
SkewLinearAlgebra.jl: Technical report

Simon Mataigne

April 2023

Minimizing-geodesic computation algorithms on Stiefel make an intensive use of exponentials of skew-
symmetric matrices. This is an example where we are interested in the fast computation of the matrix
exponential. In the case of symmetric matrices, efficient routines are available in many languages. This is
the case of Numpy [9], MATLAB [10], Julia [2], C/C++ and FORTRAN. This is inherited from the C/FORTRAN
libraries BLAS [4] and LAPACK [1]. These libraries are imported in the previously cited languages/packages to
perform efficient numerical linear algebra operations. However, LAPACK provides no specialized routines for
skew-symmetric matrices. In consequence, the previous languages/packages provide no specialized methods
for skew-symmetric matrices either. SkewLinearAlgebra.jl is a proposal to fill this unattended part of nu-
merical linear algebra for eigenproblems. In 1976, [15] proposed a FORTRAN package with the same aims. This
package was a bit forgotten due to the decline of FORTRAN and not updated since to the best of my knowledge.
Besides, SkewLinearAlgebra.jl is not limited to real matrices, proposes a faster blocked tridiagonalization
and many more options.
I developed the SkewLinearAlgebra.jl package at the Massachusetts Institute of Technology (MIT) un-
der the supervision of Prof. Steven G. Johnson. It can be found at the address https://github.com/
JuliaLinearAlgebra/SkewLinearAlgebra.jl.

1 Mimicking the symmetric problem
There are many ways to compute the matrix exponential. The paper [11] proposes at least 19 of them with
various computational performances and numerical stability properties. In state-of-the-art linear algebra
libraries such as LinearAlgebra.jl [2], the matrix exponential of symmetric matrices is implemented as fol-
lows. Let A ∈ Sym(n). Compute the eigendecomposition A = V ΛV T , then return A = V exp(Λ)V T . We see
that the symmetric exponential problem essentially reduces to the efficient computation of the eigendecompo-
sition of A. The LAPACK routine to obtain the eigendecomposition is syevr (“symmetric eigenvalue reduction”).
The first step of syevr is to call sytrd, the routine performing a tridiagonal reduction A = QTQT where
Q ∈ O(n) and T is symmetric tridiagonal. Once the tridiagonalization is performed, various very efficient
algorithms exist to obtain the eigendecomposition of T . syevr implements a divide and conquer algorithm
[5]. The praised QR algorithm [7] is another possible choice of comparable performance in single-threaded
framework. It was not the selected algorithm in LAPACK due to its poor parallelizability. However, we will
see that in the case of skew-symmetric matrices, QR iterations, or more precisely Francis’s iterations [16],
are particularly cheap in terms of computations.

2 The tridiagonalization: an Imitation Game©

As explained in section 1, the first step is to obtain the tridiagonalization of A ∈ Skew(n). The latter
is a particular case of the so-called Hessenberg reduction. The Hessenberg reduction computes an almost
triangular reduction of A = QHQT by the means of an orthogonal similarity transformations Q ∈ O(n). The

1

https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl
https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl

first subdiagonal remains non-zero.

H = QTAQ =


∗ ∗ ∗ ... ∗ ∗ ∗
∗ ∗ ∗ ... ∗ ∗ ∗
0 ∗ ∗ ... ∗ ∗ ∗
0 0 ∗ ... ∗ ∗ ∗
...
0 0 0 ... 0 ∗ ∗

 . (1)

When A is skew-symmetric, it is clear that H is tridiagonal since the orthogonal similarity transformation Q
preserves the skew-symmetry. Hence, we say H := T and A = QTQT . We will now see how this similarity
transformation is computed in numerical linear algebra.

2.1 A naive skew-symmetric tridiagonalization
The earliest trace I could find of the specialized symmetric tridiagonalization is [17]. The proposed way is to
use Householder reflectors. A Householder reflector is an orthogonal matrix Q = I − τvvT ∈ O(n) such that
for a chosen x ∈ Rn, we have

Qx = (I − τvvT)x =


∥x∥2
0
...
0

 . (2)

The solution to this is to take s = x + ∥x∥2sign(x1)e1, v = s
s1

and τ =
√
s1. This transformation can be

applied to tridiagonalize A ∈ Skew(n) by successive applications:

Â1 = (I − τ1v1v
T
1)A(I − τ1v1v

T
1)

T =


0 −∥a1∥2 0 ... 0

∥a1∥2
0

... Ã1

0

 ,

Â2 = (I − τ2v2v
T
2)Â1(I − τ2v2v

T
2)

T =


0 −∥a1∥2 0 0 ... 0

∥a1∥2 0 −∥ã2∥2 0 ... 0
0 ∥ã2∥2
0 0

... ... Ã2

0 0

 , etc.

For the symmetric case, it is shown in [17] that a step can be conveniently written as a symmetric update of
the matrix Âi−1:

Âi = Âi−1 − τiviv
T
i Âi−1 − τiÂi−1viv

T
i + τ2i viv

T
i Âi−1viv

T
i

= Âi−1 − viq
T
i − qiv

T
i ,

where qi = τiÂi−1vi − τ2
i

2 vTi Âi−1vivi. For the skew-symmetric case, we easily see that vTi Âi−1vi = 0. Hence,
we obtain skew-symmetric updates:

Âi = Âi−1 + viq
T
i − qiv

T
i , (3)

where qi = τiÂi−1vi. In terms of operation count, this procedure is the most efficient known and is very simple
to implement. This was implemented under the name TRIZD in the previously proposed FORTRAN package [15].
According to [14, Lecture 26], the number of floating-point operations needed is 4n3

3 . However, we can observe
that it only features matrix-vector products that are called BLAS-2 operations in numerical linear algebra.
These operations are not efficient in terms of flops (floating-point operations per second). Only BLAS-3
operations (matrix-matrix) reach the peak performance (highest achievable flops of the CPU). Therefore, the
method we presented just above is not implemented as is in libraries like LAPACK, and SkewLinearAlgebra.jl
by extension.

2

2.2 An efficient tridiagonalization
A major innovation for “reduction algorithms” such as tridiagonalization was the development of “blocked
algorithms” that maximize the use of BLAS-3 routines. LAPACK’s sytrd routine belongs to this family of
algorithms. The scientific papers that allowed to go from BLAS-2 to BLAS-3 are [3] and [12]. These papers
introduced a method to group successive Householder transformations called the “WV representation for
products of Householder matrices”. It was emphasized that it was possible to write

(I − τ1v1v
T
1)...(I − τlvlv

T
l) = I +WV T , (4)

for some well build W,V ∈ Rn×l. We incite the reader to consult [12] for more details on this construction.
The consequence of this result is that if we knew in advance the Householder transformations we wanted to
apply to tridiagonalize A, we could do it using only BLAS-3 operations thanks to Equation (4). The bottle-
neck is that we are only able to compute the reflector vk to eliminate the kth column (k < n) once we have
eliminated all the previous columns. The elimination of these columns can only be performed using BLAS-2
operations. The trade-off between BLAS-2 and BLAS-3 operations gives birth to the “blocked algorithms”. The
method is the following. Take the nb < n first columns of A (nb is the block size). Reduce these nb columns
with BLAS-2 operations but do not update any element of the (n− nb)× (n− nb) bottom right submatrix.
Meanwhile build a WV representation with the Householder transformations computed. Once the nb first
columns are completely reduced, update the submatrix at once using the WV representation and BLAS-3
routines. Repeat the operation on the submatrix Anb:n,nb:n until the matrix is completely tridiagonalized.

The procedure described above is implemented in sytrd (or hetrd in the case of a complex Hermitian ma-
trix). The code is memory-efficient in the sense that it maximizes cache reuse and minimizes the memory stor-
age needed to tridiagonalize. The package SkewLinearAlgebra.jl implements hessenberg!(A::SkewHermitian),
an adapted version of sytrd/hetrd for skew-symmetric/skew-Hermitian matrices. However, an “unfair”
advantage makes sytrd faster. As explained in [13], the blocked Hessenberg reduction features a re-
maining matrix-vector (m-v in short) product representing about 20% of the operations, but 70% of the
running time (This highlights that BLAS-3 performs the 80% remaining operations in 30% of the time
only). BLAS proposes a routine called symv to perform a symmetric m-v product in half the time of the
general m-v product gemv. symv has no equivalent skew-symmetric implementation at this day. Hence,
hessenberg!(A::SkewHermitian) is compelled to use gemv. This is the only valuable difference creating a
gap of performance between LAPACK’s symmetric tridiagonalization and the one implemented in SkewLinearAlgebra.jl.
For the reader interested in scientific computing and detailed implementations, we encourage to visit the fol-
lowing web pages:

• sytrd implementation: https://netlib.org/lapack/explore-html/d3/db6/group__double_s_ycomputational_
gaefcd0b153f8e0c36b510af4364a12cd2.html

• hessenberg!(A::SkewHermitian) implementation: https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.
jl/blob/main/src/hessenberg.jl

3 The eigenproblem for tridiagonal matrices
We are now able to tridiagonalize A ∈ Skew(n) as A = QTQT . We want to obtain the eigenvalue decompo-
sition of T = V iΘV ∗. Computing directly this decomposition would be very expensive as it would ask for
complex arithmetic. Our aim is to produce an algorithm making only use of real arithmetic. The key here
is to obtain the real Schur decomposition T = Q̃SQ̃T . It is quite straightforward to go from the real Schur
decomposition to the eigendecomposition since the real Schur form S is a block diagonal matrix with blocks[
0
]

or
[
0 θ
−θ 0

]
for some θ ∈ R. In SkewLinearAlgebra.jl, the algorithm chosen to compute the real Schur

decomposition is the double shifted QR algorithm, also called bulge chasing algorithm or Francis’s algorithm
as a tribute to its discoverer. The historical papers introducing the QR algorithm and then its double-shifted
version are [7] and [8]. The famous 2000 paper [6] ranked Francis’s algorithm among the 10 most important

3

https://netlib.org/lapack/explore-html/d3/db6/group__double_s_ycomputational_gaefcd0b153f8e0c36b510af4364a12cd2.html
https://netlib.org/lapack/explore-html/d3/db6/group__double_s_ycomputational_gaefcd0b153f8e0c36b510af4364a12cd2.html
https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl/blob/main/src/hessenberg.jl
https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl/blob/main/src/hessenberg.jl

algorithms of all times. Funny enough, according to the reviewing paper [16], Francis only learned in 2007
the importance of his contributions after Gene Golub’s effort to retrieve his trace.

3.1 Francis’s algorithm
In this section, we describe Francis’s algorithm for general matrices. We explain further the significant
advantage that skew-symmetry provides in its implementation. The first step is to present the QR algorithm
with shifts, Algorithm 1 originally presented in [7].

Algorithm 1 QR algorithm with shifts
H0 = Q∗

0AQ0

for k = 1, 2, ... do
QkRk = Hk − µkI
Hk+1 = RkQk + µkI

end for

[7, Theorem 3] provides the original result about the convergence of Hk to the Schur form. It was then proved
that proper shifts µk lead to the quadratic convergence of the diagonal elements of Hk to the eigenvalues of
A. The problem with Algorithm 1 is that it must deal with complex arithmetic to make appear the complex
eigenvalues on the diagonal. The solution to this problem proposed in [8] is to group iterations two by two
using conjugated shifts. Doing so, we converge to the real Schur form (real two by two diagonal blocks on
the main diagonal), not the complex Schur form. This trick allows to keep real arithmetic. The new iteration
takes the form

QkRk = (Hk − µkI)(Hk + µ̄kI) =: p(Hk)

Hk+2 = QT
kHkQk

The use of conjugated shifts has for consequence that (Hk − µkI)(Hk + µ̄kI) is real. Indeed,

p(Hk) := (Hk − µkI)(Hk + µ̄kI) = H2
k − 2Re(µk)Hk + |µk|2I ∈ Rn×n. (5)

Used as is, the trick would be expensive as it would ask to compute H2
k . [8, Theorem 11], today known

as the Implicit Q theorem, provides an astonishing result avoiding to compute H2
k . This theorem says that if

Hk is taken such that its subdiagonal elements are positive, then Qk is uniquely defined by the first column
of p(Hk). Hence, it is only needed to compute the first column of p(Hk) and the Householder reflection
eliminating this column, that we denote by UT

1 . Applying the similarity transformation U1 to Hk leads to

UT
1 HkU1 =



∗ ∗ ∗ ∗ ∗ ... ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ... ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ... ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ... ∗ ∗ ∗
0 0 0 ∗ ∗ ... ∗ ∗ ∗
0 0 0 0 ∗ ... ∗ ∗ ∗
...
0 0 0 0 0 ... 0 ∗ ∗


. (6)

Non-zero elements were introduced under the subdiagonal. Indeed, UT
1 was designed to eliminate the first

column of p(Hk), not of Hk. We call these subdiagonal non-zero elements the bulge. As Qk is uniquely
defined by U1 (Implicit Q theorem), all we have to do is to eliminate the bulge to retrieve a Hessenberg
form. We call UT

2 the transformation that eliminates the first column of the bulge. Applying the similarity

4

transformation yields

UT
2 UT

1 HkU1U2 =



∗ ∗ ∗ ∗ ∗ ... ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ... ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ... ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ... ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ... ∗ ∗ ∗
0 0 0 0 ∗ ... ∗ ∗ ∗
...
0 0 0 0 0 ... 0 ∗ ∗


. (7)

Observe that eliminating the first column of the bulge shifted this bulge to the right. Repeating this shifting
operation n−3 more times leads to total elimination of the bulge, hence the name of bulge chasing algorithm.
This process of chasing the bulge completely is known as Francis’s iteration. Qk, however never computed,
was implicitly applied on Hk by the iteration, hence the name of Implicit Q theorem. Finally, we obtain

Qk = U1U2...Un−1 and Hk+2 = QT
kHkQk. (8)

Algorithm 2 Francis’s algorithm

H0 = QT
0 AQ0

for k = 1, 2, ... do
Compute p(Hk)e1.
Compute UT

1 to eliminate p(Hk)e1.
Initiate the bulge by performing UT

1 HkU1.
Compute and apply successively U2, ..., Un−1 to Hk to chase the bulge.
The result Hk+1 = QT

kHkQk was implicitly obtained.
end for

3.2 The skew-symmetric case
In this section, we highlight the significant advantage that skew-symmetry provides to Francis’s iteration.
First, we recall that the Hessenberg form is here tridiagonal, we denote Hk := Tk. We take the “Wilkinson
shifts”. In the case of a tridiagonal skew-symmetric matrices, this shift is the last subdiagonal element of Tk

times ±i. The result on p(Tk) is
p(Tk) = T 2

k + |µk|2I (9)

The efficiency of Francis’s iterations resides in three key observations that allow to create very cheap iterations.
I discovered that these observations were already made in 1976 independently of me in the FORTRAN package
[15].

3.2.1 Observation 1: the initialized bulge is a scalar

We define a 3-Givens rotation as a matrix G =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 ∈ SO(3) It is easy to verify that

p(Tk) is a band-symmetric matrix with a band of two. Moreover, the first sub- and superdiagonal are zero.
In consequence, the first column of p(Tk) features only two non-zero elements. The easiest orthogonal matrix

5

to initialize the bulge is thus a 3-Givens rotations. Let us observe the result on T0:
c . s .
. 1 . .
−s . c .
. . . 1



. −t1 . .
t1 . −t2 .
. t2 . −t3
. . t3 .



c . −s .
. 1 . .
s . c .
. . . 1

 =


. −ct1 + st2 . −st3

ct1 − st2 . −st1 − ct2 .
. st1 + ct2 . −ct3

st3 . ct3 .


The bulge, that we denote by β, is reduced to a single number: β = st3.

3.2.2 Observation 2: a chased scalar bulge remains scalar

As the bulge β is a scalar, we only need a simple 3-Givens rotation to chase it. Let us observe the effect of
this 3-Givens rotation on Tk:

1
. c . s .
. . 1 . .
. −s . c .
. . . . 1



. −t1 . −β .
t1 . −t2 . .
. t2 . −t3 .
β . t3 . −t4
. . . t4 .



1
. c . −s .
. . 1 . .
. s . c .
. . . . 1

 =


. −ct1 − sβ . . .

ct1 + sβ . −ct2 + st3 . −st4
. ct2 − st3 . −st2 − ct3 .
. . st2 + ct3 . −ct4
. st4 . ct4 .


The scalar bulge remains scalar! The two previous observations are enough to obtain the eigenvalues of
any skew-symmetric tridiagonal matrix at very low cost. Tk can be stored as a vector and β as a scalar.
Performing Francis’s iteration reduces to chase the bulge using the formulas obtained above.

3.2.3 Observation 3: The resulting orthogonal transformation is a chessboard matrix

This last observation is only interesting if we want to retrieve the eigenvectors as well. We will observe that
the eigenvectors can be assembled at “low” cost (we will precise what we mean by “low”). A chessboard
matrix M ∈ Rn×n is a matrix such that Mi,j = 0 if i + j is odd. If we want to build the eigenvectors we
have to store the 3-Givens rotations applied on Tk. The first operation is to apply the initialization of the
bulge on the identity In. Let us notice that the complete Francis’s iteration will produce 3-Givens rotations
each shifted from one index to the right compared to the previous one in order to “follow” the bulge. Here
are the important observations:

• Applying a 3-Givens rotation on a chessboard matrix preserves the chessboard structure.

• Let us number the 3-Givens rotations by the index k. Given a initial chessboard matrix M , we denote
Gk these rotations augmented by appropriate identities such that Gk ∈ SO(n). Francis’s iteration
creates the new transformation MG1G2G3...Gn−2. If k is odd, Gk only modifies the odd columns, and
conversely if k is even. Let us define Mo ∈ SO(

⌈
n
2

⌉
) and M e ∈ SO(

⌊
n
2

⌋
) such that for all i, j with i+ j

even, we have

Mi,j =

Mo
⌈ i
2 ⌉,⌈

j
2 ⌉

if i, j odd

M e
i
2 ,

j
2

if i, j even

6

The nice property is that odd- and even-indexed rotations Gk are decoupled:

[MG1G2G3...Gn−2]i,j =

{
[MoGo

1G
o
3G

o
5...]⌈ i

2 ⌉,⌈
j
2 ⌉

if i, j odd
[M eGe

2G
e
4G

e
6...] i

2 ,
j
2

if i, j even

All the operations to retrieve the eigenvectors can thus can performed on 2 n
2 × n

2 matrices instead of a
n×n matrix. The memory needed during the iteration is divided by two. The number of operations to
perform is also divided by two. A non-negligible advantage is that the spatial locality of the operations
is increased, dividing also the number of access to the main memory by a factor 2. Finally, recall that
a Given rotation only require O(6 · n

2) flop.

Once the real Schur form of the tridiagonal matrix T is obtained, the eigenvalue decomposition is easily ob-
tained. The algorithms eigen(A) and eigvals(A) applied on A::SkewHermTridiagonal or A::SkewHermitian
available through SkewLinearAlgebra.jl implement Francis’s algorithm enhanced with the 3 previous ob-
servations.

4 The matrix exponential
In this section, we derive an efficient formula to compute the matrix exponential of a skew-symmetric matrix A
given the eigenvalue decomposition A = V iΘV ∗. We pose V = VRe+ iVIm with VRe, VIm ∈ Rn×n. Computing
directly V eiΘV ∗ would involve costly complex arithmetic. However, we know that eA is real by definition.
Therefore, we must have Im

(
V eiΘV ∗) = 0 and eA = Re

(
V eiΘV ∗). This yields

eA = Re
(
V eiΘV ∗)

= Re

(
(VRe + iVIm)[cos(Θ) + i sin(Θ)](VRe + iVIm)

∗
)

=
[
VRe cos(Θ)− VIm sin(Θ)

]
V T
Re +

[
VRe sin(Θ) + VIm cos(Θ)

]
V T
Im

This trick allows to obtain the exponential from the eigendecomposition with only two n × n real matrix
products instead of the four needed initially. This formula is implemented in exp(A::SkewHermitian). In
the same fashion, SkewLinearAlgebra.jl provides the set of efficiently computed trigonometric functions
sin, cos, cis, tan, cot, sinh, cosh, tanh, coth and log.

5 Performance analysis
In this section, we compare the implementation of the SkewLinearAlgebra.jl package against the LinearAlgebra.jl
package. The latter package implements direct calls to LAPACK for the benchmarked functions. Therefore,
we obtain a comparison of performance with LAPACK. We compare the algorithms in single threaded mode.
The matrices used in the test are generated using normal random variables through the function randn. The
tests are performed in double precision (64 bits) on a Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz 2.21
GHz processor.

We provide a little guidance to the reader to go through Tables 2 and 1. The difference between
the “General” and “Skew-symmetric” columns represents the improvement of performance provided by the
SkewLinearAlgebra.jl package. The “Symmetric” column provides a standard reference to compare the
performance a skew-symmetric eigensolver.

• “General”: Type A::Matrix, A = randn(n, n).

• “Symmetric”: Type A::Symmetric, A = Symmetric(randn(n, n)).

• “Skew-symmetric”:
Type A::SkewHermitian (new type), A = skewhermitian(randn(n, n)).

7

• “Symmetric tridiagonal”:
Type A::SymTridiagonal, A = SymTridiagonal(randn(n), randn(n-1))1.

• “Skew-symmetric tridiagonal”:
Type A::SkewHermTridiagonal (new type), A = SkewHermTridiagonal(randn(n-1)).

In Julia, the ! symbol after a function specifies that the method is performed in-place.

Size n 10 100 500 1000
Scale ·10−6s ·10−4s ·10−2s ·10−1s
Type Sym Skew Sym Skew Sym Skew Sym Skew

eigvals! 0.232 0.258 0.176 0.0045 0.371 0.506 0.149 0.199
eigen! 11.2 0.520 7.87 2.97 2.35 1.67 0.984 1.50
exp / 4.81 / 4.72 / 3.17 / 3.13

Table 1: Benchmark on tridiagonal matrices

Size n 10 100 500 1000
Scale ·10−5s ·10−4s ·10−2s ·10−1s
Type Gen Sym Skew Gen Sym Skew Gen Sym Skew Gen Sym Skew

hessenberg! 0.258 0.233 0.421 2.94 1.81 1.89 1.93 0.833 1.18 1.73 0.583 1.18
eigvals! 1.42 0.524 0.632 29.1 3.41 3.66 13.1 1.13 1.55 7.02 0.683 1.19
eigen! 1.17 1.45 1.01 54.6 9.34 7.23 19.5 3.73 4.66 10.8 2.30 4.15
exp 0.732 1.52 1.12 8.73 10.2 8.67 8.29 4.56 6.07 7.49 2.82 5.05

Table 2: Benchmark on dense matrices

Table 1 shows that the tridiagonal skew-symmetric eigensolver features the same performances as the sym-
metric one. In particular, we can notice that it is faster to obtain the complete eigendecomposition when the
matrices are of size n less than 500. This is a result of the “chessboard” structure of the Schur decomposition
we observed. Table 2 shows the result on dense matrices. In all the cases, the skew-symmetric algorithms
are faster than the general ones, asserting the utility of SkewLinearAlgebra.jl. The difference with the
symmetric case essentially resides in the gap created during the tridiagonal reduction. For n of the order of
100, we even observe that the skew-symmetric algorithms are faster because the tridiagonal reduction is not
yet dominating.

References
[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, Penn-
sylvania, USA, third edition, 1999.

[2] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to numerical
computing. SIAM review, 59(1):65–98, 2017.

[3] Christian Bischof and Charles Van Loan. The WY Representation for Products of Householder Matrices.
Society for Industrial and Applied Mathematics.SIAM Journal on Scientific and Statistical Computing,
8(1):1, 01 1987. Copyright - Copyright] © 1987 Society for Industrial and Applied Mathematics.

[4] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint Whaley, James Demmel,
Jack Dongarra, Iain Duff, Sven Hammarling, Greg Henry, et al. An updated set of Basic Linear Algebra
Subprograms (BLAS). ACM Transactions on Mathematical Software, 28(2):135–151, 2002.

1It would have been preferable for the comparison to initialize A = SymTridiagonal(zeros(n), randn(n-1)). However, we
highlighted that such matrices leaded to the failure of LAPACK’s stegr routine through LAPACKException (22).

8

[5] Inderjit S. Dhillon and Beresford N. Parlett. Multiple representations to compute orthogonal eigenvectors
of symmetric tridiagonal matrices. Linear Algebra and its Applications, 387:1–28, 2004.

[6] J. Dongarra and F. Sullivan. Guest editors introduction to the top 10 algorithms. Computing in Science
Engineering, 2(1):22–23, 2000.

[7] J. G. F. Francis. The QR Transformation a Unitary Analogue to the LR Transformation - part 1.
Comput. J., 4:265–271, 1961.

[8] J. G. F. Francis. The QR transformation—part 2. The Computer Journal, 4(4):332–345, 01 1962.

[9] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark
Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,
585(7825):357–362, September 2020.

[10] The MathWorks Inc. Matlab version: 9.13.0 (r2022b), 2022.

[11] Cleve Moler and Charles Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-
five years later. Society for Industrial and Applied Mathematics, 45:3–49, 03 2003.

[12] Robert Schreiber and Charles Van Loan. A Storage-Efficient WY Representation for Products of House-
holder Transformations. SIAM Journal on Scientific and Statistical Computing, 10, 02 1989.

[13] Stanimire Tomov, Rajib Nath, and Jack Dongarra. Accelerating the reduction to upper Hessenberg, tridi-
agonal, and bidiagonal forms through hybrid GPU-based computing. Parallel Computing, 36(12):645–
654, 2010.

[14] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997.

[15] R C Ward and L J Gray. Eigensystem computation for skew-symmetric matrices and a class of symmetric
matrices. [subroutines trizd, imzd, and tbakzd in fortran for ibm 360/91 computer].

[16] David S. Watkins. Francis’s algorithm. The American Mathematical Monthly, 118(5):pp. 387–403, 2011.

[17] J.H. Wilkinson. Householder’s method for symmetric matrices. (4):354–361, 1962.

9

	Mimicking the symmetric problem
	The tridiagonalization: an Imitation Game©
	A naive skew-symmetric tridiagonalization
	An efficient tridiagonalization

	The eigenproblem for tridiagonal matrices
	Francis's algorithm
	The skew-symmetric case
	Observation 1: the initialized bulge is a scalar
	Observation 2: a chased scalar bulge remains scalar
	Observation 3: The resulting orthogonal transformation is a chessboard matrix

	The matrix exponential
	Performance analysis

