API Documentation
Create a model
ReactiveDynamics.@ReactionNetwork
— MacroMacro that takes an expression corresponding to a reaction network and outputs an instance of TheoryReactionNetwork
that can be converted to a DiscreteProblem
or solved directly.
Most arrows accepted (both right, left, and bi-drectional arrows). Use 0 or ∅ for annihilation/creation to/from nothing.
Custom functions and sampleable objects can be used as numeric parameters. Note that these have to be accessible from ReactiveDynamics's source code.
Examples
acs = @ReactionNetwork begin
1.0, X ⟶ Y
1.0, X ⟶ Y, priority=>6., prob=>.7, capacity=>3.
1.0, ∅ --> (Poisson(.3γ)X, Poisson(.5)Y)
(XY > 100) && (XY -= 1)
end
@push acs 1.0 X ⟶ Y
@prob_init acs X=1 Y=2 XY=α
@prob_params acs γ=1 α=4
@solve_and_plot acs
Modify a model
We list common transition attributes:
attribute | interpretation |
---|---|
transPriority | priority of a transition (influences resource allocation) |
transProbOfSuccess | probability that a transition terminates successfully |
transCapacity | maximum number of concurrent instances of the transition |
transCycleTime | duration of a transition's instance (adjusted by resource allocation) |
transMaxLifeTime | maximal duration of a transition's instance |
transPostAction | action to be executed once a transition's instance terminates |
transName | name of a transition |
We list common species attributes:
attribute | interpretation |
---|---|
specInitUncertainty | uncertainty about variable's initial state (modelled as Gaussian standard deviation) |
specInitVal | initial value of a variable |
Moreover, it is possible to specify the semantics of the "rate" term. By default, at each time step n ~ Poisson(rate * dt)
instances of a given transition will be spawned. If you want to specify the rate in terms of a cycle time, you may want to use @ct(cycle_time)
, e.g., @ct(ex), A --> B, ...
. This is a shorthand for 1/ex, A --> B, ...
.
For deterministic "rates", use @per_step(ex)
. Here, ex
evaluates to a deterministic number (ceiled to the nearest integer) of a transition's instances to spawn per a single integrator's step. However, note that in this case, the number doesn't scale with the step length! Moreover
ReactiveDynamics.@add_species
— MacroAdd new species to a model.
Examples
@add_species acs S I R
ReactiveDynamics.@aka
— MacroAlias object name in an acs.
Default names
name | short name |
---|---|
species | S |
transition | T |
action | A |
event | E |
param | P |
meta | M |
Examples
@aka acs species=resource transition=reaction
ReactiveDynamics.@mode
— MacroSet species modality.
Supported modalities
- nonblock
- conserved
- rate
Examples
@mode acs (r"proj\w+", r"experimental\w+") conserved
@mode acs (S, I) conserved
@mode acs S conserved
ReactiveDynamics.@name_transition
— MacroSet name of a transition in the model.
Examples
@name_transition acs 1="name"
@name_transition acs name="transition_name"
@name_transition acs "name"="transition_name"
Resource costs
ReactiveDynamics.@cost
— MacroSet cost.
Examples
@cost model experimental1=2 experimental2=3
ReactiveDynamics.@valuation
— MacroSet valuation.
Examples
@valuation model experimental1=2 experimental2=3
ReactiveDynamics.@reward
— MacroSet reward.
Examples
@reward model experimental1=2 experimental2=3
Add reactions
ReactiveDynamics.@push
— MacroAdd reactions to an acset.
Examples
@push sir_acs β*S*I*tdecay(@time()) S+I --> 2I name=>SI2I
@push sir_acs begin
ν*I, I --> R, name=>I2R
γ, R --> S, name=>R2S
end
ReactiveDynamics.@jump
— MacroAdd a jump process (with specified Poisson intensity per unit time step) to a model.
Examples
@jump acs λ Z += rand(Poisson(1.))
ReactiveDynamics.@periodic
— MacroAdd a periodic callback to a model.
Examples
@periodic acs 1. X += 1
Set initial values, uncertainty, and solver arguments
ReactiveDynamics.@prob_init
— MacroSet initial values of species in an acset.
Examples
@prob_init acs X=1 Y=2 Z=h(α)
@prob_init acs [1., 2., 3.]
ReactiveDynamics.@prob_uncertainty
— MacroSet uncertainty in initial values of species in an acset (stderr).
Examples
@prob_uncertainty acs X=.1 Y=.2
@prob_uncertainty acs [.1, .2,]
ReactiveDynamics.@prob_params
— MacroSet parameter values in an acset.
Examples
@prob_params acs α=1. β=2.
ReactiveDynamics.@prob_meta
— MacroSet model metadata (e.g. solver arguments)
Examples
@prob_meta acs tspan=(0, 100.) schedule=schedule_weighted!
@prob_meta sir_acs tspan=250 tstep=1
Model unions
ReactiveDynamics.@join
— Macro@join models... [equalize...]
Performs join of models and identifies model variables, as specified.
Model variables / parameter values and metadata are propagated; the last model takes precedence.
Examples
@join acs1 acs2 @catchall(A)=acs2.Z @catchall(XY) @catchall(B)
ReactiveDynamics.@equalize
— MacroIdentify (collapse) a set of species in a model.
Examples
@join acs acs1.A=acs2.A B=C
Model import and export
ReactiveDynamics.@import_network
— MacroImport a model from a file: this can be either a single TOML file encoding the entire model, or a batch of CSV files (a root file and a number of files, each per a class of objects).
See tutorials/loadsave
for an example.
Examples
@import_network "model.toml"
@import_network "csv/model.toml"
ReactiveDynamics.@export_network
— MacroExport model to a file: this can be either a single TOML file encoding the entire model, or a batch of CSV files (a root file and a number of files, each per a class of objects).
See tutorials/loadsave
for an example.
Examples
@export_network acs "acs_data.toml" # as a TOML
@export_network acs "csv/model.csv" # as a CSV
Solution import and export
ReactiveDynamics.@import_solution
— Macro@import_solution "sol.jld2"
@import_solution "sol.jld2" sol
Import a solution from a file.
Examples
@import_solution "sir_acs_sol/serialized/sol.jld2"
ReactiveDynamics.@export_solution_as_table
— Macro@export_solution_as_table sol
Export a solution as a DataFrame
.
Examples
@export_solution_as_table sol
ReactiveDynamics.@export_solution_as_csv
— Macro@export_solution_as_csv sol
@export_solution_as_csv sol "sol.csv"
Export a solution to a file.
Examples
@export_solution_as_csv sol "sol.csv"
ReactiveDynamics.@export_solution
— Macro@export_solution sol
@export_solution sol "sol.jld2"
Export a solution to a file.
Examples
@export_solution sol "sol.jdl2"
Problematize,sSolve, and plot
ReactiveDynamics.@problematize
— MacroConvert a model to a DiscreteProblem
. If passed a problem instance, return the instance.
Examples
@problematize acs tspan=1:100
ReactiveDynamics.@solve
— MacroSolve the problem. Solverargs passed at the calltime take precedence.
Examples
@solve prob
@solve prob tspan=1:100
@solve prob tspan=100 trajectories=20
ReactiveDynamics.@plot
— MacroPlot the solution (summary).
Examples
@plot sol plot_type=summary
@plot sol plot_type=allocation # not supported for ensemble solutions!
@plot sol plot_type=valuations # not supported for ensemble solutions!
@plot sol plot_type=new_transitions # not supported for ensemble solutions!
Optimization and fitting
ReactiveDynamics.@optimize
— Macro@optimize acset objective <free_var=[init_val]>... <free_prm=[init_val]>... opts...
Take an acset and optimize given functional.
Objective is an expression which may reference the model's variables and parameters, i.e., A+β
. The values to optimized are listed using their symbolic names; unless specified, the initial value is inferred from the model. The vector of free variables passed to the NLopt
solver has the form [free_vars; free_params]
; order of vars and params, respectively, is preserved.
By default, the functional is minimized. Specify objective=max
to perform maximization.
Propagates NLopt
solver arguments; see NLopt documentation.
Examples
@optimize acs abs(A-B) A B=20. α=2. lower_bounds=0 upper_bounds=100
@optimize acss abs(A-B) A B=20. α=2. upper_bounds=[200,300,400] maxeval=200 objective=min
ReactiveDynamics.@fit
— Macro@fit acset data_points time_steps empiric_variables <free_var=[init_val]>... <free_prm=[init_val]>... opts...
Take an acset and fit initial values and parameters to empirical data.
The values to optimized are listed using their symbolic names; unless specified, the initial value is inferred from the model. The vector of free variables passed to the NLopt
solver has the form [free_vars; free_params]
; order of vars and params, respectively, is preserved.
Propagates NLopt
solver arguments; see NLopt documentation.
Examples
t = [1, 50, 100]
data = [80 30 20]
@fit acs data t vars=A B=20 A α # fit B, A, α; empirical data is for variable A
ReactiveDynamics.@fit_and_plot
— Macro@fit acset data_points time_steps empiric_variables <free_var=[init_val]>... <free_prm=[init_val]>... opts...
Take an acset, fit initial values and parameters to empirical data, and plot the result.
The values to optimized are listed using their symbolic names; unless specified, the initial value is inferred from the model. The vector of free variables passed to the NLopt
solver has the form [free_vars; free_params]
; order of vars and params, respectively, is preserved.
Propagates NLopt
solver arguments; see NLopt documentation.
Examples
t = [1, 50, 100]
data = [80 30 20]
@fit acs data t vars=A B=20 A α # fit B, A, α; empirical data is for variable A
ReactiveDynamics.@build_solver
— Macro@build_solver acset <free_var=[init_val]>... <free_prm=[init_val]>... opts...
Take an acset and export a solution as a function of free vars and free parameters.
Examples
solver = @build_solver acs S α β # function of variable S and parameters α, β
solver([S, α, β])