
CHORD 8-bit baseband beamformer

kmsmith

December 6, 2022

1 Kernel specification

Inputs:

• The int4+4 electric field array Eτfpd, where τ is a time index, 0 ≤ f < 16 indexes a frequency channel,
0 ≤ p < 2 indexes a polarization, and 0 ≤ d < 512 indexes a dish.

Note that we use τ (not t) to index a time sample, and β (not b) to index a beam. This is because in
our register assignment notation (see Appendix A), we use t to index a cuda thread, and b to index a
byte within a 32-bit register.

• A precomputed int8+8 beamforming matrix Apβd, where 0 ≤ β < B indexes a formed beam.

• An integer “bit shift” parameter spfβ which plays the role of a gain (see Eq. (1) below).

Output:

• The int4+4 beamformed electric field1

Jβfpτ = Quantize4+4

[(∑
d

ApβdEτfpd

)
>> spfβ

]
(1)

Here, rather than multiplying the sum (
∑

d · · · ) by a floating-point gain Gpfβ before quantizing, we
have chosen to right-shift by some number of bits spfβ . This was motivated by Erik’s work on the
4-bit beamformer, where we learned that float→int conversion on the GPU is slow.

Minor detail: for maximum generality, I allowed the bit-shift parameter s to depend on the beam β,
but I doubt this will actually be necessary. So if the β-dependence is awkward to implement, then feel
free to remove it.

Differences versus previous beamformer:

• I’m now proposing that we use 8 bits instead of 4 bits. This is because Erik’s 4-bit beamformer was
so fast that I think we may as well use 8 bits, and remove all uncertainty over whether quantization
artifacts can be an issue.

• Different input ordering of the E-array (dish index now assumed faster varying than polarization).

• After discussion on the chord-all list, I’m now proposing that we process each polarization indepen-
dently. (Minor comment: this is technically easier in the new E-array ordering since the two polariza-
tions now live on different cache lines.)

1In Eq. (1), we have used a right shift (· · · ) >> s to divide by 2s before quantizing. However, I think it would be slightly
better to do ((· · · )+2s−1) >> s, i.e. round to the nearest multiple of 2s instead of rounding down. The same comment applies
to Eqs. (2), (19), (25).

1



Each frequency f and polarization p is processed independently in a different threadblock. For the rest of
this note, we will focus on a single threadblock, and streamline notation by omitting the f, p indices. Thus
the beamforming operation (1) can be written:

Jβτ = Quantize4+4

[(∑
d

AβdEτd

)
>> sβ

]
(2)

The number of formed beams B isn’t known yet, but will probably be in the range 20 ≲ B ≲ 100, depending
on how much funding we can raise for backends. At this stage, I think it makes sense to be conservative and
assume a large value of B. In the rest of the notes, I’ve assumed B = 96, and I suggest that we fix this value
in a first pass at implementing the kernel. I’m just mentioning in advance that the value of B may change
in the future, in case this influences your design decisions.

Throughout this note we use the following notation:

B = 96 = Number of beams (3)

D = 512 = Number of dishes (4)

F = 16 = Frequency channels per GPU (5)

ts = 1.7 µsec = Sampling time (6)

(Wb,Wd) = Dimensions of A-matrix warp tiling (TBD, see §2) (7)

T = “Inner” time cadence of kernel (TBD, see §2) (8)

2 Overview of kernel

• We keep the A-matrix Aβd in registers throughout the kernel, in an appropriate tensor core ordering
(see §4). The required number of 32-bit registers is:

Registers

Threadblock
=

BD

2
= 256B (9)

If B is large, then the high register count will force us to use one threadblock per SM. If B is small,
then using multiple threadblocks per SM would be preferable, since we could use fewer threads per
block (while keeping reasonably high occupancy), which improves shared memory bandwidth (see next
bullet point).

• We divide the B-by-D matrix Aβd into (Wb ×Wd) tiles, where each tile is handled by a single warp.
Thus the number of warps per block is W = WbWd. We mention in advance (derived in Eq. (35)) that
the shared memory bandwidth is:

Shared memory BW =
2F bytes

ts

[
D(Wb + 1) + 8BWd

]
(10)

Thus when choosing (Wb,Wd), the basic tradeoff is between occupancy (which gets better with in-
creasing Wb,Wd) and shared memory bandwidth (which gets worse with increasing Wb,Wd).

Here is a partial criterion for choosing (Wb,Wd). If we formally minimize shared memory bandwidth
in Eq. (10) at fixed occupancy W = (WbWd), the minimum occurs when

Wb

Wd
=

8B

D
(11)

For B = 96, the following possibilities look interesting to me: (Wb,Wd) = (6, 4) with 768 threads/block,
(Wb,Wd) = (4, 4) with 512 threads/block, and (Wb,Wd) = (4, 2) with 256 threads/block.2

2Although I’m advocating fixing B = 96 on a first pass, I’m including some footnotes with thoughts on smaller values of
B, in case this influences design decisions. For small B, say B = 16 for concreteness, Eq. (11) suggests that we’d want to use
something like (Wb,Wd) = (1, 4). Note that high occupancy could still be achieved by using multiple threadblocks per SM,
since by Eq. (9) we only need 4K registers/block to store the A-matrix. I’ll speculate that Wd = 4 is a good choice for all
values of B, whereas the optimal choice of Wb is proportional to B, and the optimal number of threadblocks per SM is inversely
proportional to B. But this is something we should test with benchmarks.

2



The number of rows (beams) in each tile must be divisible by 8, and the number of columns (dishes)
in each tile must be divisible by 16, for tensor core reasons described in §4. Note that the values of
(Wb,Wd) suggested at the end of the previous paragraph have been chosen so that each tile contains
an equal number of beams/dishes (assuming B = 96), while satisfying these divisibility constraints.

• The main steps in the kernel are as follows. First (§3), we transfer the E-array from global memory
to shared memory. Second (§4), for each warp in the (Wb ×Wd) tiling, we read a tile of the E-array,
and multiply it by a tile of the A-array, to obtain a tile of the “unreduced” J-array Ju

rτβ . The new
index 0 ≤ r < Wd corresponds to the position of the warp in the dish tiling. Third (§5), we reduce the
Ju array over the r-index, to obtain the (reduced) J-array Jβτ . Fourth (§6), we write the J-array to
global memory.

These four steps have different minimum time cadences. The fourth step (writing J) operates in chunks
of 128 time samples. The second and third steps (matrix multiplication + reduction) can operate in
chunks as short as 8 time samples, but it is probably advisable to use larger a larger chunk size, in
order to reduce calls to the expensive __syncthreads() operation. (I’m defining the “chunk size” of
a step in the kernel to be the number of time samples between calls to __syncthreads().)

On the other hand, using large chunk sizes increases the shared memory requirement. This is particu-
larly harmful for small B, where we want to get high occupancy by scheduling multiple threadblocks
per SM, so we want to keep shared memory per threadblock small. The shared memory layouts for
the beamforming kernel are specified in Eqs. (13), (21) below.

A final consideration: in the first step (transferring E from global to shared memory) we probably
want to use a large enough chunk size that all threads can participate. I’ll leave it to you to balance
the above considerations and decide what chunk sizes are optimal.3

• Internally, the kernel performs matrix multiplication using a permuted dish ordering. We will used
a primed index d′ to refer to this alternate ordering. Representing an unpermuted dish index as a
9-digit binary integer d =

[
d8d7 · · · d0

]
2
, and a permuted dish index as d′ = d′8d

′
7 · · · d′0, the reordering

operation can be taken to be:

d8d7d6d5d4d3d2d1d0 ↔ d′8d
′
7d

′
3d

′
2d

′
6d

′
5d

′
4d

′
1d

′
0 (12)

As described in §4, the dish reordering will allow us to avoid a shared memory bank conflict without
needing local/warp transpose operations. (The part of the reordering (12) which matters is d6d5d1d0 ↔
d′3d

′
2d

′
1d

′
0.)

We use the dish reordering in two places. First, the warp tiling (described in the second bullet point
in this section) is defined using a primed dish index d′. (More precisely, the set of dish indices held by
each warp in the tiling should consist of blocks of 16 contiguous primed indices.) Second, and closely
related, the A-matrix is stored internally using a primed index Aβd′ .

3 Step 1: transferring global memory to shared memory

In this step, we load E-array elements from global memory, and write them to shared memory. We use the
following shared memory layout, for a chunk of int4+4 data with T time samples and D = 512 dishes:

__shared__ int4+4 Earr[T][512+4]; // (time, dish) (13)

with 4 bytes (one int32) padding on the dish axis. We have left the time chunk size T unspecified (see
discussion in §2), but T should be divisible by 4.

We describe a “building-block” operation in which a single warp processes 4 time samples and 128
dishes. A larger chunk of T time samples and D dishes can be processed by appropriately distributing the
building-block operation across warps in the threadblock.

3For B = 96, where we only want one threadblock per SM and can therefore use up to 99KB shared memory, I’ll speculate
that a good choice is to outer-loop over blocks of 128 time samples, and inner-loop over blocks of T = 32 time samples. Steps
1–3 of the kernel run at 32-sample cadence, and step 4 (writing the J array) runs at 128-same cadence. For smaller values of
B, we may want to use a smaller value of T .

3



In the building-block operation, we use a 16-byte load instruction to read 16 contiguous bytes (4 registers)
on each thread.4 If we arrange the loads so that thread t = 8i + j reads time τ = i and dishes 16j ≤ d <
16(j + 1), then we get the following register assignment:5

[int4+4 Eτd] b1b0 ↔ d1d0 r1r0 ↔ d3d2 t4t3t2t1t0 ↔ τ1τ0d6d5d4 (14)

This can be written to shared memory by looping over the 4 registers and issuing 4-byte stores. The stores
are bank conflict free, if the shared memory layout (13) is used.

One final comment. In my N2 kernel, I found it useful to implement prefetching to hide the latency of
shared memory loads. Rather than copying directly from global memory to shared memory, I issue global
memory loads (into registers) one time chunk in advance, leave the registers “untouched” for one time chunk,
then issue stores to shared memory. (Unfortunately, this way of implementing prefetching “by hand” seemed
to be necessary, since NVIDIA’s PTX prefetch instruction didn’t seem to help.6) It would be interesting to
see if prefetching also helps in the baseband beamformer.

4 Step 2: matrix multiplication

In this step, the warps are arranged in a Wb ×Wd grid, where each warp holds one tile of the A-matrix in
persistent registers. We read one E-matrix tile from shared memory, and multiply it by the A-matrix tile,
obtaining a tile of the unreduced J-matrix Ju which is written to shared memory.

We will describe a “building-block” operation in which a single warp processes 8 beams, 8 time samples,
and 16 dishes. The larger chunk of (B/Wb) beams, T time samples, and (512/Wd) dishes can be implemented
by adding loops within the warp.

We read the E-tile from shared memory, in the register assignment:

[int4+4 Eτd′ ] b0b1 ↔ d′0d
′
1 t0t1t2t3t4 ↔ d′2d

′
3τ0τ1τ2 (15)

Using shared memory layout (13), this can be done with one bank conflict free int32 load. (Note that if we
had used an unprimed dish index here, then the load would have bank conflicts – this is the reason for the
dish permutation in Eq. (12).)

We next unpack each int4+4 into real and imaginary parts, storing the results as int8s in separate
registers. (Note that sign extension needs to be done here.) This gives the following register assignment:

[int8 Eτd′ ] b0b1 ↔ d′0d
′
1 r ↔ ReIm t0t1t2t3t4 ↔ d′2d

′
3τ0τ1τ2 (16)

We assume that at the beginning of the kernel, the A-matrix tile has been loaded into persistent registers,
with register assignment:

[int8 Aβd′ ] b0b1 ↔ d′0d
′
1 r ↔ ReIm t0t1t2t3t4 ↔ d′2d

′
3β0β1β2 (17)

These register assignments have been chosen to apply the tensor core MMA instruction described in Appendix
A. Applying the MMA instruction (or rather, four MMA instructions since Aβd′ and Eτd′ are complex), we
get the Ju-matrix tile:

[int32 Ju
τβ ] r1r0 ↔ ReIm, τ0 t0t1t2t3t4 ↔ τ1τ2β0β1β2 (18)

Before writing to shared memory, I propose reducing the Ju bit depth from 32 to 16. To do this, we’ll need
to first right-shift by a small bit count σ:

Ju
τβ ← (Ju

τβ >> σ) where σ ≡

 5 if Wd = 1
4 if Wd = 2
3 if Wd = 4

(19)

4In CUDA, a 16-byte load can be issued by dereferencing an (int4 *) pointer. I don’t know how it’s done in Julia! I recently
learned that 16-byte load/stores can increase global memory bandwidth by up to 30% (relative to 4-byte load/stores) so I’m
trying to use them in GPU kernels from now on.

5I’m using this “register assignment” notation in all of my GPU kernel notes now. To make these notes self-contained, I
reviewed the notation in Appendix A (mostly cut-and-paste from other notes).

6https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-

instructions-prefetch-prefetchu

4



The value of σ has been chosen so that after right-shifting by σ, Ju is a 16-bit quantity.
After right-shifting, we pack the real and imaginary parts of the Ju array into a single int16+16 register,

obtaining:
[int16+16 Ju

τβ ] r ↔ τ0 t0t1t2t3t4 ↔ τ1τ2β0β1β2 (20)

We then write the Ju array to shared memory. Note that on a single warp, Ju is a 2-d array Ju
τβ , but in

shared memory it becomes a 3-d array Ju
rτβ . The new index 0 ≤ r < Wd corresponds to the position of the

warp in the dish tiling. We will reduce over this index in the next step (§5). We use the following shared
memory layout for Ju

rτβ :

__shared__ int16+16 Ju[W_D][T][B+4]; // (r, time, beam) (21)

with the beam axis padded by 4 elements (16 bytes). With this shared memory layout, and the Ju register
assignment in Eq. (20), the Ju array can be written to shared memory with two bank conflict free 32-bit
stores per thread.

5 Step 3: reduce and quantize

In this step, we reduce the array Ju
rτβ over the index 0 ≤ r < Wd, and quantize the result to int4+4 (applying

the bit shift in Eq. (2)), obtaining the beamformed J-array Jβτ . The J-array will be saved in registers, and
written to global memory (on a slower 128-sample cadence) in §6.

First we will describe a “building-block” reduce operation which processes 4 beams and 8 times on a
single warp. To process a larger array of B beams, we assign sets of four beams to different warps in a
round-robin fashion. This assignment of beams to warps is unrelated to the (Wb×Wd) warp tiling in §4. To
process a larger array of T times, we loop (within each warp) over chunks of 8 time samples.

In the building-block operation, for each 0 ≤ r < Wd, we read the 4-by-8 Ju array in register assignment

[int16+16 Ju
τβ ] t0t1t2t3t4 ↔ τ0τ1τ2β0β1 (22)

We unpack the real and imaginary parts into separate 32-bit registers:

[int32 Ju
τβ ] r ↔ ReIm t0t1t2t3t4 ↔ τ0τ1τ2β0β1 (23)

We perform steps (22), (23) for each 0 ≤ r < Wd and accumulate the result, to obtain the reduced J-array:

[int32 Jτβ ] r ↔ ReIm t0t1t2t3t4 ↔ τ0τ1τ2β0β1 (24)

We then apply the following right shift:

Jβτ ← (Jβτ >> (sβ − σ)) (25)

as specified in Eq. (2), and keeping in mind that we already right-shifted by σ in Eq. (19). The value of sβ
can be loaded into a register at the beginning of the kernel, and held persistently throughout the kernel.

We quantize to 4 bits, and pack the real/imaginary parts into a single register:

[int4+4 Jβτ ] t0t1t2t3t4 ↔ τ0τ1τ2β0β1 (26)

At this point, we have distilled 8 time samples into a single byte per thread. We pack this byte into one of
four “persistent” J-registers which store J-array elements until they can be written out at slower cadence
(128 time samples) in §6. Collectively, the four persistent J-registers represent an array Jper

βτ with four beams
and 128 time samples. It will be convenient in §6 to use the following slightly awkward register assignment:

[int4+4 Jper
βτ ] b0b1 ↔ τ5τ6 r0r1 ↔ τ3τ4 t0t1t2t3t4 ↔ τ0τ1τ2β0β1 (27)

This register assignment specifies how the byte in Eq. (26) should be packed into one of the four Jper

registers in Eq. (27), as a function of time τ within the 128-byte cadence for writing to global memory.
One final comment to conclude this section. Note that if the number of warps is not divisible by 4B,

then the number of Jper registers is not the same on every warp. This is awkward in implementation since
the length of a register array must be a compile-time constant (not a warp-dependent quantity). This can
be handled by assigning the maximum possible number of registers at compile time, and using a runtime
if-statement to short-circuit the logic on warps which need fewer registers.

5



6 Step 4: shuffle and write to global memory

Every 128 time samples, we write the J-array to global memory. Restricting attention to a set of four beams
on a single warp, we have the array (this equation is the same as Eq. (27)):

[int4+4 Jper
βτ ] b0b1 ↔ τ5τ6 r0r1 ↔ τ3τ4 t0t1t2t3t4 ↔ τ0τ1τ2β0β1 (28)

We need some local transpose (Appendix B) and warp transpose (Appendix C) operations, to get a register
assignment which is suitable for writing to global memory. First exchange r1, t0 using a warp transpose:

[int4+4 Jper
βτ ] b0b1 ↔ τ5τ6 r0r1 ↔ τ3τ0 t0t1t2t3t4 ↔ τ4τ1τ2β0β1 (29)

Exchange b0, r1 using a local transpose:

[int4+4 Jper
βτ ] b0b1 ↔ τ0τ6 r0r1 ↔ τ3τ5 t0t1t2t3t4 ↔ τ4τ1τ2β0β1 (30)

Exchange r1, t1 using a warp transpose:

[int4+4 Jper
βτ ] b0b1 ↔ τ0τ6 r0r1 ↔ τ3τ1 t0t1t2t3t4 ↔ τ4τ5τ2β0β1 (31)

Exchange b1, r1 using a local transpose:

[int4+4 Jper
βτ ] b0b1 ↔ τ0τ1 r0r1 ↔ τ3τ6 t0t1t2t3t4 ↔ τ4τ5τ2β0β1 (32)

Exchange r1, t2 using a warp transpose:

[int4+4 Jper
βτ ] b0b1 ↔ τ0τ1 r0r1 ↔ τ3τ2 t0t1t2t3t4 ↔ τ4τ5τ6β0β1 (33)

In this register assignment, the Jper
βτ array can be written to global memory by issuing one contiguous 16-byte

store instruction on each thread. (See discussion of 16-byte load/store instructions in §3.)

6



7 Cost estimates

All estimates assume B = 96 and (Wb,Wd) = (6, 4). I don’t know whether this choice of (Wb,Wd) is optimal
(see §2 for more discussion).

Global memory bandwidth = (Read E) + (Write J)

=
2FD bytes

ts
+

2FB bytes

ts
= (8.94 + 1.68) GB/s)

= 10.62 GB/s

= 2.1% of an A40 (500 GB/sec assumed) (34)

Shared memory bandwidth = (Write E) + (Read E) + (Write Ju) + (Read Ju)

=
2F bytes

ts

(
D +WbD + 4WdB + 4WdB

)
= (8.9 + 53.6 + 26.8 + 26.8) GB/s

= 1.3% of an A40 (8700 GB/sec assumed) (35)

Tensor core math =
16FBD flops

ts
= 6.7 Tflops

= 2.2% of an A40 (300 Tflops assumed) (36)

Warp shuffles (just checking) = (2F )

(
B

4

)(
1

128ts

)
(192 shuffles)

= 0.62 gigashuffles/sec

= 0.03% of an A40 (2300 Gshuffles/sec assumed) (37)

int32 math (rough) ∼ 2WdFB

ts
(15 int32 ops)

= 100 int32 Gops/sec

= 0.6% of an A40 (17 Tops/sec assumed) (38)

When counting warp shuffles, we treat each __shfl_sync() as 32 “shuffles” (following NVIDIA). For int32
math, I made a very rough estimate assuming 15 instructions per element of the Ju array.

Adding everything up (which may be pessimistic since there is scope for overlapping I/O and compute),
the 8-bit beamformer should take 6.3% of an A40. Too good to be true?

A Register assignment notation and tensor core MMA

In these notes, we will frequently encounter situations where an array has been distributed among threads
of a warp, and/or among registers on each thread, and/or (if the datatype is smaller than 32 bits) packed
into the bytes of registers. In this section, we will introduce notation to keep track of this type of register
assignment. It’s easiest to explain our register assignment notation by example, using the tensor core MMA
operation.

Throughout these notes, “tensor core MMA” always refers to the signed int8 matrix-multiply-accumulate
with tile size (m,n, k) = (8, 8, 16) in NVIDIA’s notation.7 This operation multiplies an 8-by-16 matrix Aij

by a 16-by-8 matrix Bjk to produce an 8-by-8 matrix Cik. The A,B matrices are int8, and the C-matrix is
int32.

7As far as I can tell, all int8 MMA operations run at the same speed, provided that the mma.sync.* PTX instruction (not
wmma.mma.sync.*) is wrapped in inline assembly. Therefore, it makes sense to use the MMA operation with the smallest tile
size. If a reason to use a larger tile size emerges in the future, it would be a minor change to the beamforming kernel (I checked
that the register assignments for the larger tile sizes are “copies” of the smallest size, so we wouldn’t need to change details like
shared memory layouts).

7



Consider the 8-by-16 matrix int8 Aij , which is distributed among threads in one warp. Each matrix entry
has a “logical” location (i, j) in the matrix, and a “physical” location as a byte in a register somewhere. We
describe both logical and physical locations using index bits as follows.

A logical location is described by integers 0 ≤ i < 8 and 0 ≤ j < 16, which we represent by their binary
digits i =

[
i2i1i0

]
2
and j =

[
j3j2j1j0

]
2
. Thus, we label “logical” locations by 7 index bits i2i1i0j3j2j1j0.

A physical location is indexed by a 5-bit thread id t =
[
t4t3t2t1t0

]
2
, and a 2-bit byte id b =

[
b1b0

]
2
which

indexes the location of the int8 within the 32-bit register. (Note that the A-matrix uses one register per
thread. For an array with multiple registers per thread, we would introduce index bits r0r1r2 · · · to indicate
which register contains an array element.) Thus, we label “physical” locations by 7 index bits t4t3t2t1t0b1b0.

Our register assignment notation works by writing down the correspondence between logical and physical
index bits. In this notation, the register assignments for the A,B,C matrices are:8

[int8 Aij ] b0b1 ↔ j0j1 t0t1t2t3t4 ↔ j2j3i0i1i2 (39)

[int8 Bjk] b0b1 ↔ j0j1 t0t1t2t3t4 ↔ j2j3k0k1k2 (40)

[int32 Cik] r0 ↔ k0 t0t1t2t3t4 ↔ k1k2i0i1i2 (41)

Some comments on this notation:

• We show the array and its datatype in square brackets, and the number of “byte” index bits bi will be
consistent with the datatype (e.g. two bits b1b0 for int8, no byte index bits for int32).

• The number of registers per thread is 2R, where R is the number of “register” bits ri. For example, the
A and B-matrices in Eqs. (39), (40) use one register per thread (R = 0), and the C-matrix in Eq. (41)
uses two registers per thread (R = 3).

• For complex-valued arrays, we sometimes use a real datatype, and add an extra logical index bit
“ReIm” to indicate how the real/imaginary parts are distributed.

In the beamformer, the indices i, j, k represent respectively a beam β, a dish d′ with index permutation
(12) applied, and a time τ . The B-matrix represents the input electric field array Eτd′ , and the C-matrix
represents the “unreduced” beamformed array Ju

τβ . Therefore, we will write the register assignment this
way:

[int8 Aβd′ ] b0b1 ↔ d′0d
′
1 t0t1t2t3t4 ↔ d′2d

′
3β0β1β2 (42)

[int8 Eτd′ ] b0b1 ↔ d′0d
′
1 t0t1t2t3t4 ↔ d′2d

′
3τ0τ1τ2 (43)

[int32 Ju
τβ ] r0 ↔ τ0 t0t1t2t3t4 ↔ τ1τ2β0β1β2 (44)

For reference, my CUDA wrapper for the (m,n, k) = (8, 8, 16) MMA instruction is:

// D = A*B + C

__device__ __forceinline__

void mma_s8_m8_n8_k16(int d[2], int a[1], int b[1], int c[2])

{

asm("mma.sync.aligned.m8n8k16.row.col.satfinite.s32.s8.s8.s32 "

"{%0, %1}, {%2}, {%3}, {%4, %5};" :

"=r" (d[0]), "=r" (d[1]) :

"r" (a[0]), "r" (b[0]), "r" (c[0]), "r" (c[1])

);

}

B Local transpose operation

Suppose we have a situation where each thread holds two registers, and each register stores four 8-bit
quantities. In our register assignment notation, we write:

b1b0 ↔ XY r ↔ Z (45)

8From https://github.com/kmsmith137/gputils/blob/master/reverse_engineering/reverse-engineer-mma.cu

8



to indicate that the three “physical” index bits b1b0r correspond to “logical” index bits XY Z, where the
meaning of the logical bits depends on the larger context. (We have omitted the physical thread index bits
t4t3t2t1t0, since the operation we will describe is thread-local.)

Now suppose that we want to change the register assignment, by swapping the roles of physical index
bits b0 and r, to get the register assignment:

b1b0 ↔ XZ r ↔ Y (46)

We will call this a “local transpose” operation, since it shuffles data between different registers of the same
thread.

Similarly, we might want to transpose physical index bits b1 and r, so that we obtain the register
assignment:

b1b0 ↔ ZY r ↔ X (47)

Either of the local transpose operations defined in Eqs. (46), (47) can be implemented with two calls to the
__byte_perm() cuda intrinsic, or with a longer sequence of bitwise operations. (I’m guessing __byte_perm()
will be faster.)

C Warp transpose operation

Now suppose we have a situation where each thread in a warp holds two 32-bit registers:

r ↔ X t4t3t2t1t0 ↔ Y4Y3Y2Y1Y0 (48)

where we are now keeping track of the 5-bit thread index t = [t4t3t2t1t0]2, but not keeping track of byte
index bits (i.e. we are treating register contents as 32-bit, not 4×8-bit).

Suppose that we want to transpose index bits r and ti, so that we obtain the register assignment:

r ↔ Yi t4t3t2t1t0 ↔ Y4 · · · X︸︷︷︸
replacing Yi

· · ·Y0 (49)

This can be done efficiently with one warp shuffle instruction as follows:9

int i = ...; // same meaning as previous equation

int in0 = ...; // register 0

int in1 = ...; // register 1

int bit = 1 << i;

bool flag = (threadIdx.x & bit) != 0;

int src = flag ? in0 : in1;

int dst = __shfl_xor_sync(0xffffffff, src, bit);

(flag ? out0 : out1) = dst;

We will call this a “warp transpose” operation, since it shuffles data between different threads in the same
warp.

9Based on my microbenchmarks, the code below will be warp shuffle limited, i.e. the computation of bit/flag and the
conditional assignments involving src/dst are faster than the warp shuffle and can run in parallel. I also find that warp shuffle
throughput is 16 shuffles per clock cycle (where a warp shuffle involving all 32 threads in a warp is defined as 32 shuffles). A
puzzle here is that this contradicts nvidia’s throughput tables at https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#maximize-instruction-throughput, which claim 32 shuffles per cycle. If you have any insight on how to get 32
shuffles per cycle, that would be really valuable, since the FRB search kernels are sometimes warp shuffle bound. (For the
beamforming kernel which is the subject of this note, the cost of warp shuffles turns out to be tiny (Eq. (37)), but I thought
the larger issue was worth mentioning.

9


