) “base
case” from the previous subsection. We get the W -array (see Eq. (60)), with register assignment:

b ↔ u0 t1t0t2t4t3 ↔ u1u2u3u4u5 r ↔ ReIm, τ0, u6 · · ·uk−2︸ ︷︷ ︸
2k−5 registers

(78)

Next we apply phases elementwise, to get the Z-array (see Eq. (61)). This step needs 2k−5 __half2 FMAs
(not 2k−4, since we only need to apply phases to registers which correspond to index bits τ0 = 1). We need
max(2k−7, 2) registers to store precomputed phases (not 2k−6, since varying the uk−2 index bit multiplies
phase by i, which does not lead to new precomputed register values).

Finally, we do a length-2 FFT, to compute the Y -array from the Z-array (see Eq. (62)). This step needs
2k−5 __half2 FMAs, with no precomputed registers.

4.8 Computational cost and register usage

In Table 1, we show cost analysis for length-2k FFTs with 1 ≤ k ≤ 9. The number of registers Rphase used
to store precomputed phases was computed as follows:

• For the m16n8k8 MMA in the k = 1 case (§??), we need one register to store phases.

• For the m16n6k16 MMAs which arise for 2 ≤ k ≤ 6 (§4.5, §4.6), we need two registers if the MMA is
sparse, or three registers if the MMA is dense.

Note: in the dense case, we need 3 registers instead of 4, for the following reason. In the precomputed
phase matrix, index bits (ReImin,ReImout) are mapped to registers. By Eq. (64), the (Rein, Reout)
register stores the same value as the (Imin, Imout) register.

Note 2: If k = 6, then the two dense MMAs use the same precomputed phases, so we need 3 registers
(not 3+3).

• In several places in §4.5–§4.7, we need phase registers in __half2 FMA operations. In each such case,
we have stated the number of phase registers explicitly.

The number of SM-cycles C was computed as follows:

• An m16n8k8 MMA costs 2 SM-cycles.

• An m16n8k16 MMA costs 4 SM-cycles if dense, or 2 SM-cycles if sparse.

• A __half2 FMA costs half an SM-cycle.

If you get different values in implementation for either Rphase or C, let me know and we can compare!

FFT length U = 2k 2 4 8 16 32 64 128 256 512
Spectator indices S 32 16 8 4 2 1 1 1 1
Data registers Rdata 2 2 2 2 2 2 4 8 16
Phase registers Rphase 1 4 5 7 7 5 7 9 13
SM-cycles C 2 4 6 8 8 10 24 56 128
“Cost” C/Rdata 1 2 3 4 4 5 6 7 8

Table 1: Cost analysis of the FFT microkernel. The quantities S and Rdata were defined in Eqs. (50), (56).
The quantities Rphase and C are described above (in §4.8). In the last line, we have given a bottom-line
“cost” (C/Rdata) in SM-cycles per data register. To interpret this value, the global memory bandwidth of
the upchannelization kernel has equivalent cost ∼15.
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4.9 Extra credit: coalescing gains and/or extra phases

When the FFT arises in the larger upchannelization kernel (§5), it is sandwiched between two elementwise
multiplications:

Xτs → eπiτ(U−1)/U︸ ︷︷ ︸
“Extra”phase

Xτs (79)

Yus =

U−1∑
τ=0

Xτs exp

(
−2πiτu

U

)
(80)

Yus → GusYus (81)

Here, Gus is a shape-(U, S) real-valued (float16) array of gains.
Here’s a question you may enjoy thinking about: can the elementwise multiplications be coalesced into

the FFT microkernel, in order to get a speedup (or use fewer registers)? Currently, we propose in §4 to do
the elementwise multiplications separately, using __half2 FMAs. For the extra phase, this has cost 1 (in
the sense defined in Table 1), and uses 2⌈U/64⌉ registers per thread. For the gains, this has cost 0.5, and
uses ⌈U/64⌉ registers per thread.
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5 Upchannelization kernel

5.1 Specification

Compile-time inputs:

• Upchannelization factor U , and number of taps M . We assume that U is a power of two:

U = 2k (82)

The value of M is aribtrary (e.g. M could be odd). Our implementation requires U ≤ 512 and
U(M − 1) ≲ 1024. (It also requires M ≲ 100, but this would never be an issue in practice.)

• Output bit depth K. All intermediate computations will be float16, but the input data is quantized
to 4 bits, and the output data will be quantized to K bits.

We’ll want to support output bit depth K = 4 or K = 8. The highest priority is K = 4, so feel free to
postpone the K = 8 case if you prefer.

Runtime inputs:

• Electric field Eτfπd (int4+4). The indexing is (τ, f, π, d) = (time, coarse freq,pol,dish). Our imple-
mentation requires the number of dishes D to be a multiple of 64. This is the case for the CHORD
pathfinder (D = 64), full CHORD (D = 512), and HIRAX (D = 256).

• PFB weight function (float16). This should be passed to the kernel as a length-(MU) array Ws, where
0 ≤ s < MU .

• Output gains (float16), a length-U arrayGu. (I don’t think the gains need to depend on the polarization
and dish indices (π, d). Allowing gains to depend on (π, d) would increase the number of registers used
by the kernel.)

Outputs:

• Upchannelized electric field Ēτ̄fuπd (integer, K +K bits), defined by:

Ēτ̄fuπd = QuantizeK+K

Gu

MU−1∑
s=0

Ws eπis(U−1)/U︸ ︷︷ ︸
“Extra”phase

e−2πius/U
(
Eτfπd

)
τ=(τ̄−M+1)U+s

 (83)

Here, τ̄ is a coarse time index, whose sampling rate is U times slower than the “fast” time index τ ,
and 0 ≤ u < U indexes an upchannelized channel.

Eq. (83) defines the upchannelization kernel. It agrees with our earlier definition (17) of the “width-one
two-PFB” upchannelization algorithm, up to minor notational changes, and redefining the coarse time index
as τ̄ → τ̄ +M − 1. (This redefinition will simplify indexing in the kernel.)

5.2 Outline

Threadblocks. The dish index d and polarization index π are both spectator indices for upchannelization.
Therefore, we can pretend there is no polarization index, by doubling the number of dishes. (Note that we
can now assume that the number of dishes is a multiple of 128, rather than 64.)

Each threadblock will process one coarse frequency channel, and 128 “dishes” (i.e. dish+polarization
pairs). For the rest of these notes, we will concentrate on a single threadblock. Then:

• We can treat the input electric field array as a 2-d array Eτd (int4+4) with shape (Ntime, 128).

• We can treat the output upchannelized array as a 3-d array Ēτ̄ud with shape (Ntime/U,U, 128).
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After this minor notational change, the output of the upchannelization kernel is:

Ēτ̄ud = QuantizeK+K

Gu

MU−1∑
s=0

Ws eπis(U−1)/U︸ ︷︷ ︸
“Extra”phase

e−2πius/U
(
Eτd

)
τ=(τ̄−M+1)U+s

 (84)

Warning: we’ll make another minor notational change shortly in Eq. (88) below!

Inner/outer blocks and high-level kernel organization. The kernel processes time samples in
“outer blocks” of Touter time samples. Each outer block consists of one or more “inner blocks”, which consist
of U time samples.

For each outer block, we copy E-array data from global to shared memory, compute the Ē-array (which
ends up in shared memory), and copy Ē-array data from shared to global memory. Thus, outer blocks define
the cadence for global↔shared memory transfers, and calls to __syncthreads().

Within each outer block, we loop over inner blocks. For each inner block, the E-array is copied from
shared memory to registers. We also store in registers a logical ring buffer consisting of the previous (M −1)
inner blocks, so that we have enough thread-local data (M inner blocks) to compute one inner block of the
Ē-array (84). We copy the Ē-array inner block to shared memory, where it overwrites the E-array inner
block. Thus, inner blocks define the cadence for computing the Ē-array.

Summarizing, at any point during processing, we store a ring buffer in registers consisting of the previous
(M − 1) inner blocks of E-array data. We use shared memory to store one outer block of E-array data,
which is incrementally overwritten (one inner block at time) by Ē-array data.

More compile-time parameters: W, B, Touter, Packed. The kernel has externally specified
compile-time parameters (U,M,K). For each choice of (U,M,K), we define the following “derived” compile-
time parameters:

• Number of warps per threadblock W , which must be a power of two:

W = 2l (85)

• Number of threadblocks per SM B.

• Outer block size Touter, described above.

• Boolean parameter Packed, which determines whether the in-register E-array ring buffer uses datatype
int4 (Packed = True) or float16 (Packed = False).

For small values of MU , Packed = False is preferable since it reduces the number of int4→float16

conversion instructions. For large values of MU , Packed = True will be necessary, in order to avoid
running out of registers.

Cycle-counting estimates (see §5.7) suggest that the speed improvement going from Packed = True to
Packed = False is modest. Therefore, you may prefer to implement only the case Packed = True,
and consider implementing Packed = False as a future optimization.

The optimal choice of (W,B, Touter, Packed) for a given (U,M) will be discussed in §5.6. We mention in
advance that the following compile-time asserts must be satisfied:

static_assert(W <= U);

static_assert((Touter % U) == 0);

static_assert((Touter % (4*W)) == 0);

(86)

A little more notation. Sometimes we will write the time index τ as:

τ = Uτ̄ + τ ′ where 0 ≤ τ ′ < U (87)

where τ̄ is a coarse time index, and 0 ≤ τ ′ < U indexes a fine time sample within a coarse sample (or
equivalently, an inner block). In register assignments, τ̄ will have index bits τk, τk+1, · · · , and τ ′ will have
index bits τ0 · · · τk−1. Using this notation:
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• We’ll represent the input electric field array as a 3-d array Eτ̄τ ′d (int4+4) with shape (Ntime/U,U, 128).
(To be formal about this, the 3-d representation E3d

τ̄τ ′d is related to our previous 2-d representation
E2d

τd by E3d
τ̄τ ′d = E2d

(τ̄U+τ ′),d.)

• We’ll represent the PFB weight function as a 2-d array Wmτ ′ with shape (M,U). (To be formal about
this, the 2-d representationW 2d

mτ ′ is related to our previous 1-d representationW 1d
s byW 2d

mτ ′ = W 1d
sU+τ ′ .)

After these minor notational changes, Eq. (84) for the output of the upchannelization kernel becomes:

Ēτ̄ud = QuantizeK+K

Gu

M−1∑
m=0

U−1∑
τ ′=0

Wmτ ′ (−1)meπiτ
′(U−1)/U︸ ︷︷ ︸

“Extra”phase

e−2πiτ ′u/U E(τ̄+m−M+1),τ ′,d

 (88)

We factor this computation into a few steps as follows, in order to introduce notation E(2), E(3), Ē(4), Ē(5)

for intermediate quantities which will be useful later.

E
(2)
τ̄τ ′d =

M−1∑
m=0

(−1)mWmτ ′ E(τ̄+m−M+1),τ ′,d (89)

E
(3)
τ̄τ ′d = eπiτ

′(U−1)/UE
(2)
τ̄τ ′d (90)

Ē
(4)
τ̄ud =

U−1∑
τ ′=0

E
(3)
τ̄τ ′d e

−2πiτ ′u/U (91)

Ē
(5)
τ̄ud = Gu Ē

(4)
τ̄ud (92)

Ēτ̄ud = QuantizeK+K

[
Ē

(5)
τ̄ud

]
(93)

(We use barred symbols Ē(4), Ē(5) to denote “post-upchannelization” arrays indexed by a coarse time τ̄ and
an upchannelized index 0 ≤ u < U , and unbarred symbols E(1), E(2), E(3) to denote “pre-upchannelization”
arrays indexed by an input time sample τ = Uτ̄ + τ ′.)

5.3 Shared memory layout and change of variable (E, Ē) ↔ (F, F̄)

As explained in the previous section, we store one outer block of E-array data in shared memory, which gets
incrementally replaced (one inner block at a time) by Ē-array data. The main purpose of this section is to
explain the shared memory layout.

Primed dish indices. We will sometimes use a “primed” dish index 0 ≤ d′ < 128, which is related to
the unprimed dish index 0 ≤ d < 128 by permuting index bits as follows:

d0d1d2d3d4d5d6 ↔ d′6d
′
5d

′
0d

′
1d

′
2d

′
3d

′
4 d′0d

′
1d

′
2d

′
3d

′
4d

′
5d

′
6 ↔ d2d3d4d5d6d1d0 (94)

We will sometimes switch between unprimed and primed dish orderings implicitly – for example, an E-array
inner block could be denoted Eτ ′d or Eτ ′d′ .

Change of variable E ↔ F. Consider an inner block Eτ ′d′ with shape (U, 128) and dtype int4+4. We
form 32-bit registers by varying the following index bits:

b0b1b2 ↔ ReIm, d′6, τk−1 (note that d′6 = d0 by Eq. (94)) (95)

By varying the remaining index bits τ0 · · · τk−2, d
′
0 · · · d′5, we get an int32-valued array Fτ ′d′ . This defines

a change of variable E ↔ F for one inner block. Note that the int32 array Fτ ′d′ has shape (U/2, 64),
whereas the int4+4 array Eτ ′d′ has shape (U/2, 64), since the index bits τ ′k−1, d

′
6 have been absorbed into

the definition (95) of F .

Change of variable Ē ↔ F̄. Now consider an inner block of the output array Ēud′ with shape (U, 128).
Similarly as above, we will define a change of variables Ē ↔ F̄ . There are two cases: K = 4 and K = 8.
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First, one small bit of notation: we will write the upchannelization index 0 ≤ u < U as:

u = 2u′ + u0 where 0 ≤ u′ < (U/2) and 0 ≤ u0 < 2 (96)

We write the index 0 ≤ u′ < (U/2) with index bits u1 · · ·uk−1 (i.e. we will not use notation like u′
0 · · ·u′

k−2).
Now consider the case K = 4. Given an inner block Ēud′ , we form 32-bit registers by varying the following

index bits:
b0b1b2 ↔ ReIm, d′6, u0 (note that d′6 = d0 by Eq. (94)) (97)

By varying the remaining index bits u1 · · ·uk−1, d
′
0 · · · d′5, we get an int32-valued array F̄u′d′ . This defines a

change of variable Ē ↔ F̄ for one inner block. Note that the int32 array F̄u′d′ has shape (U/2, 64), whereas
the int4+4 array Eud′ has shape (U, 128), since the index bits u0, d

′
6 have been absorbed into the definition

(97) of F̄ .
Next consider the case K = 8. Given an inner block Ēud′ , we form 32-bit registers by varying the

following index bits:
b0b1 ↔ d′6, u0 (note that d′6 = d0 by Eq. (94)) (98)

By varying the remaining index bits u1 · · ·uk−1, d
′
0 · · · d′5, we get an int32+32 array F̄u′d′ . This defines a

change of variable Ē ↔ F̄ for one inner block. In both the K = 4 and K = 8 cases, the F̄u′d′ array shape is
(U/2, 64), but in the K = 8 case there is an implicit length-2 ReIm axis.

Shared memory layout. We use shared memory to store one outer block of either E-array or Ē-array
data. The shared memory layout has logical structure:

union {

int F[Touter/U][U/2][64]; // (tau_bar, tau_prime, d_prime)

int Fbar[K/4][Touter/U][U/2][64]; // (ReIm, tau_bar, u_prime, d_prime)

};

(99)

where the array axes are as follows. We represent each outer block as a sequence of (Touter/U) inner blocks,
corresponding to array axis 0 ≤ τ̄ < (Touter/U). We represent each inner block as a shape-(U/2, 64) array
using the F , F̄ representations above. As explained above, the F̄ -array has a length-2 ReIm axis if K = 8,
and no such axis if K = 4. We have covered both cases in (99) by including an array axis with length (K/4).

The “union” shared memory layout (99) is designed so that as the data is processed (one inner block at
a time), the output data Fbar[] incrementally overwrites the input data F[]. This property is important
since it will reduce calls to __syncthreads().

The shared memory layout is more complicated than the array notation (99) suggests:

• The F[] array is addressed as follows. Each element of F[] is indexed by (τ̄ , τ ′, d′). Let 0 ≤ τ ′rev < U/2
be obtained by bit-reversing 0 ≤ τ ′ < U/2. Then:

Shared memory offset = d′ + (65 · τ ′rev) + (Σ · τ̄) (100)

where the stride Σ is defined by:

Σ =

{
32U + 33 if U ≤ 64

65(U/2) + 1 if U ≥ 128
(101)

and satisfies Σ ≥ 65(U/2) and Σ ≡ 1 (mod 32).

• The Fbar[] array is addressed as follows. Each element of Fbar[] is indexed by (ReIm, τ̄ , u′, d′), where
0 ≤ ReIm < (K/4). Then:

Shared memory offset = d′ + (65 · u′) + (Σ · τ̄) +
(
TouterΣ

U
· ReIm

)
(102)

The total shared memory footprint is:(
Shared memory footprint

)
= 4Σ

(
K

4

)(
Touter

U

)
bytes (103)
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5.4 Register assignments

So far we’ve defined outer blocks (consisting of Touter time samples and 128 dishes) and inner blocks (con-
sisting of U time samples and 128 dishes). In this section, we’ll define two more block types: the “packed
miniblock” which is smaller than an inner block, and an “unpacked miniblocks” which is half the size of a
packed miniblock.

We mention in advance that the upchannelization kernel will consist of four nested loops, which loop
(from outermost loop to innermost) over: outer blocks, inner blocks, packed miniblocks, and finally unpacked
miniblocks. (See pseudocode in §5.5.)

The register assignments for these different block types are somewhat complicated, and most of this
section is devoted to writing down register assignments explicitly.

Register assignments for inner blocks. Recall that we have defined two types of inner blocks,
denoted F and F̄ in the previous section. The F -array inner block Fτ ′d′ was defined near Eq. (95) and
consists of bit-shuffled E-array input data. The F̄ -array inner block F̄u′d′ was defined near Eqs. (97), (98),
and consists of bit-shuffled Ē-array output data. The definition of the F̄ -array is slightly different for K = 4
and K = 8 (in the case K = 8, there is an extra length-2 ReIm axis).

Suppose that we have either an inner block (either Fτ ′d′ or F̄u′d′) and want to distribute it among registers
throughout a threadblock (i.e. among all threads and warps). In all cases, the array shape is (U/2, 64). We
will reorganize the length-(U/2) time axis as a 2-d array of shape (Ut, Ur), where the two axes are mapped
to (threads, registers) respectively. Similarly, we will reorganize the length-64 dish axis as a 3-d array of
shape (W,Dt, Dr), where the three axes are mapped to (warps, threads, registers) respectively. The values
of (Ut, Ur, Dt, Dr), and details of the F -array and F̄ -array register assignments, are given as follows (and
are slightly different in the cases U ≤ 32 and U ≥ 64):

• If U ≤ 32 (equivalently k ≤ 5), then we define (Ut, Ur, Dt, Dr) by:

(Ut, Ur) = (2k−1, 1) (Dt, Dr) = (26−k, 2k−l) (104)

The register assignments for the F -array and F̄ -array inner blocks are:

[Fτ ′d′ ] w ↔ d′k−l · · · d′k−2, d
′
5︸ ︷︷ ︸

l bits

t1t0t2t4t3 ↔ τk−2 · · · τ0, d′k−1 · · · d′4︸ ︷︷ ︸
5 bits

r ↔ d′0 · · · d′k−l−1︸ ︷︷ ︸
(k−l) bits

[F̄u′d′ ]K=4 w ↔ d′k−l · · · d′k−2, d
′
5︸ ︷︷ ︸

l bits

t1t0t2t4t3 ↔ u1 · · ·uk−1, d
′
k−1 · · · d′4︸ ︷︷ ︸

5 bits

r ↔ d′0 · · · d′k−l−1︸ ︷︷ ︸
(k−l) bits

(105)

[F̄u′d′ ]K=8 w ↔ d′k−l · · · d′k−2, d
′
5︸ ︷︷ ︸

l bits

t1t0t2t4t3 ↔ u1 · · ·uk−1, d
′
k−1 · · · d′4︸ ︷︷ ︸

5 bits

r ↔ ReIm, d′0 · · · d′k−l−1︸ ︷︷ ︸
(k−l) bits

where the notation w ↔ (· · · ) denotes the assignment of warps 0 ≤ w < W to dish index bits. In the
last two equations, we have shown F̄ -array register assignments separately for the K = 4 and K = 8
cases. (In the K = 8 case, we just add a length-two ReIm axis, which is mapped to a register index
bit.)

Reminder: as in §4.1, we use bold typeface for clarity whenever thread index bits are permuted – for
example t1t0t2t4t3 above.

• If U ≥ 64 (equivalently k ≥ 6), then we define (Ut, Ur, Dt, Dr) by:

(Ut, Ur) = (32, 2k−6) (Dt, Dr) = (1, 26−l) (106)
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The register assignments for the F -array and F̄ -array inner blocks are:

[Fτ ′d′ ] w ↔ d′6−l · · · d′5︸ ︷︷ ︸
l bits

t1t0t2t4t3 ↔ τk−2 · · · τk−6︸ ︷︷ ︸
5 bits

r ↔ τ0 · · · τk−7, d
′
0 · · · d′5−l︸ ︷︷ ︸

(k−l) bits

[F̄u′d′ ]K=4 w ↔ d′6−l · · · d′5︸ ︷︷ ︸
5 bits

t1t0t2t4t3 ↔ u1 · · ·u5︸ ︷︷ ︸
l bits

r ↔ u6 · · ·uk−1, d
′
0 · · · d′5−l︸ ︷︷ ︸

(k−l) bits

(107)

[F̄u′d′ ]K=8 w ↔ d′6−l · · · d′5︸ ︷︷ ︸
l bits

t1t0t2t4t3 ↔ u1 · · ·u5︸ ︷︷ ︸
5 bits

r ↔ ReIm, u6 · · ·uk−1, d
′
0 · · · d′5−l︸ ︷︷ ︸

(k−l) bits

We will motivate these complicated register assignments at the end of this section! Note that an inner block
can be declared on each thread as:

int F[Ur][Dr]; // F-array inner block: shape-(Ur,Dr) register array

int Fbar[K/4][Ur][Dr]; // Fbar-array inner block: gets ReIm axis if K=8
(108)

Ring buffer register assignment. Throughout the kernel, a logical ring buffer consisting of the
previous (M − 1) inner blocks is held in registers. There is a compile-time boolean parameter Packed which
controls whether the ring buffer datatype is int4+4 (Packed = True) or float16+16 (Packed = False).11

If Packed = True, then the ring buffer is just (M − 1) copies of the F -array inner block (108). It could
be declared on each thread as:

// Ring buffer (if Packed=True)

int F_ringbuf[M-1][Ur][Dr];
(109)

If Packed = False, then the ring buffer is represented by “unpacking” each F -array register in (112) to
four __half2 registers. Recall from Eq. (95) that each F -array element consists of eight int4s, with register
assignment

b0b1b2 ↔ ReIm, d′6, τk−1 (110)

If we unpack this register in a natural way, we get four __half2 registers with register assignment:

b ↔ τk−1 r ↔ ReIm, d′6 (111)

If we perform this unpacking for every F -array register in (112), then the resulting ring buffer representation
could be declared on each thread as:

// Ring buffer (if Packed=False)

// The length-two axis at the end is the index bit d’_6

__half2 Ere_ringbuf[M-1][Ur][Dr][2];

__half2 Eim_ringbuf[M-1][Ur][Dr][2];

(112)

Packed and unpacked miniblocks. By Eq. (108), an F -array inner block is declared on each thread
as int F[Ur][Dr], and an F̄ -array inner block is declared as int F[K/4][Ur][Dr].

We define a packed miniblock to be the subset of an inner block obtained by fixing the index 0 ≤ d′ < Dr

to a specific value. Thus, a packed miniblock is declared on each thread as:

int F[Ur]; // F-array packed miniblock

int Fbar[K/4][Ur]; // Fbar-array packed miniblock (with ReIm axis if K=8)
(113)

Note that a packed miniblock contains two values of 0 ≤ d′6 < 2. We define an unpacked miniblock by
“unpacking” the packed miniblock to __half2, and fixing the index 0 ≤ d′6 < 2 to a specific value. An
unpacked miniblock is declared on each thread as:

int Ere[Ur], Eim[Ur]; // E-array packed miniblock

int Ebar[Ur], Eim[Ur]; // Ebar-array packed miniblock
(114)

11For small values of MU , Packed = False is preferable since it reduces the number of int4→float16 conversion instructions.
For large values of MU , Packed = True will be necessary, in order to avoid running out of registers.
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Note that an inner block consists of Ur packed miniblocks, and a packed miniblock “unpacks” to two unpacked
miniblocks.

The register assignments for miniblocks are the “natural” ones, given the register assignments for inner
blocks in Eqs. (104)–(107). For reference, we write out all miniblock register assignments concretely:

• If U ≤ 32, then the miniblock register assignments are (5 cases):

[Packed Fτ ′d′ ] t1t0t2t4t3 ↔ τk−2 · · · τ0, d′k−1 · · · d′4︸ ︷︷ ︸
5 bits

(115)

[Packed F̄u′d′ ]K=4 t1t0t2t4t3 ↔ u1 · · ·uk−1, d
′
k−1 · · · d′4︸ ︷︷ ︸

5 bits

(116)

[Packed F̄u′d′ ]K=8 t1t0t2t4t3 ↔ u1 · · ·uk−1, d
′
k−1 · · · d′4︸ ︷︷ ︸

5 bits

r ↔ ReIm (117)

[Unpacked Eτ ′d′ ] b ↔ τk−1 t1t0t2t4t3 ↔ τk−2 · · · τ0, d′k−1 · · · d′4︸ ︷︷ ︸
5 bits

r ↔ ReIm (118)

[Unpacked Ēu′d′ ] b ↔ u0 t1t0t2t4t3 ↔ u1 · · ·uk−1, d
′
k−1 · · · d′4︸ ︷︷ ︸

5 bits

r ↔ ReIm (119)

In all five cases, the assignment of warp index bits w ↔ d′k−l · · · d′k−2, d
′
5 is implicit. (This is the same

assignment as in Eq. (105).)

• If U ≥ 64, then the miniblock register assignments are (5 cases):

[Packed Fτ ′d′ ] t1t0t2t4t3 ↔ τk−2 · · · τk−6︸ ︷︷ ︸
5 bits

r ↔ τ0 · · · τk−7︸ ︷︷ ︸
(k−6) bits

(120)

[Packed F̄u′d′ ]K=4 t1t0t2t4t3 ↔ u1 · · ·u5︸ ︷︷ ︸
5 bits

r ↔ u6 · · ·uk−1︸ ︷︷ ︸
(k−6) bits

(121)

[Packed F̄u′d′ ]K=8 t1t0t2t4t3 ↔ u1 · · ·u5︸ ︷︷ ︸
5 bits

r ↔ ReIm, u6 · · ·uk−1︸ ︷︷ ︸
(k−6) bits

(122)

[Unpacked Eτ ′d′ ] b ↔ τk−1 t1t0t2t4t3 ↔ τk−2 · · · τk−6︸ ︷︷ ︸
5 bits

r ↔ ReIm, τ0 · · · τk−7︸ ︷︷ ︸
k−6 bits

(123)

[Unpacked Ēu′d′ ] b ↔ u0 t1t0t2t4t3 ↔ u1 · · ·u5︸ ︷︷ ︸
5 bits

r ↔ ReIm, u6 · · ·uk−1︸ ︷︷ ︸
(k−6) bits

(124)

In all five cases, the assignment of warp index bits w ↔ d′6−l · · · d′5 is implicit. (This is the same
assignment as in Eq. (107).)

Register asssignments for PFB weight array, gains, and extra phases. At the beginning of the
kernel, three float16 arrays are read into registers: the shape-(M,U) PFB weight array Wmτ ′ , the length-U
gain array Gu, and the length-U array of “extra phases”:

Xτ ′ = eπiτ
′(U−1)/U (0 ≤ τ ′ < U) (125)

Each warp will get its own copy of all 3 arrays, but the array elements will be distributed among threads
in the warp. We use register assignments which are compatible with the register assignments for unpacked
miniblocks (Eqs. (118), (119), (123), (124)). More precisely:
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• If U ≤ 32, then the register assignments are:

[float16 Wmτ ′ ] b ↔ τk−1 t1t0t2t4t3 ↔ τk−2 · · · τ0︸ ︷︷ ︸
(k−1) bits

+(spectator bits)︸ ︷︷ ︸
(6−k) bits

r ↔ m (126)

[float16 Xτ ′ ] b ↔ τk−1 t1t0t2t4t3 ↔ τk−2 · · · τ0︸ ︷︷ ︸
(k−1) bits

+(spectator bits)︸ ︷︷ ︸
(6−k) bits

r ↔ ReIm (127)

[float16 Gu] b ↔ u0 t1t0t2t4t3 ↔ u1 · · ·uk−1︸ ︷︷ ︸
(k−1) bits

+(spectator bits)︸ ︷︷ ︸
(6−k) bits

(128)

where the presence of “spectator bits” means that the stored register value does not depend on the
appropriate thread index ti.

• If U ≥ 64, then the register assignments are:

[float16 Wmτ ′ ] b ↔ τk−1 t1t0t2t4t3 ↔ τk−2 · · · τk−6︸ ︷︷ ︸
5 bits

r ↔ m, τ0 · · · τk−7︸ ︷︷ ︸
k−6 bits

(129)

[float16 Xτ ′ ] b ↔ τk−1 t1t0t2t4t3 ↔ τk−2 · · · τk−6︸ ︷︷ ︸
5 bits

r ↔ ReIm, τ0 · · · τk−7︸ ︷︷ ︸
k−6 bits

(130)

[float16 Gu] b ↔ u0 t1t0t2t4t3 ↔ u1 · · ·u5︸ ︷︷ ︸
5 bits

r ↔ u6 · · ·uk−1︸ ︷︷ ︸
(k−6) bits

(131)

In both cases, the arrays can be declared as:

__half2 Wpfb[M][Ur];

__half2 Xre[Ur], Xim[Ur]; // "Extra" phases

__half2 G[Ur]; // Gains

(132)

Why are these register assignments so messy? So far we haven’t motivated the complicated
register assignments in this section! The register assignments have been desigined to have the following nice
properties:

• Consistency with FFT.

You may have noticed that unpacked miniblocks are the same thing (including register assignments)
as the FFT input/output arrays from §4. More precisely, the unpacked E-array miniblock register
assignment in Eqs. (118), (123) agrees with the FFT input array register assignment given previously
in Eqs. (52), (54). And the unpacked Ē-array miniblock register assignment in Eqs. (119), (124) agrees
with the FFT output array register assignment given previously in Eqs. (53), (55).

• No bank conflicts.

An F -array or F̄ -array inner block can be read/written to shared memory without bank conflicts.
This statement is not obvious, but follows from the shared memory layout given previously in Eqs.
(99)–(102), and the inner block register assignments in Eqs. (105), (107) above.
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5.5 Implementation details

We start with high-level pseudocode, assuming Packed=True for definiteness. The case Packed=False is
described at the end of this section.

int F_ringbuf[M-1][Ur][Dr]; // Initialized to zero

__half2 Gains[Ur]; // Gains

__half2 Wpfb[M][Ur]; // PFB weight function

__half2 Xre[Ur], Xim[Ur]; // Extra phases

// Outermost loop over outer blocks (T_outer time samples)

for (int t_outer = 0; t_outer < NTIME; t_outer += T_outer) {

(Copy outer block global -> shared); // Step 1 below

__syncthreads();

// Loop over inner blocks (T_inner time samples)

for (int t_inner = 0; t_inner < T_outer; t_inner += U) {

// Loop over packed miniblocks (indexed by 0 <= dr < Dr).

// Loops must be unrolled starting here.

#pragma unroll

for (int dr = 0; dr < Dr; dr++) {

int F_in[Ur] = (Read F-array miniblock from shared); // Step 2 below

int Fbar_out[K/4][Ur] = 0;

#pragma unroll

// Loop over unpacked miniblocks (indexed by 0 <= d’_6 < 2).

for (int dprime6 = 0; dprime6 < 2; dprime6++) {

// Steps 3-8 below

__half2 Ere[Ur], Eim[Ur] = (compute E by unpacking F_in);

__half2 E2re[Ur], E2im[Ur] = (compute E2 from E);

__half2 E3re[Ur], E3im[Ur] = (compute E3 by applying phases to E2);

__half2 E4re[Ur], E4im[Ur] = (compute E4 by FFTing E3);

__half2 E5re[Ur], E5im[Ur] = (compute E5 by applying gains to E4);

(Compute Fbar_out by quantizing and packing E5);

}

(Write packed miniblock Fbar_out -> shared); // Step 9 below

// Advance ring buffer

#pragma unroll

for (int ur = 0; ur < Ur; ur++) {

#pragma unroll

for (int m = 0; m < M-2; m++)

F_ringbuf[m][ur][dr] = F_ringbuf[m+1][ur][dr];

F_ringbuf[M-1][ur][dr] = F_in[ur];

}

}

}

__syncthreads();

(Copy outer block shared memory -> global); // Step 10 below

}
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Next we fill in the details in the individual steps 1–10 in the pseudocode:

Step 1: copy outer block from global memory to shared memory. In this step, we copy one outer
block (Touter time samples) of data from global memory to shared memory. The destination shared memory
layout was given in Eqs. (99)–(102). Along the way, we will convert the data from its E-array representation
to its F -array representation, which will require some warp/local transposes.

On each warp, we read E-array data from global memory in the following register assignment:

b0b1b2 ↔ ReIm, d0, d1 r0r1 ↔ d2d3 t0t1t2t3t4 ↔ d4d5d6τk−1X (133)

where we define index bit

X =

{
τ̄0 if U = 2 (equivalently k = 1)

τk−2 if U ≥ 4 (equivalently k ≥ 2)
(134)

Loading global memory into register assignment (133) can be done with a 16-byte aligned load.
Define an input tile to be the E-array data (133) on a single warp. One input tile corresponds to 4 time

samples and all 128 dishes. The 4 time samples in an input tile are not contiguous; they are obtained by
varying index bits τk−1 and X. We process the outer block by assigning its (Touter/4) input tiles to warps
arbitrarily. To do this cleanly, we assume (previously stated in Eq. (86)):

static_assert(Touter % (4*W) == 0); (135)

Starting from the input tile (133), we do some warp/local transposes, to obtain register assignment:

b0b1b2 ↔ ReIm, d0, τk−1 r0r1 ↔ d2d1 t0t1t2t3t4 ↔ d4d5d6d3X (136)

Using the definition (95) of the F -array, and the definition (94) of the primed dish index d′, we reinterpret
this data as four elements of the array Fτd′ , with register assignment:

r0r1 ↔ d′0d
′
5 t0t1t2t3t4 ↔ d′2d

′
3d

′
4d

′
1X (137)

We write these F -array elements to shared memory. Using the shared memory layout (99)–(102), one can
check (nontrivial!) that the stores are bank conflict free. (Warning: the choice (134) of index bit X matters,
and a different choice of X could lead to bank conflicts.)

Step 2: read F-array miniblock from shared memory. In the pseudocode above, this step appears
inside the loop over packed miniblocks (i.e. 0 ≤ dr < Dr). We read one F -array packed miniblock from
shared memory. The packed miniblock is declared as int F_in[Ur] in the pseudocode above, and its register
assignment was given in Eqs. (115), (120) above. Using these register assignments, and the shared memory
layout (99)–(102), one can check (nontrivial!) that the loads are bank conflict free.

Step 3: Compute E by unpacking Fin. In the pseudocode above, this step appears inside the loop
over unpacked miniblocks (i.e. 0 ≤ d′6 < 2). We start with the packed miniblock int F_in[Ur] from the
previous step. For the appropriate value of 0 ≤ d′6 < 2, we “unpack” int4→float16, obtaining an unpacked
E-miniblock (declared as __half2 Ere[Ur], Eim[Ur]; register assignment in Eqs. (118), (123)).

Step 4: Compute E(2) from E. Recall from Eq. (89) that the E(2)-array is defined by:

E
(2)
τ̄τ ′d =

M−1∑
m=0

(−1)mWmτ ′ E(τ̄+m−M+1),τ ′,d (138)

The last term in the sum (i.e. m = M − 1) is the unpacked miniblock computed in the last step. Since we
are assuming Packed=True (see comment at beginning of §5.5), the other terms (0 ≤ m < M − 1) are held
in packed miniblocks (in the ring buffer). Therefore, to compute E(2), we unpack (M − 1) miniblocks “on
the fly” and accumulate their contributions to the E(2)-array unpacked miniblock.

Step 5: Compute E(3) by applying phases to E(2). Recall from Eq. (90) that the E(3)-array is
defined by:

E
(3)
τ̄τ ′d = eπiτ

′(U−1)/U︸ ︷︷ ︸
“Extra′′ phase

E
(2)
τ̄τ ′d (139)
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In this step, we compute one E(3)-array unpacked miniblock from one E(2) unpacked miniblock. The register
assignments for the unpacked miniblock (Eqs. (118), (123)) and the “extra” phases (Eqs. (127), (130)) have
been chosen so that the complex multiplication can be implemented straightforwardly with __half2 FMAs.

Step 6: Compute Ē(4) by FFTing E(3). Recall from Eq. (91) that the Ē(4)-array is the FFT of the
E(3)-array:

Ē
(4)
τ̄ud =

U−1∑
τ ′=0

E
(3)
τ̄τ ′d e

−2πiτ ′u/U (140)

In this step, we compute one Ē(4)-array unpacked miniblock from one E(3) unpacked miniblock, by calling the
FFT microkernel from §4. No change in register assignments is needed, since the FFT register assignments
(Eqs. (52)–(55)) are consistent with the unpacked miniblock register assignments (Eqs. (118), (119), (123),
(124)) with dishes playing the role of FFT spectator indices.

Step 7: Compute Ē(5) by applying gains to Ē(4). Recall from Eq. (92) that the Ē(5)-array is defined
by applying gains:

Ē
(5)
τ̄ud = Gud Ē

(4)
τ̄ud (141)

In this step, we compute one Ē(5)-array unpacked miniblock from one Ē(4)-array unpacked miniblock. The
register assignments for the unpacked miniblock (Eqs. (119), (124)) and the gain array (Eqs. (128), (131))
have been chosen so that the multiplication can be implemented straightforwardly with __half2 FMAs.

Step 8: Compute F̄out by applying gains to Ē(5). This step is roughly the inverse of step 3. Starting
with the Ē(5)-array unpacked miniblock from the previous step, we quantize the data to either int4 or int8
(depending on whether K = 4 or 8), and put the resulting bits into the packed miniblock F̄out. (Don’t forget
to clamp when quantizing!)

Note that in the pseudocode above, this step appears in the innermost loop over unpacked miniblocks
(i.e. 0 ≤ d′6 < 2 is fixed). In each of the two iterations of the innermost loop, half of the bits in F̄out are set.
After both iterations of the innermost loop, we have computed one F̄out-array packed miniblock (declared
as int[K/4][Ur]; register assignment in Eqs. (116), (117), (121), (122)).

Step 9: Write F̄out to shared memory. This step is roughly the inverse of step 2. We write the F̄out-
array packed miniblock from the previous step to shared memory. Using the F̄out-array register assignment
(Eqs. (116), (117), (121), (122)) and the shared memory layout (99)–(102), one can check (nontrivial!) that
the stores are bank conflict free.

Step 10a: Copy outer block from shared memory to global memory (K=4 case). This step is
roughly the inverse of step 1. We assume K = 4 (for the K = 8 case, see “Step 10b” below).

On each warp, we read F̄ -array data from shared memory in the following register assignment:

r0r1 ↔ d′0d
′
5 t0t1t2t3t4 ↔ d′2d

′
3d

′
4d

′
1X (142)

where we define index bit

X =

{
τ̄0 if U = 2 (equivalently k = 1)
u1 if U ≥ 4 (equivalently k ≥ 2)

(143)

Using the shared memory layout (99)–(102), one can check (nontrivial!) that these shared memory loads are
bank conflict free.

Define an output tile to be the F̄ -array data (142) on a single warp. Previously in step 1 (near Eq. (133))
we defined input tiles similarly. Comparing the definitions, one can check that each input tile corresponds
to a unique output tile, in the sense that the two tiles occupy the same shared memory addresses.

We process the outer block by assigning output tiles to warps. Important note!! This assignment is
not arbitrary – each warp must process the output tiles which correspond to the input tiles that the warp
processed in step 1. This will let us remove a call to __syncthreads(); see discussion at the end of this
section.

Starting from the output tile (142), and using the definition (97) of the F̄ -array, we reinterpret the output
tile as elements of the Ē-array, with register assignment:

b0b1b2 ↔ ReIm, d0u0 r0r1 ↔ d2d1 t0t1t2t3t4 ↔ d4d5d6d3X (144)
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We do some warp and local transpose operations, to obtain register assignment:

b0b1b2 ↔ ReIm, d0, d1 r0r1 ↔ d2d3 t0t1t2t3t4 ↔ d4d5d6u0X (145)

In this register assignment, the data can be written to global memory with one 16-byte cache-aligned store
instruction.

Step 10b: Copy outer block from shared memory to global memory (K=8 case). In the K = 8
case, on each warp we read F̄ -array data in the following register assignment:

r ↔ ReIm, d′0d
′
5 t0t1t2t3t4 ↔ d′1d

′
2d

′
3d

′
4X (146)

where we define index bit

X =

{
τ̄0 if U = 2 (equivalently k = 1)
u1 if U ≥ 4 (equivalently k ≥ 2)

(147)

Using the shared memory layout (99)–(102), one can check (nontrivial!) that these shared memory loads are
bank conflict free. Note that the definition of X is the same as the K = 4 case (Eq. (143)), but the thread
index bits in (146) have been permuted relative to the K = 4 case (Eq. (142)).

Define an output tile to be the F̄ -array data (146) on a single warp. Comparing with the definition (133)
of input tiles, one can check that each input tile corresponds to a unique output tile, in the sense that the
input tile is a subset in shared memory of the output tile.

We process the outer block by assigning output tiles to warps. Important note!! This assignment is
not arbitrary – each warp must process the output tiles which correspond to the input tiles that the warp
processed in step 1. This will let us remove a call to __syncthreads(); see discussion at the end of this
section.

Starting from the output tile (146), and using the definition (98) of the F̄ -array, we reinterpret the output
tile as elements of the Ē-array, with register assignment:

b0b1 ↔ d0u0 r ↔ ReIm, d2d1 t0t1t2t3t4 ↔ d3d4d5d6X (148)

We do some thread-local transpose operations, to obtain register assignment:

b0b1 ↔ ReIm, d0 r ↔ d1d2u0 t0t1t2t3t4 ↔ d3d4d5d6X (149)

In this register assignment, the data can be written to global memory with two 16-byte cache-aligned store
instructions.

What if Packed=False? So far in this section, we have assumed Packed = True. Here, we describe
the minor changes that are needed in the Packed = False case:

• The ring buffer is now declared as:

// Ring buffer (if Packed=False)

// The length-two axis at the end is d’_6.

__half2 Ere_ringbuf[M-1][Ur][Dr][2];

__half2 Eim_ringbuf[M-1][Ur][Dr][2];

(150)

• In step 2 (“Compute E(2) from E”), we no longer need unpacking operations, since the ring buffer is
float16.

• Advancing the ring buffer is now done inside the loop over unpacked miniblocks (0 ≤ d′6 < 2) and the
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pseudocode looks like:

// Advance ring buffer

#pragma unroll

for (int ur = 0; ur < Ur; ur++) {

#pragma unroll

for (int m = 0; m < M-2; m++) {

Ere_ringbuf[m][ur][dr][dprime6] = Ere_ringbuf[m+1][ur][dr][dprime6];

Eim_ringbuf[m][ur][dr][dprime6] = Eim_ringbuf[m+1][ur][dr][dprime6];

}

Ere_ringbuf[M-1][ur][dr][dprime6] = Ere[ur];

Eim_ringbuf[M-1][ur][dr][dprime6] = Eim[ur];

}

(151)

A trick for reducing calls to syncthreads()? The pseudocode at the beginning of this section appears
to have a bug: not enough calls to __syncthreads() to protect shared memory from race conditions between
warps. I think that the pseudocode is correct as written! Here is the argument, please let me know if you
agree/disagree:

• First let’s argue that we do not need a call to __syncthreads() at the bottom of the outermost loop.

Each warp writes to shared memory in step 1, and reads from shared memory in step 10. The details
of steps 1 and 10 (and the shared memory layout in Eqs. (99)–(102)) have been constructed so that
the shared memory regions which are read/written by each warp are non-overlapping. (This is not
obvious, but follows from the “important notes” in steps 10a/b above, and the shared memory layouts
in Eqs. (99)–(102) above.)

Therefore, we do not need a call to __syncthreads() at the bottom of the outermost loop – each warp
w can proceed to the next iteration without waiting for warps w′ ̸= w.

• A similar argument shows that we do not need any calls to __syncthreads() in the inner loop over
packed miniblocks.

We read F -array packed miniblocks from shared memory in step 2, and we write F̄ -array packed
miniblocks to shared memory in step 9. The shared memory layout in Eqs. (99)–(102) ensures that
when each F̄ output miniblock is written to shared memory, it overwrites the memory locations of the
corresponding F input miniblock.

Therefore, the F̄ output miniblocks can be written in an arbitrary order, without worrying about race
conditions. In particular, we do not need any calls to __syncthreads() in the inner loop over packed
miniblocks – each warp can proceed to the next packed miniblock without waiting for the other warps.

5.6 Choosing compile-time parameters

The compile-time parameters (U,M,K) are externally specified. For each choice of (U,M,K), we are free
to choose values of the “derived” compile-time parameters (W,B, Touter, Packed) which lead to optimal
performance.

Planner script. I wrote a short python “planner” script which predicts register usage as a function of
(U,M,K,W, Packed), by adding the following contributions:

• Registers storing FFT precomputed phases (Rphase in Table 1).

• Registers needed to store the ring buffer.

• Registers needed to store the gain array Gu, the “extra” phase array Xτ , and the PFB weights Wpfb

(see §5.4).

• Registers needed to store the F_in and Fbar_out arrays, and one temporary unpacked miniblock
Ere+Eim (see pseudocode in §5.5).
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• 10 miscellaneous registers (global memory pointers, shared memory offsets, loop counters, etc.)

The planner also reports shared memory usage, and a cycle-counting estimate of GPU resources used (see
§5.7). I’m happy to share the planner script if it’s useful!

The planner script should be a useful tool for predicting which values of (W,B, Touter, Packed) are inter-
esting candidates for given values of (U,M,K). However, to choose between candidate values, we’ll need an
implementation for timing. Here’s an example of using the planner script:

Example: (U,M,K) = (128,2,4). These are plausible upchannelization parameters for the FRB search
near the bottom of the CHORD band (f ∼ 300 MHz).

• Let’s try setting Packed = False to minimize cost of int4→float16 conversion, and let’s try to
fully occupy the GPU by setting (W,B) = (32, 1). With these parameters, the planner predicts 57
registers/thread (out of 64 available). Since the planner is a rough estimate, these parameters are
worth trying as a baseline, but may or may not lead to spill code.

Next we choose Touter based on shared memory footprint (larger Touter is better since fewer calls to
__syncthreads(), but also uses more shared memory). According to the planner, Touter = 512 uses
66576 bytes of shared memory – this is probably a good choice, given W = 32 warps per threadblock.

Summarizing so far, (W,B, Touter, Packed) = (32, 1, 512, False) is an interesting candidate set of de-
rived compile-time parameters. It may perform well, or it may lead to spill code – we need an imple-
mentation to check!

• If the parameters from the first bullet point don’t work well, then we need to reduce register usage.
One option is (Packed,W,B, Touter) = (True, 32, 1, 512), i.e. storing the ring buffer in packed form.
The planner now predicts 45 registers/thread (out of 64 available). Even though this value is a rough
estimate, this seems like a large enough margin that spill code is unlikely.

• If the parameters from the first bullet point don’t work well, then another option to reduce register
usage is (Packed,W,B, Trmouter) = (False, 16, 1, 512), i.e. reducing the number of active warps. The
planner now predicts 81 registers/thread (out of 128 available). This seems like a large enough margin
that spill code is very unlikely.

5.7 Computational cost and discussion

The planner script also produces a cycle-counting estimate of computational cost. The key assumptions are
as follows:

• Computational cost of the FFT was described in §4.8.

• We assume that int4→float16 conversion takes 1 clock cycle per output register, and float16 →
(int4 or int8) conversion takes 2 clock cycles per output register. These values are based on a
#bx-engine-dev slack exchange between Erik and me on 2022 March 18.

• We assume that a __half2 FMA costs 0.5 clock cycles.

• We assume that shared memory I/O costs 2 clock cycles per register.

• We assume that the transposing operations which convert E → F cost 2 cycles per register, and
likewise for the transposing operations which convert F̄ → Ē (steps 1 and 10 in

• We assume a 128×A40 correlator: 16 frequencies per GPU, 512 dual-polarization dishes, 1.7 µsec time
sampling.

• We assume each A40 GPU has 84 SMs, 600 GB/sec global memory bandwidth, and clock rate 1.7
GHz.
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To get a bottom-line estimate of computational cost, we need to know something about which values of
(U,M,K) are specified, for each coarse frequency channel. Working this out precisely will take some time,
and some coordination with the different CHORD science groups!

In the meantime, I propose that we assume that every frequency channel is upchannelized with parameters
(U,M,K) = (16, 4, 4), to get a rough bottom-line estimate of the cost of upchannelization. Here, I think good
values of the “derived” parameters (Packed,W,B, Touter) are pretty unambiguous. This upchannelization
is short enough that register pressure should be a nonissue, so let’s choose Packed = False to save a few
cycles, and choose W = 16 to get as much occupancy as possible (recall from Eq. (86) that W must be ≤ U).
With these parameters, the planner predicts 41 registers/thread, so there is no problem taking B = 2 to
fully occupy the GPU. Then we take Touter = 256, to end up with around 64 KB of shared memory usage
per SM (more precisely, 69760 bytes).

With the above values of (U,M,K, Packed,W ), the planner predicts:

(Computational cost) = (1.6%)︸ ︷︷ ︸
input bandwidth

+ (1.6%)︸ ︷︷ ︸
output bandwidth

+ (3.2%)︸ ︷︷ ︸
compute

= 6.4% of GPU resources (152)

Let’s see how this cycle-counting estimate compares with implementation!

Some final comments.

• According to the planner script, using Packed = True would change the second term in Eq. (152)
from 3.2% to 3.7%. This justifies the statement from §5.2 that the speed improvement going from
Packed = True to Packed = False is modest.

• We might also be able to save a few cycles by doing the “extra credit” in §4.9. Otherwise I don’t see
much scope for optimization!

• As usual, it’s hard to be 100% confident about the argument that there are no shared memory bank
conflicts, using the complicated memory layouts in §5.3. Let’s try to verify this, either with the
optimizer, or with a runtime check such as the following (untested):

template<typename T>

__device__ inline void assert_bank_confict_free(const T *p)

{

static_assert(sizeof(T)==4);

extern __shared__ char shmem_base[];

ptrdiff_t n = reinterpret_cast<const char *>(p) - shmem_base;

assert((n >= 0) && (n < 128*1024)); // ’p’ points to shared memory

assert(n % 4 == 0); // ’p’ is 32-bit aligned

int bank = (n >> 2) & 0x1f; // 0 <= bank < 32

unsigned int flags = __reduce_or_sync(0xffffffff, 1U << bank);

assert(flags == 0xffffffffU); // no bank conflicts

}

Changes needed for kotekan integration. In these notes, we have neglected some nuisance issues which
are unlikely to affect kernel timing, but must be addressed before putting upchannelization into kotekan.

• Based on these notes, we would implement the upchannelization kernel as a separately compiled kernel
for each choice of (U,M,K).

In the CHORD correlator, we want to run upchannelization kernels for many choices of (U,M,K).
This would be straightforward if we could launch multiple kernels in parallel, but kotekan doesn’t
currently allow that (instead, all GPU kernel launches are serialized on a single compute stream). This
is a technical problem that we’ll need to solve (perhaps with cudaGraphs?)
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• On a related note, we’ve described the upchannelization kernel as operating on a single long time series.
In reality, in order to fully occupy the GPU, we’ll want to break the time series into chunks which
are processed in separate threadblocks, with a little bit of overlap (at least (M − 1)U time samples)
between consecutive chunks.

• Similarly, kotekan processes data in chunks (of say 256K time samples), so there is the issue of saving
overlaps (at least (M −1)U time samples) from one chunk to the next. One simple approach is to pass
an extra pointer argument to the kernel, so that the kernel can save/restore all ring buffer registers to
global GPU memory.
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A Some ALFALFA plots for my own reference
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Figure 9: Just leaving these ALFALFA plots here for my own reference. The curves are 10, 20, · · · , 90%
level contours.
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B GPU kernel preliminaries

In previous kernel design documents, we’ve developed some concepts which we now re-use in every kernel:
register assignment notation, local transposes, and warp transposes. In order to make this design document
self-contained, I included appendices which explain these concepts. This is all cut-and-paste from other
design documents, so you’ll probably skip this appendix entirely!

B.1 Register assignment notation

Throughout these notes, we will frequently encounter situations where an array has been distributed among
threads of a warp, and/or among registers on each thread, and/or (if the datatype is smaller than 32 bits)
packed into the bytes of registers. In this section, we will introduce notation to keep track of this type of
register assignment.

It’s easiest to explain our register assignment notation by example. One of the arguments of the m16n8k16
float16 tensor core MMA (see §C.2) is a 16-by-16 float16 matrix Aij , distributed among threads in a single
warp. Each matrix entry has a “logical” location (i, j) in the matrix Aij , and a “physical” location as two
bytes in a register somewhere. We describe both logical and physical locations using index bits as follows.

A logical location is described by integers 0 ≤ i < 16 and 0 ≤ j < 16, which we represent by their binary
digits i =

[
i3i2i1i0

]
2
and j =

[
j3j2j1j0

]
2
. Thus, we label “logical” locations by 8 index bits i3i2i1i0j3j2j1j0.

A physical location is indexed by a 5-bit thread id t =
[
t4t3t2t1t0

]
2
, a 2-bit register id r =

[
r1t0

]
2
which

indexes one of four registers on each thread, and a 1-bit byte id b0 which indexes the location of the float16
within the 32-bit register. Thus, we label “physical” locations by 9 index bits t4t3t2t1t0r1r0b0.

Our register assignment notation works by writing down the correspondence between logical and physical
index bits:

[(16× 16) float16 Aij ] b0 ↔ j0 r0r1 ↔ i3j3 t0t1t2t3t4 ↔ j1j2i0i1i2 (153)

This one-line equation compactly describes how the matrix entries Aij are distributed among registers in
the 32 threads which comprise one warp. Some comments on this notation:

• We show the array and its datatype in square brackets, and the number of “byte” index bits bi will be
consistent with the datatype (e.g. two bits b1b0 for int8, one bit b0 for float16).

• The number of registers per thread is 2R, where R is the number of “register” bits ri. The example
(153) uses four registers per thread.

• For complex-valued arrays, we sometimes use a real datatype, and add an extra logical index bit
“ReIm” to indicate how the real/imaginary parts are distributed.

B.2 Local transpose operation

Suppose we have a situation where each thread holds two registers, and each register stores four 8-bit
quantities. In our register assignment notation, we write:

b1b0 ↔ XY r ↔ Z (154)

to indicate that the three “physical” index bits b1b0r correspond to “logical” index bits XY Z, where the
meaning of the logical bits depends on the larger context. (We have omitted the physical thread index bits
t4t3t2t1t0, since the operation we will describe is thread-local.)

Now suppose that we want to change the register assignment, by swapping the roles of physical index
bits b0 and r, to get the register assignment:

b1b0 ↔ XZ r ↔ Y (155)

We will call this a “local transpose” operation, since it shuffles data between different registers of the same
thread.
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Similarly, we might want to transpose physical index bits b1 and r, so that we obtain the register
assignment:

b1b0 ↔ ZY r ↔ X (156)

Either of the local transpose operations defined in Eqs. (155), (156) can be implemented with two calls to
the __byte_perm() cuda intrinsic. According to my benchmark, __byte_perm() has a throughput of two
instructions per cycle (i.e. one local transpose per cycle).

One last comment: to implement the E → F shuffle operation from §??, we may need local transposes
on 4-bit boundaries. Such a local transpose can’t be implemented with __byte_perm(), but could be
implemented with two bit-shift instructions and one LOP3 instruction.

B.3 Warp transpose operation

Now suppose we have a situation where each thread in a warp holds two 32-bit registers:

r ↔ X t4t3t2t1t0 ↔ Y4Y3Y2Y1Y0 (157)

where we are now keeping track of the 5-bit thread index t = [t4t3t2t1t0]2, but not keeping track of byte
index bits (i.e. we are treating register contents as 32-bit, not 4×8-bit).

Suppose that we want to transpose index bits r and ti, so that we obtain the register assignment:

r ↔ Yi t4t3t2t1t0 ↔ Y4 · · · X︸︷︷︸
replacing Yi

· · ·Y0 (158)

This can be done efficiently with one warp shuffle instruction as follows:12

int in0 = ...; // contents of register 0

int in1 = ...; // contents of register 1

int i = ...; // thread index bit 0 <= i < 5

int bit = 1 << i;

bool flag = (threadIdx.x & bit) != 0;

int src = flag ? in0 : in1;

int dst = __shfl_xor_sync(0xffffffff, src, bit);

// Compiles to conditional move, not warp-divergent branch.

(flag ? out0 : out1) = dst;

We will call this a “warp transpose” operation, since it shuffles data between different threads in the same
warp.

12Based on my microbenchmarks, the code below will be warp shuffle limited, i.e. the computation of bit/flag and the
conditional assignments involving src/dst are faster than the warp shuffle and can run in parallel. I also find that warp shuffle
throughput is 16 shuffles per clock cycle (where a warp shuffle involving all 32 threads in a warp is defined as 32 shuffles). A
puzzle here is that this contradicts nvidia’s throughput tables at https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#maximize-instruction-throughput, which claim 32 shuffles per cycle. If you have any insight on how to get 32
shuffles per cycle, that would be really valuable, since the FRB search kernels are sometimes warp shuffle bound. (For the
beamforming kernel which is the subject of this note, the cost of warp shuffles turns out to be small (Table ??), but I thought
the larger issue was worth mentioning.
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C Float16 tensor core reference

C.1 Float16 m16n8k8

The PTX instruction mma.sync.aligned.m16n8k8.row.col.f16.f16.f16.f16 performs the following ma-
trix multiplication C = AB:

[(16× 8) float16 Aij ] b0 ↔ j0 r0 ↔ i3 t0t1t2t3t4 ↔ j1j2i0i1i2 (159)

[(8× 8) float16 Bjk] b0 ↔ j0 t0t1t2t3t4 ↔ j1j2k0k1k2 (160)

[(16× 8) float16 Cik] b0 ↔ k0 r0 ↔ i3 t0t1t2t3t4 ↔ k1k2i0i1i2 (161)

This instruction performs 2048 flops, and costs 2 SM-cycles on an A40.

C.2 Float16 m16n8k16

The PTX instruction mma.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 performs the following ma-
trix multiplication C = AB:

[(16× 16) float16 Aij ] b0 ↔ j0 r0r1 ↔ i3j3 t0t1t2t3t4 ↔ j1j2i0i1i2 (162)

[(16× 8) float16 Bjk] b0 ↔ j0 r0 ↔ j3 t0t1t2t3t4 ↔ j1j2k0k1k2 (163)

[(16× 8) float16 Cik] b0 ↔ k0 r0 ↔ i3 t0t1t2t3t4 ↔ k1k2i0i1i2 (164)

This instruction performs 4096 flops, and costs 4 SM-cycles on an A40.

C.3 Sparse float16 m16n8k16

Conceptually, the PTX instruction mma.sp.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 performs
an m16n8k16 MMA with the same matrix dimensions as the dense case (§C.2), but the A-matrix has 50%
sparsity. More precisely, each 1×4 submatrix of the 16×16 matrix A has 50% sparsity, as shown in Figure
10. The computational cost of the sparse MMA is 50% of the dense case.

The sparse MMA defines 6 operands (Asp, B,C,D,E, f). In the rest of this section, we explain the details
of these operands.

Definitions of Asp and E. We first describe a reparameterization of the sparse matrix Aij as a pair
of arrays (Asp

ij′J , Eij′J). The float16 array Asp contains the nonzero elements from Aij (and has half the
size), and the int2 array Eij′J describes the sparsity pattern. Both arrays have shape (16, 4, 2).

We split the length-16 column axis of A into (high, low) 2-bit integers (j′, E).

j = 4j′ + E where 0 ≤ j′ < 4 and 0 ≤ E < 4 (165)

Each 1×4 submatrix in A (Figure 10, left panel) is indexed by a pair (i, j′), where 0 ≤ i < 16 and 0 ≤ j′ < 4.
For each such submatrix (i, j′), let Eij′0, Eij′1 be 2-bit integers describing the locations of the nonzero
entries within the 1×4 submatrix. Let Asp

ij′0, A
sp
ij′1 be the corresponding float16 matrix elements. The

reparameterization of the sparse A-matrix by (Asp
ij′J , Eij′J) is shown visually in Figure 10. Formally, the

reparameterization is described by the equation:

Asp[i,j’,J] = A[i, 4j’+E[i,j’,J]] (166)

Register assignments. The register assignments for (Asp
Ij′j , Bjk, Cik) are straightforward to describe:

[(16× 4× 2) float16 Asp
ij′J ] b0 ↔ J r0 ↔ i3 t0t1t2t3t4 ↔ j2j3i0i1i2 (167)

[(16× 8) float16 Bjk] b0 ↔ j0 r0 ↔ j3 t0t1t2t3t4 ↔ j1j2k0k1k2 (168)

[(16× 8) float16 Cik] b0 ↔ k0 r0 ↔ i3 t0t1t2t3t4 ↔ k1k2i0i1i2 (169)
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Note that, in the register assignment (167) for Asp
ij′J , we denoted the j′ index bits by j2j3, rather than j′0j

′
1.

The two are equivalent by Eq. (165). We also note that the B and C sparse register assignments (168), (169)
are the same as their dense counterparts (163), (164).

Finally, we describe the register assignment for Eij′J . The E-array fits into eight 32-bit registers, which
are mapped to thread index bits t2t3t4:

[(16× 4× 2) int2 Eij′J ] b0b1b2b3 ↔ Jj2j3i3 t2t3t4 ↔ i0i1i2 (170)

The sparse MMA instruction includes an additional operand 0 ≤ f < 4 which determines which eight
threads in the warp are used, by specifying thread index bits t0t1. Note that in Eq. (170), the j′ index bits
are denoted j2j3, as in (167) above.

Cuda wrapper. For reference, here is my cuda wrapper for the sparse m16n8k8 MMA D = C + AB,
with operands (Asp, B,C,D,E, f) as described above. (The D operand has the same register assignment
(169) as C.)

// Sparse MMA D = A*B + C

template<unsigned int F>

__device__ __forceinline__

void mma_sp_f16_m16_n8_k16(__half2 d[2], const __half2 asp[2], const __half2 b[2],

const __half2 c[2], unsigned int e)

{

asm("mma.sp.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 "

"{%0, %1}, {%2, %3}, {%4, %5}, {%6, %7}, %8, %9;" :

"=r" (*(unsigned int *) &d[0]), "=r" (*(unsigned int *) &d[1]) :

"r" (*(const unsigned int *) &asp[0]), "r" (*(const unsigned int *) &asp[1]),

"r" (*(const unsigned int *) &b[0]), "r" (*(const unsigned int *) &b[1]),

"r" (*(const unsigned int *) &c[0]), "r" (*(const unsigned int *) &c[1]),

"r" (e),

"n" (F)

);

}
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Figure 10: This figure from the nvidia documentation depicts the sparse MMA in §C.3. The 16×16 A-matrix
(left) has the property that each 1×4 submatrix is 50% sparse. We split this into two smaller arrays (right):
the Asp array which contains nonzero elements of A, and the E array which describes the location of each
nonzero element within its 1×4 submatrix. The sparse MMA instruction uses (Asp, E) as operands, instead
of A. (Note: the example in the figure also has the property that the same sparsity pattern is repeated
8 times. This property isn’t a requirement – the sparse MMA instruction allows an independent sparsity
pattern for each 1×4 submatrix.)
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