
A SIMPLE GRAPH TYPE FOR JULIA

ED SCHEINERMAN

1. Fundamentals

This is documentation for a SimpleGraph data type for Julia. The goal is to make working with graphs
as painless as possible. The SimpleGraph data type is for simple graphs (undirected edges, no loops, no
multiple edges). Vertices in a SimpleGraph are of a given Julia data type, which might be Any.

The key constructor is SimpleGraph which creates a graph whose vertices may be any Julia type.
Alternatively, G=SimpleGraph{T}() sets up G to be a graph in which all vertices must be of type T.
Two special cases are built into this module: IntGraph() is a synonym for SimpleGraph{Int}() and
StringGraph() is a synonym for SimpleGraph{String}.

Vertices and edges are added to a graph with add! and deleted with delete!. Membership is checked
with has.
julia> using SimpleGraphs

julia> G = IntGraph()
SimpleGraph{Int64} (0 vertices, 0 edges)

julia> add!(G,5)
true

julia> add!(G,1,2)
true

julia> G
SimpleGraph{Int64} (3 vertices, 1 edges)

Notice that adding an edge automatically adds its end points to the graph.
The number of vertices and edges can be queried with NV and NE. The vertex and edge sets are returned

as arrays by vlist(G) and elist(G).
julia> vlist(G)
3-element Array{Int64,1}:
1
2
5

julia> elist(G)
1-element Array{(Int64,Int64),1}:
(1,2)

Use deg(G,v) for the degree of a vertex and deg(G) for the graph’s degree sequence.
julia> deg(G,1)
1

Document version 2018:09:10:11:21. Note: This documentation might not quite be in sync with the functionality found in the
SimpleGraphs module. I will likely want to redo this at some point.

1



A SIMPLE GRAPH TYPE FOR JULIA 2

julia> deg(G)
3-element Array{Int64,1}:
1
1
0

The neighbors of a vertex can be sought with neighbors(G,v) or, alternatively, with G[v]. Edges
can be queried with G[v,w].
julia> G[1]
1-element Array{Int64,1}:
2

julia> G[1,2]
true

julia> G[1,5]
false

The Complete method can be used to create complete graphs and complete bipartite graphs with Int
vertices.
julia> Complete(5)
SimpleGraph{Int64} (5 vertices, 10 edges)

julia> Complete(3,3)
SimpleGraph{Int64} (6 vertices, 9 edges)

We also provide Cycle(n) and Path(n) to create the graphs Cn and Pn. An instance of a Erdős-Rényi
random graph Gn,p is returned by RandomGraph(n,p).

The adjacency, Laplacian, and vertex-edge incidence matrices can be found with adjaceny, Laplacian,
and incidence. It is important to note that the indexing of the rows/columns of these matrices might not
correspond to the natural order of the underlying vertices (or edges).

The incidence matrix method takes an optional argument as to whether the matrix is signed (a 1 and a −1
in each column) or unsigned (only positive 1s). Also, it is a sparse matrix that can be converted to dense
storage with full.

Finally, the vertex_type function can be used to query the data type of the vertices in the graph.
julia> G = StringGraph()
SimpleGraph{String} (0 vertices, 0 edges)

julia> vertex_type(G)
String (constructor with 1 method)

2. Look but don’t touch

The SimpleGraph objects have various internal fields. It is not safe to change these directly, but there
is no problem examining their values.

• :V
This holds the vertex set of the graph. If G is a SimpleGraph{T} then G.V is of type Set{T}.

• :E
This holds the edge set of the graph. If G is a SimpleGraph{T} then G.E is a Set{(T,T)}.

• :Nflag
This boolean value indicates whether or not fast neighborhood lookup has been activated for this

graph. See the discussion below and the description of the function fastN!.



A SIMPLE GRAPH TYPE FOR JULIA 3

• :N
This is a Dict that keeps track of the neighborhood of each vertex. It is only active if the Nflag

is set to true.
• :cache

This is a dictionary that holds previously computed properties of the graph. See Section 6 for
details and user functions for manipulating the cache.

• cache_flag
Used to determine if caching should be enabled.

This design is redundant. One can test if two vertices are adjacent by looking for the edge in E. One can
determine the neighbors of a given vertex by iterating over the edge set E. However, this approach is slow.
By providing the extra N data structure, these operations are very fast.

By calling fastN!(G,false) the redudant neighborhood structure N is deleted. All functions will still
work, but perhaps more slowly. Calling fastN!(G,true) rebuilds the N structure.

We recommend using the default structure unless the graph is so large that it consumes too much memory.

3. List of all functions

Creators. These are functions that create new graphs.
• SimpleGraph

Use G=SimpleGraph() to create a graph whose vertices can be of Any type. To create a graph
with vertices of a particular type T use G=SimpleGraph{T}().

• IntGraph
This a synonym for SimpleGraph{Int}. Use G=IntGraph() to create a vertex whose

vertices are integers (type Int).
Use IntGraph(n) to create a SimpleGraph{Int} graph with vertex set {1, 2, . . . , n} and no

edges.
• StringGraph

This is a synonym for SimpleGraph{String}. Use G=StringGraph() to create a graph
whose vertices are character strings.

One can also call G=StringGraph(filename) to read in a graph from a file. The file must
have the following format:

– Each line should contain one or two tokens (words) that do not contain any whitespace.
– If a line contains one token, that token is added to the graph as a vertex.
– If a line contains two tokens, an edge is added with those tokens as end points. If those two

tokens are the same, no edge is created (since we do not allow loops) but a vertex is added (if
not already in the graph).

– If there are three or more tokens on a line, only the first two are read and the rest are ignored.
– If the line is blank, it is ignored.
– If the line begins with a #, the entire line is ignored. (This does put a mild limitation on the

names of vertices.)
• Complete

The Complete function can be used to create a complete graph Kn, a complete bipartite graph
Kn,m, or a complete multipartite graph K(n1, n2, . . . , np).

– Use Complete(n) to create a complete graph Kn.
– Use Complete(n,m) to create a complete bipartite graph Kn,m.
– Use Complete([n1,n2,...,np]) to create a complete multipartite graph K(n1, n2, . . . , np).
Note the last version requires that the part sizes be in an array. In this way we distinguish

Complete(n) and Complete([n]). The first makes Kn and the second an edgeless graph with
n vertices, i.e., Kn. However, Complete(n,m) and Complete([n,m]) build exactly the same
graphs.
julia> G = Complete(4,5)
SimpleGraph{Int64} (9 vertices, 20 edges)



A SIMPLE GRAPH TYPE FOR JULIA 4

julia> H = Complete([4,5])
SimpleGraph{Int64} (9 vertices, 20 edges)

julia> G == H
true

• Cube
Create the cube graph. The 2n vertices of Cube(n) are String objects. For example:

julia> G = Cube(3)
SimpleGraph{String} (8 vertices, 12 edges)

julia> vlist(G)
8-element Array{String,1}:
"000"
"001"
"010"
"011"
"100"
"101"
"110"
"111"

julia> elist(G)
12-element Array{(String,String),1}:
("000","001")
("000","010")
("000","100")
("001","011")
("001","101")
("010","011")
("010","110")
("011","111")
("100","101")
("100","110")
("101","111")
("110","111")

• Path
Use Path(n) to create a path graph with n vertices.
Also, given a list of vertices verts, then Path(verts) creates a path graph with edges

(verts[k],verts[k+1]) when k=1:n-1. It’s the user’s responsibility that there be no re-
peated entries in verts.

• Grid
Use Grid(n,m) to create an n × m grid graph.

• Cycle
Use Cycle(n) to create a cycle graph with n vertices. It is required that n ≥ 3.

• Wheel
Use Wheel(n) to create the wheel graph with n vertices. That is, a graph composed of an

(n − 1)-cycle with one additional vertex adjacent to every vertex on the cycle. This requires n ≥ 4.
• BuckyBall

Create the Buckyball graph with 30 vertices and 90 edges.
• RandomGraph

Use RandomGraph(n,p) to create an Erdős-Rényi random graph with n vertices with edge
probability p. If the argument p is omitted, it is assumed p = 1

2 .



A SIMPLE GRAPH TYPE FOR JULIA 5

• RandomTree
Use RandomTree(n) to create a random tree on vertex set 1:n. All nn−2 trees are equally

likely.
This works by creating an n − 2-long sequence of random values, each in the range 1:n. It then

converts that Prüfer code to a tree using code_to_tree. This latter function is exposed for use by
the user. It takes as input an array of integers and returns a tree assuming, that is, that the input is
valid. No checks are done on the input so user beware.

• RandomSBM
Use RandomSBM(bmap,pmat) to create a random stochastic block model graph. Here bmap

is an n-long list of integers between 1 and b that assigns the n vertices to blocks. The i, j-entry of the
matrix pmat gives the probability that a vertex in block i is adjacent to a vertex in block j.

This can also be invoked by RandomSBM(n,pvec,pmat) where n is the number of vertices,
pvec is a probability vector whose j-th entry is the probability a vertex is placed in the j-th block.

• Kneser
Use Kneser(n,k) to create the Kneser graph with those parameters (with 0 ≤ k ≤ n). This

is a graph with
(

n
k

)
vertices that are the k-element subsets of {1, 2, . . . , n}. Two vertices u and v are

adjacent iff u ∩ v = ∅.
Part of this implementation is a function subsets(A,k) where A is a Set and k is an Int.

This creates the set of all k-element subsets of A.
• Petersen

Use Peteren() to create Petersen’s graph. This is created by calculating Kneser(5,2).
To remap the vertex names to {1, 2, . . . , 10} use relabel(Petersen()).

• Frucht
Use Frucht to create the Frucht graph, 12-vertex, 3-regular graph with no non-nontrivial auto-

morphisms.
• Hoffman

Use Hoffman() to return a graph that is cospectral, but not isomorphic, to the 4-cube.
• HoffmanSingleton

Use HoffmanSingleton() to create the Hoffman-Singleton graph: A 7-regular, diameter-2,
girth-5 graph.

Graph operations. These are operations that create new graphs from old.

• line_graph
Use line_graph(G) to create the line graph of G. Note that if G has vertex type T, then this

creates a graph with vertex type (T,T).
• complement and complement!

Use complement(G) to create the graph G. The original graph is not changed and the vertex
type of the new graph is that same the vertex type of G.

We can use G’ in lieu of complement(G).
Use complement!(G) to complement a graph in place (i.e., replace G with its own comple-

ment).
• copy

Use copy(G) to create an independent copy of G.
• induce

Use induce(G,A) to create the induced subgraph of G on vertex set A.
• spanning_forest

Given a graph, this creates a maximal, acyclic, spanning subgraph. If the original graph is con-
nected, this produces a spanning tree.

• cartesian
Use cartesian(G,H) to compute the Cartesian product G × H of G and H. For example, to

create a grid graph, do this: cartesian(Path(n), Path(m)).



A SIMPLE GRAPH TYPE FOR JULIA 6

Note that G*H is equivalent to cartesian(G,H).
• relabel

Create a new graph, isomorphic to the old graph, in which the vertices have been renamed. Use
relabel(G,label) where G is a simple graph and labels is a dictionary mapping vertices in
G to new names. Trouble ensues if two vertices are mapped to the same label (we don’t check).

Note that if the vertex type of G is S, then label must be of type Dict{S,T}. The new graph
produced with have type SimpleGraph{T}.

Calling this with one argument, relabel(G), will produce a relabeled version of G using con-
secutive integers starting with 1.

• disjoint_union
The disjoint union of two graphs is formed by taking nonoverlapping copies of the two graphs

and merging them into a single graph (with no additional edges). In Julia, we do this by appending
the intger 1 or 2 to the vertex names. Thus, if a vertex of the first graph is "alpha", then in the
disjoint union its name will be ("alpha",1).

Use disjoint_union(G,H) to form the disjoint union. If the vertex types of the two graphs
are both T, then the vertex type of the result is type (T,Int). But if the two graphs have different
vertex types, then the result has vertex type Any.

We append a 1 or a 2 to vertex names to ensure that we have two independent copies of the graphs.
If the user knows that the two graphs have no vertices in common, then unionmight be a preferrable
choice.

• join
The join of two graphs is formed by taking nonoverlapping copies of the two graphs and then

adding all possible edges between the two copies. To ensure the two copies of the given graphs
are on distinct vertex sets, we append a 1 or a 2 to the vertex names (see the description for
disjoint_union).

Use join(G,H) to form the join. If the two graphs have the same vertex type T, then the result
has vertex type (T,Int). Otherwise, the resulting graph has vertex type Any.

• union
Given graphs G and H, the union has vertex set V(G) ∪ V(H) and edge set E(G) ∪ E(H).

• trim
Trimming a graph means to repeatedly remove vertices of a given degree d or less until either all

vertices have been removed or the remaining vertices induce a subgraph all of whose vertices have
degree greater than d.

Use trim(G,d) to trim the graph, with trim(G) equivalent to trim(G,0). The latter simply
removes all isolated vertices.

Manipulators and inspectors. These are functions that are used to modify a graph and to inspect its struc-
ture.

• isequal
Test two graphs to see if they are the same; that is, the graphs must have equal vertex and edge

sets. They need not be the same object. While this can be invoked as isequal(G,H) it is more
convenient to use G==H.

Note: If the vertex type of either graph cannot be sorted by < then equality testing is slower (unless
fast neighhborhood lookup is engaged).

• add!
Use this to add vertices or edges to a graph. The syntax add!(G,v) adds a vertex and calling

add!(G,v,w) adds an edge.
These return true if the operation succeeded in adding a new vertex or edge.

• delete!
Use this to delete vertices or edges from a graph. The syntax delete!(G,v) to delete a vertex

(and all edges incident thereon) and delete!(G,v,w) to delete an edge.



A SIMPLE GRAPH TYPE FOR JULIA 7

Returns true if successful. If the vertex or edge slated for removal was not in the graph, returns
false.

• contract!
Mutates a graph by contractin an edge. Calling contract!(G,u,v) adds all vertices in v’s

neighborhood to u’s neighborhood and then deletes vertex v. Typically (u,v) is an edge of the
graph but this is not necessary.

This returns true is the operation is successful, but false if either u or v is not a vertex of the
graph or if u==v.

• has
Test for the presence of a vertex of edge. Use has(G,v) to test if v is a vertex of the graph and

has(G,v,w) to test if the edge is present. Returns true if so and false if not.
Note that G[v,w] is a synonym for has(G,v,w).

• vlist
Use vlist(G) to get the vertex set of the graph as a one-dimensional array. If possible, the

vertices are sorted in ascending order.
• elist

Use elist(G) to get the edge set of the graph as a one-dimensional array of 2-tuples. If possible,
the edges are sorted in ascending lexicographic order.

• neighbors
Use neighbors(G,v) to get the set of neighbors of vertex v as a one-dimensional array.
Note that G[v] is a synonym.

• deg
Use deg(G,v) to get the degree of vertex v and deg(G) to get the degree sequence of G as a

one-dimensional array (in decreasing order).
• fastN!

This is explained in §2.
Use this to switch on fastN!(G,true) or to switch off fastN!(G,false) rapid neighbor-

hood lookup. If off, neighborhood lookup can be slow. If on, the data structure supporting the graph
is roughly tripled in size.

The difference is especially striking when looking for paths between vertices with find_path.
• NV and NE

Use NV(G) to get the number of vertices and NE(G) to get the number of edges.
• is_connected

Use is_connected(G) to determine if the graph is connected.
• num_components

Use num_components(G) to determine the number of connected components in the graph.
• components

The function components(G) determines the vertex sets of the connected components of the
graph. The return value is a set of sets. That is, if the graph has vertex type T, then this function
produces a Partition (requires SimplePartitions).

• find_path
The function find_path(G,u,v) finds a shortest path from u to v if one exists. An empty

array is returned if there is no such path. An error is raised if either vertex is absent from the graph.
• dist and dist_matrix

These are used to find distances between vertices in a graph. The distance between vertices u and
v is defined to be the number of edges in a shortest (u, v)-path. If there is no such path, one typically
says that d(u, v) is undefined of ∞. However since these functions report distances as Int values,
we signal the absence of a (u, v) path by the value −1.

Use dist(G,v,w) to find the distance between the specified vertices in the graph.
Use dist(G,v) to find the distances from vertex v to all vertices in the grpah. This is returned

as a Dict.



A SIMPLE GRAPH TYPE FOR JULIA 8

Use dist(G) to find all distances between all vertices in the graph. For example:
julia> G = Cycle(10)
SimpleGraph{Int64} (10 vertices, 10 edges)

julia> d = dist(G);

julia> d[(3,9)]
4

The function dist_matrix creates an n× n-matrix whose i, j-entry is the distance between the
ith and jth vertex of the graph where the order is produced by vlist.

• wiener_index
The function wiener_index computes the sum of the distances between distinct vertices in the

graph:
1
2

∑
v∈V

∑
w∈V

d(v,w).

• diam
Compute the diameter of a graph. Note that diam(G) returns −1 if the graph is not connected.

• eccentricty
The eccentricity of a vertex v of a graph G is the maximum distance from v to another vertex of

G. eccentricity(G,v) returns this value, but if the graph is not connected it returns −1.
• radius

The radius of a graph is the minimum eccentricty of a vertex. radius(G) returns −1 if the
graph is not connected.

• is_ayclic
Determine if the graph is acyclic.

• is_cut_edge
Determine if a given edge is a cut edge. This can be called either as is_cut_edge(G,u,v)

where u and v are vertices or as is_cut_edge(G,e)where e is an edge (i.e., a 2-tuple of vertices.
If (u,v) is not an edge of the graph, an error is raised.

• euler
This is used to find Eulerian trails and tours in a graph. Typical call is euler(G,u,v) to find

an Eulerian trail starting at u and ending at v. The first element of that arrary is u and the last is v.
If a trail is found, the length of the array is NE(G)+1. Otherwise, an empty array is returned.

The graph may have isolated vertices, and these are ignored.
The call euler(G,u) is shorthand for euler(G,u,u). A simple call to euler(G) will

attempt to find an Euler tour from some vertex in the graph.
If the graph is edgeless, then euler(G,u) and euler(G,u,u) return the 1-element array

[u]. Calling euler(G) will pick u for you. An empty array is returned if the graph has no
vertices. (This is mildly unfortunate as an empty array indicates failure to find a trail for nonempty
graphs.)

• bipartition and two_color
Used to find a bipartition or two-coloring of a graph if the graph is bipartite; otherwise, return an

error. The function bipartition returns a Partition with the two color classes. The function
two_color returns a map (Dict) from the vertex set to the set {1, 2}.
julia> G = Cycle(6)
SimpleGraph{Int64} (6 vertices, 6 edges)

julia> two_color(G)
[5=>1,4=>2,6=>2,2=>2,3=>1,1=>1]

julia> bipartition(G)
{{2,4,6},{1,3,5}}



A SIMPLE GRAPH TYPE FOR JULIA 9

• girth and girth_cycle
Determine the girth of a simple graph and find a shortest cycle in that graph. If the graph is

acyclic, girth returns 0 and girth_cycle returns an empty array.
• greedy_color and random_greedy_color

This is a simple graph coloring function. Given an ordering of the vertices of the graph, greedy_color
creates a proper, greedy coloring. If the ordering is not provided, then a degree-decreasing ordering
is given. Use greedy_color(G,seq) where seq is a permutation of the vertex set (if you wish
to specify the order) or simply greedy_color(G) in which case a degree-decreasing ordering is
used.

The second function performs multiple greedy colorings on random orderings of the vertex set.
Use random_greedy_color(G,nreps) where nreps is the number of random orders gener-
ated.

In all cases a Dict is returned that maps the vertex set to a range of the form [1:k].

Graph matrices. These functions return standard matrices associated with graphs.
• adjacency

Use adjacency(G) to return the adjacency matrix of the graph.
• laplace

Use laplace(G) to return the Laplacian matrix of the graph.
• incidence

Use incidence(G) to return the signed incidence matrix of the graph. This is equivalent to
incidence(G,true). Calling incidence(G,false) returns the unsigned incidence matrix.

Assignment of +1 and −1 in each column tries to put the +1 on the vertex that sorts lower than
the vertex that gets a −1. If the vertices are not comparable by < (less than), the assignment is
unpredictable.

Note that incidence returns a sparse matrix. Use full(incidence(G)) if a full-storage
matrix is desired.

Converting. Note: The feature is currently turned off because of errors generated by the Graphs module.
This is explained in §5.
• convert_simple

Use convert_simple(G) to create a Julia Graphs.simple_graph version of a graph,
together with dictionaries to translate between one vertex set and the other.

4. Errors and gotchas

Errors raised. The functions in the SimpleGraphs module generally do not raise errors. Function such
as add! and delete! return false if the graph is not changed by the requested modification.

However, there are some instances in which an error might be raised.
• An error is raised if one attempts to add a vertex of a type that is incompatible with the vertex type

of the graph. Here’s an example:
julia> G = StringGraph()
SimpleGraph{String} (0 vertices, 0 edges)

julia> add!(G,4)
ERROR: no method convert(Type{String},Int64)

• An error is raised if one attempts to find the neighborhood or the degree of a vertex that is not in the
graph. Here’s an example:
julia> G = Complete(5)
SimpleGraph{Int64} (5 vertices, 10 edges)

julia> G[6]



A SIMPLE GRAPH TYPE FOR JULIA 10

ERROR: Graph does not contain requested vertex

• An error is raised if one attempts to create a cycle with fewer than three vertices.
Of course, code can be wrapped in a try-catch block to handle these possibilities gracefully.

Please specify the vertex type. Although G=SimpleGraph() allows Any type vertex, we recommend
specifying the type of vertex desired. Here’s why.

Because we do not allow loops, the code for add!(G,v,w) first checks if v==w and if so, does not add
the edge and returns the value false. So far so good.

Internally, the vertices of the graph are held in a Julia Set container. Now Set either does or does not
contain a given object; the object cannot be in the Set twice. Where this gets us into a bit of trouble is that
the integer value 1 and the floating point value 1.0 are different objects and therefore may cohabit the same
Set. Here’s an illustration:
julia> A = Set()
Set{Any}()

julia> push!(A,1)
Set{Any}(1)

julia> push!(A,1.0)
Set{Any}(1.0,1)

The implication of this is that the vertex set of a SimpleGraph might contain both the integer 1 and the
floating point number 1.0. However, we cannot add an edge between these two vertices because the test
1==1.0 returns true.

Here’s how this plays out:
julia> G = SimpleGraph()
SimpleGraph{Any} (0 vertices, 0 edges)

julia> add!(G,1)
true

julia> has(G,1.0)
false

julia> add!(G,1.0)
true

julia> add!(G,1,1.0)
false

In principle, we could fix this problem by using a more liberal filter in add!(G,v,w) that allows the
addition of an edge with v==w provided typeof(v) and typeof(w) are different. But that would not
entirely solve the problem.

Consider this example:
julia> G = SimpleGraph()
SimpleGraph{Any} (0 vertices, 0 edges)

julia> add!(G,1)
true

julia> add!(G,BigInt(1))
true



A SIMPLE GRAPH TYPE FOR JULIA 11

julia> vlist(G)
2-element Array{Any,1}:
1
1

It appears that the number 1 is in the vertex set twice!
The preferred solution is to avoid using G=SimpleGraph() and, instead, to use G=SimpleGraph{T}()

where T is the data type of the vertices. The ready-to-use IntGraph and StringGraph are handy for
these popular vertex types.

julia> G = IntGraph()
SimpleGraph{Int64} (0 vertices, 0 edges)

julia> add!(G,1)
true

julia> add!(G,BigInt(1))
ERROR: 1 is not a valid key for type Int64

julia> add!(G,1.0)
ERROR: 1.0 is not a valid key for type Int64

Unsortable vertex types. Edges in a SimpleGraph are held as a tuple. If the end points of the edge can
be compared using the < operator, then the smaller end point comes first in the pair. Otherwise, the order is
arbitrary. In the latter case, graph equalty checking is slower.

In general, it’s best to specify vertex types for graphs, preferring SimpleGraph{T}() for some type T
that supports < comparison.

5. Convert to Graphs.jl

Note: The feature is currently turned off because of errors generated by the Graphs module.
The Graphs module defined in Graphs.jl is another tool for dealing with graphs. We provide the

function convert_simple to convert a graph from a SimpleGraph to a simple_graph type graph
from the Graphs module distributed with Julia.

A simple_graph’s vertex set is always of the form 1:n, so the output of convert_simple pro-
vides two dictionaries for mapping from the vertex set of the SimpleGraph to the vertex set of the
simple_graph, and back again.

6. Results Caching

Some graph-theoretic computations can be expensive. To avoid computing the same item twice for a
given graph, the results of these calculations are saved in a data structure attached to the graph. Note that any
change to the graph will automaticaly clear the cache.

Some values held in the cache may be mutable Julia objects. Such objects are deep copied when fetched
from the cache.

The following functions are available to the user to manipulate the cache.

• cache_clear(G): Removes all items held in the cache.
• cache_clear(G,item): Remove a specific item from the cache. The variable item is a
Symbolwhose name corresponds to the function it caches (for example, :components or :girth).

• cache_on(G): Enable the caching system for this graph.
• cache_off(G): Disable the caching system for this graph. Note thie does not wipe the graph’s

cache, so to save space, also use cache_clear(G).



A SIMPLE GRAPH TYPE FOR JULIA 12

• cache_check(G,item): See if there is a value associated with the symbol item held in the
graph’s cache.

• cache_recall(G,item): Copy a value associated with the symbol item from the cache.
Warning: If there is no such symbol held in the cache an error will be thrown. Be sure to first
check using cache_check.


